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Abstract—With the widely used smartphones, dynamic data
coming from built in sensors, such as human activity data, can
be easily obtained. Many applications' developments, such as
applications in healthcare, fitness monitoring, and elder
monitoring, are based on this kind of dynamic data. Although
there are many offline methods that have made a great
progress in analyzing these kinds of data, it still has a big
challenge to get good results from a streaming data
perspective. In this paper, we use an online method called Very
Fast Decision Tree (VFDT) to mimic the real scenario. There
are two main improvements from the existing models: 1) we
train the model online and only use the examples data once for
training instead of using them more than once; 2) after
building VFDT, the model can be adjusted to identify new
activities by adding only small amount of labeled observations.
Our experiment on the same existing activities shows that the
proposed algorithm achieves an average accuracy of 85.9% for
all subjects and single subject accuracy rates are between
60.5% and 99.3%. Moreover, the average accuracy of learning
new activity from a different data is 84% and single subject
accuracy rate goes to as high as 100%.

Keywords— Streaming Data, VFDT, Decision Tree, Human
Activity Recognition, Smartphone

. INTRODUCTION

With the development of technology, more and more
wearable devices have become available and affordable and
the apps with health trackers have become popular. These
daily worn devices with applications present a convenient
way to record physiological data from users and to provide a
basic overview of health status and summary of activities.
For example, accelerometer, gyroscope, and magnetometers
sensors in the smartphones provide the 3-axis (X, y, z) data,
which can be used to track motions, such as walking,
standing, and jumping, called Human Activity Recognition
(HAR). Because of these advantages, daily activity data is
frequently used for health and fitness monitoring or
recreational activities. However, most of these devices are
not suitable for the medical monitoring of high-risk patients
[1]. Meanwhile, there are several challenges and bottlenecks
for these data from wearable devices to be more useful and
reliable in medical purposes [1]. First, an loT platform with
simple and secure connectivity is required, including data
collection, transmission, storage and observation in a medical
station. Second, the power needs to be easily managed and
monitored long-term without significant power loss. Finally,
the data quality should be preserved. From the statistical
perspective, these challenges are related to the collection,
storage, and compression of the original data, effective ways
of selecting data features, and good algorithms using the
least information to build the precise models for prediction
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and classification. Based on these purposes and based on the
fact that a truly streaming data is not publicly available, we
proposed pseudo streaming methods of identifying human
activities of smartphone-based data with high speed
classification and efficient data usage. We use the data from
the UCI Machine Learning website [2] as the case study. We
also use WISDM lab data [3] to explore the adaptive power
of this model.

A. Previous Works

The work of human activity recognition based on the
sensors can be traced back to 1990s [5]. Sharma et al. [6]
applied neural networks (ANN) for a chest worn wireless
sensor dataset and achieved 83.95% accuracy. Kwapisz [7]
performed the J48 decision tree and multi-layers perceptron’s
method to the HAR data from a smartphone with only one
accelerometer. They point out that these two methods have
higher accuracy than other data mining methods. However,
both lack the ability to efficiently identify similar activities,
for example, walking upstairs vs. downstairs and sitting vs.
standing. He and Jin [8] combined Principle Components
Analysis (PCA) and Support Vector Machine (SVM) to
classify four activities and got 97.5% average accuracy. Sohn
and Khan [9] also used PCA but they combined it with
Linear Discriminant Analysis (LDA) and Artificial Neural
Net (ANN) to detect if activities are abnormal. The highest
accuracy rate they got is 78%. Wanmin Wu et al. [10] used K
Nearest Neighbors (KNN) as the best classifier with iPod
Touch data, but the results show that it fails to effectively
classify similar activities as well. Anguita et al. [11] used
561 transformed features to classify six different activities
using a one vs. all SVM and obtained as high as 96%
accuracy. Fergani [12] used PCA based multi-classfier to get
96.9% average accuracy for daily activities. Zhang, Wu and
Luo [13] point out that the combination of the Hidden
Markov Model and the Deep Neural Network (HMM-DNN)
has a higher accuracy compared with Gaussian mixture
method, Random Forest, and their combination with HMM.
The accuracy of HMM-DNN is 93.5%. Guo et al. [14]
performed a two layer and multi-strategy frame work for
sensor smartphone data and the result shows 95.71% average
accuracy. Besides, Charissa Ann Ronao and Sung-Bae Cho
[15] applied deep learning neural networks (DNN) to both
raw sensor data and FFT smartphone data. Their work shows
an overall 94.79% accuracy with raw sensor data and
95.75% with additional FFT information. Nakano and
Chakraborty [16] point out that the convolutional neural
network (CNN) has better performance in identifying
dynamic activities than other methods. The average accuracy
is 98% with classifying walking, walking upstairs and
walking downstairs. Andrey Ignatov [17] used CNN for the



accelerometer data from smartphones. They obtain a 97.63%
average accuracy with the statistical features. As we can see,
that DNN and CNN give higher average accuracy rates
comparing to others, but they are conducted off-line. These
manners ignore the characteristic of data generation and
cannot update with new activities. Another issue for most of
the methods is the difficulty in discriminating between
similar activities, especially for sitting and standing, walking
upstairs and walking downstairs.

Some methods consider sensor-based data as time series
data, but they are still unlikely to be updated with the
upcoming new data, which implies that they all assume the
data is a random sample from a stationary distribution [18].
In reality, we can only use the training dataset for creating
the model. This dataset comes from small sample subjects in
a lab and stores on the local devices. However, when the
application is activated, there is only one single subject; this
means the new pattern might not be recognized well. Further,
the system itself should have the ability to identify more
activities if the user provides new labeled data. In this case,
we need a model which can quickly deal with incoming data,
can keep the useful information from the previous examples,
and can be updated with these new labeled data. Because of
these considerations, the most appropriate way to build the
HAR system might be online with a streaming data.

There are some studies that are conducted for online data
analysis. In 2009, N. Gyorbiro, A. Fabian, and G. Homanyi
[19] proposed an on-line HAR mobile system. Wang, Liang,
et al. [20] used a real-time hierarchical model for recognizing
complex activities with body sensor data and had an average
accuracy of 82.87%. Okeyo, George, et al. [21] applied a
dynamic segmentation model using varied time windows.
This work shows an average accuracy above 83% for
recognizing activities. Considering the necessity of the
sequential training in the real world for sensor data, Al
Jeroudi, Yazan, et al. [22] used a sequential extreme learning
machine method (OSELM) and achieved an average
accuracy of 82.05%. Shuang Na [23] used the Online
Bayesian Kernel Segmentation method for classifying 6
activities. The result shows a 92% average accuracy rate. The
details of these four papers are in Table I. The first two
papers use video data and the advantage of this kind of data
is obvious. With visualization, we might be able to classify
more complex activities and scenarios, such as making
coffee, washing hands, and so on. But saving and processing
these streaming videos requires large memory storage and
complex pre-process data steps. So, smartphones with one or
two accelerometer sensors is more suitable for recording
daily activities. [22] and [23] are two examples of this. They
both use the same data from UCI. Unfortunately, [22] needs
a large size window segmentation to train the hidden layers.
And [23] only uses the last data window to create a new
classifier but forgets all the previous information. Both [22]
and [23] lack the ability to adapt the incoming labeled data
from single users and might violate the stationary assumption
at the very beginning.

To address the above challenges and try to improve the
existing methods, we propose an online tree based method
with preprocessed feature selection. Very Fast Decision Tree
(VFDT) is a tree based online classifier, which was first
proposed by Pedro Domingos and Geoff Hulten in 2000 [24].
The purpose of this algorithm is to deal with continuous data

streams by building decision trees using constant memory
and time per example [24]. This method is used in many
streaming fields, including fraud detection [25], [26], and
sensor networks [27]-[29]. It can also be applied for
handling missing values [30] and implementing in
distributed environment [31]. These works provide the
evidence that VFDT is a most prevalent learner in streaming
data classification problems. In our case, the main reasons
for selecting VFDT are as follows: 1) it has small memory
space requirement, thus making it suitable for smartphones;
2) its use of subsampling to build decision trees helps in
detecting activities changing; 3) it adjusts the previous
decision tree to the new coming labeled data; 4) it avoids
segmentation, which is another big challenge for streaming
data analysis. These advantages make VFDT to be a suitable
online classifier for human activities system built for
smartphones data.

B. Paper Structure

In this paper, VFDT is implemented to identify 6 human
activities, including walking, waling upstairs, walking
downstairs, sitting, standing, and lying down. Our purpose is
to build a decision tree-based learner which can update and
adjust the previous tree. The contributions of this paper
include the following:

1) Selecting features: instead of using principal
components analysis, which is used in most of the
references above, we use the decision trees to preprocess
feature selection from the 561 transformed attributes.

2) Generating streaming data: instead of using all the
training data, we use a streaming data generator to release
examples at constant times. Thus, we mimic the real data
recording process.

3) Updating model: instead of keeping the final model
from the lab data, VFDT is capable of implementing new
labeled data generated by users. Thus, the model initially
built in the system can be considered as the first stage of the
training process. During usage, new activities, such as
jogging, can be added, then the system can identify the
user’s personality.

The rest of the paper is organized as follows: Section 2
introduces the data process and structure; Section 3
introduces the proposed method include the feature selection
and the VFDT; Section 4 gives the results of the experiment
and Section 5 concludes the paper.

Il. DATA PROCESSING

In this paper, we used the smartphone data from UCI [2]
and WISDM Lab [3]. For UCI data, there are 30 volunteers
with an age range between 19 to 48 years old. They are
randomly divided into training and testing groups, 21 of
them are in the training group and the rest 9 are in the
testing group. All of them perform 6 activities (walking,
walking upstairs, walking downstairs, sitting, standing, and
lying down) wearing Samsung Galaxy S Il on the waist. The
smartphone collected the data in 3-axial linear acceleration
and angular velocity. Then the data provider modified the
data using a median filter and 3rd order low pass



TABLE I.

ONLINE METHODS SUMMARY

Paper Data Type Method Acc. (%)
[20] Sensory Data Emerging Pattern Based Algorithm 82.87
[21] Video Data Window Approach 83.0
[22] UCl Sequential Extreme & One layer network 82.05
[23] UCI Online Bayesian Kernel Segmentation 92

Butterworth filter with a corner frequency of 20Hz.
Besides, Fast Fourier Transform (FFT) is also applied to the
signals. After all of this, we have 561 features from each
window of the raw data. In order to mimic the real time
online situation, we then leased examples one by one during
the training process and discard old observations later to
simulate a stream data for which the data points can be used
only once, and model is updated gradually. The training data
has a total of 7352 examples. The detailed size of each
activities in Table Il, where W is Walking, WU is Walking
Upstairs, WD is Walking Downstairs, ST is Sitting, SD is
Standing, and LD is Lying Down. The sizes of each
activities are close in number, it is reasonable to consider all
the classes as balanced.

We also used WISDM lab data to evaluate capability of
our algorithm to recognize new activities without going
through extensive training. This data collected from 36
volunteers. They performed 6 activities with an Android-
based smartphone in their front pants leg pocket. Every
volunteer was asked to walk, walk upstairs, walk
downstairs, sit, stand and jog for specific periods of time.
Jogging is the new activity. Some of them might not do all
the 6 activities. Instead of recording 3 sets of 3-axis data,
WISDM data only recorded 2 sets, which means that there
are only 6 features in raw data. Besides, WISDM data were
transformed in a different way. It calculated some statistics,
such as average, standard deviation and difference, instead
of using FFT. There are 44 features after transformation,
much less than 561 features in UCI data. Since there are
several missing values in each feature, we replaced these
missing values with 0. To test whether our method can use
less examples to identify classes or not, we randomly
selected nine volunteers’ data as training set. The number of
each activity is in Table Ill. Since there are two volunteers
who did not perform Jogging, we ignored these data in out
testing. Thus, there are 25 cases.

TABLE Il SI1ZE OF ACTIVITIES IN UCI TRAINING DATA

Activity W WU WD ST SD LD

Size 1226 | 1073 986 1286 | 1374 | 1407
TABLE III. SIZE OF ACTIVITIES IN WISDM TRAINING DATA

Activity w wu WD ST SD JOG
Size 552 185 153 116 76 425

I1l. PROPOSED STREAMING METHOD

In this section, we will discuss the proposed method,
including the features selection and VFDT algorithm. The
big difference here for selecting features from other methods
in the literature is using Decision Tree for extracting instead
of using Principle Components Analysis (PCA), which is
most used in the research, such as [8], [9] and [12].

A. Features Selection

Consider all the 561 features for each observation, there
is high dimensional complexity and high correlation between
these features. Then, we first selected the most important
features. The normal approach is PCA, which sets the
eigenvalues of the covariance matrix as the weights for all of
features, then uses the linear combinations of these
eigenvalues to get the new low dimensional inputs. However,
PCA is not a suitable method in online HAR since the
activity distribution is changing all the time and hence non-
stationary. Lansangan and Barrios said in their paper that
PCA of non-stationary time series, the first component will
be a linear combination with similar weight for all inputs
[32]. Besides, the covariance matrix only based on the
training data, it is hard to be updated in a streaming fashion.
On the other hand, suppose we ignored the non-stationary
aspect and used PCA with 95% of variance explanation in
the training and transformed the testing data, result shows
that the average accuracy is 76.1% using VFDT, which is
lower than proposed feature selection. Also, implementing
PCA in algorithm needs more time to compute components
than just to use a subset of features. To overcome above
mentioned limitations of PCA based methods, we used
Decision Tree (DT) to extract important features. When we
built a univariate tree, the algorithm only used the necessary
variables and selected the most important ones first. This
means that the closer to the root, the more important the
features are [33]. This method is suitable for non-stationary
streaming data, and also from our experiment, this method
gives a good preprocess of the data that resulted in 36
features, which in turn results in better classification
accuracy. The process is shown in Fig.1.
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Fig. 1. Feature Selection and Streaming Data Creation.

B. Very Fast Decision Tree (VFDT)

Geoff,etc. [34] introduced a streaming classification
method in 2001, namely Very Fast Decision Tree (VFDT).
They used the Hoeffding bound to decide the minimum
observations needed for each new split and grouped the tree
based on the new branch. In other words, VFDT waits for
new examples to arrive instead of recruiting previous ones to
split the internal nodes. The two main crucial aspects needed



to build this tree are deciding when to split a node and which
feature is used to split. For the former one, it involves the
Hoeffding bounds, which states that with probability (1-5),
the difference between the true mean of a real-valued random
variable in range R and the estimated mean will be less than
¢ after n independent examples, where:

_[R%n(1/0)
‘= 2n (1)

(1) states that a small part of the sample will be enough to
choose an optimal feature for splitting. For the latter one, it
needs a heuristic measure. The most popular measures are
information gain (IG) which measures the ‘purity’ of each
subset of a split [35], and Gini Index (GI) which estimates
the probability of misclassification under the split [36]. For
any given potential split, VFDT checks if the difference of
heuristic measure of the top two attributes is greater than &
under a given 6, if so, the winning attribute will be picked
and tested. Thus, this algorithm can determine the smallest
number n of examples needed with a high probability.
Moreover, it is easy to estimate learning time since it uses
constant time per example. The pseudo-code for VFDT after
our tree-based feature selection is shown below. The novelty
of the VFDT used in this work lies in using the pre-training
examples to build a DT first instead of building the
Hoeffding Tree from root. The whole process including
feature selection is given in Fig. 2.

Algorithm 1 The VFDT Algorithm
Input: S : a streaming of example
X: a set of selected features
IG: Information Gain
d: probibility of misclassification
T:a tie threshold

Ny # Of examples used in pre-training
Tnin: # of examples for checking new splii
QOutput: VFDT
Procedure: VFDT {S, X, IG, 6, T, Tipre, Tamin |
I: Let DT be a tree from the 1, examples using 36 features
2: Let nijr(l) be # of examples in leaf | for it" feature j*"
value in class k
- Updating:
Let X; = X U{Xp}
: Let 1(GG(Xy) be the most frequent predicted class in §
: for each (x, y) in S do
Sort (x, y) into leaf | using DT
for each wx;; in x such that X; € Xy do
Increment njy (1)
10: Label [ with the majority class among niji(l)
11:  end for
12:  if (examples at [ are not in the same class and n;;,({)
mod 1,,;, = 0) then

=R - T I ]

13: Compute 1G(X;) for each feature using 1;;.(1)

14: Select the highest two 1G(X;) and 1G(X;):

15: AlG =1G(X;) — 1G(X;9)

162 Compute ¢ = \‘l-'"l rr'_:nl‘rilf":?]

17: I (AIG = cor AIG < ¢ < 7 and X;) # Xy) then

18: Add new split 1o | with X;, and have a new leaf
f”n’

19: Let nyjp(ly) =0

20: end if

21:  end if

22: end for

23: Return VFDT

Traing Data

’ Nyre Instances —-‘]’n- training

Instance ng,, + 1
Instance np,. + 2

Initial Tree

-

¥
[

s T il ( \
Instance }—' Sort (z,y) to leaf h Features ‘F—‘ New Instance |

2t mod 0

Yes

Output Tree |- Compute IG, e, AIG

< AIG > ¢
No AIG < ¢ No
Xa # Xp

Add New Split ., |

T | nupla) =0

Fig. 2. VFDT with DT Pre-training Diagram.

IV. RESULTS

We used the training observations to extract the features
by Decision Tree. By selecting the best depth among 2 to 10
and using the 10-folds cross validation to avoid the
overfitting, we got the best tree with an average validation
accuracy of 87.36% from all the 7352 observations, with
maximum depth at 7 and with 36 features. Then we used
these 36 features to create an online tree. After preparing the
training data as the streaming data, we fixed the minimum
number of checking if a new splitting is needed, Ny, =20. As
time goes by, the tree will be more and more deep until it
runs out of the lab-data or the threshold of the information
gain. In our experiments, the tree will be paused after reading
7352 records. We call this as lab step, which prepares the
model and system. The result of the model will be built into
the single device. Next, testing data from 9 new volunteers
will be used. This step generates two types of data: with
labeled activities and without labels. We used the labeled
records to continually update the tree model to be more
personal and used the unlabeled records to evaluate model
performance. The finally results we got from VFDT with an
overall average accuracy for 9 subjects together is 85.9%
(without personality). While for single subject self, some of
them have lower average accuracy, such as Subject 4 only
has 60.5%, the main problem for recognizing the right
activities is Walking Upstairs. It only has 8% of the
accuracy. The accuracy for Subject 7 with Walking
Downstairs is even worse. Some of them performed much
better than the overall average, such as Subject 6, it achieves
99.4% of accuracy. The details are shown in Table 1V.

These results indicate that the activities are varied from
person to person, and it is necessary to import personal
activity pattern at the beginning and update to the personal
model from the general case. Take four activities sequence
plots for examples. In Fig. 5, we can visualize that for Static



activities, Sitting, Standing, and Lying Down, the 3-axis of
total acceleration gave enough information for identifying
them. But the Sitting and Standing do not have many
differences for most of the volunteers, such as in Fig.4. The
rest of 3 activities are more complex as the changes between
them are tiny, such as in Fig. 4 and Fig. 6.

_I}W,?-—-—-mu—-——w |
Bhow ~— | non T —T | |

100 150 200 250 300 350

o
w
=]

Fig. 6. Example Sequence for Subject 7.

To show the ability of updating our model to new
activities, we use another data set from WISDM Lab [4].
Although these two data types are different, it can roughly
show the power. This data has 36 volunteers who performed
a new activity Jogging instead of Lying Down. Moreover,
the data transform method is different, thus the data only has
44 features including the single axis. To keep the same
number of attributes, we selected the last 36 ones since the
decision tree method shows that the most important attributes
are the last ones. By randomly selecting only 9 of all the
volunteers as the training, we evaluated our model with
Jogging. The average accuracy of all the 25 test subjects for
Jogging is 84%. The accuracy for one single person can go
up to 100% and 16 out of 25 accuracy rates are higher than
90%. More details can be found in Table V. This proves that
our model can learn new activities which are not present in
the training dataset. This is one of the big differences from
all the other models so far.

TABLE IV. ACCURACY FROM VFDT WITH 36 FEATURES

Subject W WU WD ST SD LD Average

Sub 1 1.0 1.0 1.0 045 091 1.0 0.903
Sub 2 0.97 1.0 1.0 0.62  0.93 1.0 0.915
Sub 3 1.0 0.96 1.0 036  0.65 1.0 0.826
Sub 4 0.69  0.08 1.0 0.60 024 10 0.605
Sub 5 0.78 0.88 1.0 039 094 10 0.849
Sub 6 0.96 1.0 1.0 1.0 1.0 1.0 0.994
Sub 7 0.96 1.0 0.00 048 10 1.0 0.761
Sub 8 0.29 1.0 087 037 066 1.0 0.707
Sub 9 1.0 0.8 0.89 1.0 0.97 1.0 0.948

Average® 092 087 077 065 091 10 0.859

2Average means the average acc. we got by testing all the 9 subjects together.

TABLE V. ACCURACY FOR JOGGING WITH WISDM DATA

Sub. Acc. | Sub. Acc. | Sub. Acc. | Sub. Acc.
Subl 0.98 | Sub8 0.79 | Sub17  0.98 | Sub24 0.97
Sub2 0.98 | Sub9 0.66 | Sub18  0.95 | Sub25 0.13
Sub3 046 | Sub1l 039 | Sub19  0.94 | Sub26 0.97
Sub4 098 | Sub12 097 | Sub20 0.36 | Sub27 0.98
Sub5 093 | Sub13 0.84 | Sub21  0.99

Sub6 098 | Sub14 0.98 | Sub22  0.80

Sub7 100 | Sub15 0.96 | Sub23  0.96 | Average” 0.84

°Average means the average acc. we got by testing all the 25 subjects together.

V. CONCLUSION

To provide a human activity recognition system with
automatic updating and adjusting, an online system is
required. Most of the methods in the literature are offline,
while other online methods do not have this ability. In this
paper, we proposed and evaluated the VFDT to identify
existing activities online and to recognize new activities
when new labeled data available.

The results show that the average accuracy is 85.9% for
identifying 6 activities, and 4 out of 9 accuracy rates for
single person are above 90%. It can recognize Lying Down
with 100% accuracy. For a new activity, VFDT gives an
average of 84% accuracy rate and above 90% accuracy for
64% of the testing people.
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