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1 | INTRODUCTION

Data competitions rely on real-time leaderboards to rank competitor entries and stim-
ulate algorithm improvement. While such competitions have become quite popular
and prevalent, particularly in supervised learning formats, their implementations by
the host are highly variable. Without careful planning, a supervised learning compe-
tition is vulnerable to overfitting, where the winning solutions are so closely tuned
to the particular set of provided data that they cannot generalize to the underlying
problem of interest to the host. This paper outlines some important considerations
for strategically designing relevant and informative data sets to maximize the learn-
ing outcome from hosting a competition based on our experience. It also describes a
postcompetition analysis that enables robust and efficient assessment of the strengths
and weaknesses of solutions from different competitors, as well as greater under-
standing of the regions of the input space that are well-solved. The postcompetition
analysis, which complements the leaderboard, uses exploratory data analysis and
generalized linear models (GLMs). The GLMs not only expand the range of results
we can explore, they also provide more detailed analysis of individual subquestions
including similarities and differences between algorithms across different types of
scenarios, universally easy or hard regions of the input space, and different learn-
ing objectives. When coupled with a strategically planned data generation approach,
the methods provide richer and more informative summaries to enhance the inter-
pretation of results beyond just the rankings on the leaderboard. The methods are
illustrated with a recently completed competition to evaluate algorithms capable of
detecting, identifying, and locating radioactive materials in an urban environment.
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the competition, rank competitors, and provide a prize (from
thousands to millions of dollars) to reward winners. By bring-

Data competitions, sometimes called machine learning
competitions, have attracted considerable attention among
the world’s community of data and analytics scientists
and discipline-specific subject matter experts. This broad
involvement provides a model of crowdsourcing for busi-
ness and government to solve tough high-impact problems
in a cost-effective way. Competition hosts often use a com-
mercial platform, such as Kaggle (www.kaggle.com), to hold

ing in new approaches to solving problems, there is potential
to accelerate cutting-edge research through the use of data sci-
ence approaches and the involvement of a more technically
diverse set of experts.

Hosting a data competition is time-consuming and often
expensive. In this paper we present strategies for designing a
competition that will better answer a host’s questions of inter-
est, and we build on those design strategies to extract more
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information from a completed competition than a simple rank-
ing of competitors. These strategies enable hosts to consider
more in-depth questions, such as

o Are there fundamental differences between the top com-
petitors?

o What regions of the input space are being solved well, and
which poorly?

e Are there changes in competitor rankings for different
regions of the input space?

With these planned and implemented approaches, a host
can evaluate the alternative solutions and make informed
choices for subsequent studies or competitions, thus enhanc-
ing their return on investment. Throughout the paper we
illustrate our strategies and methods with examples from a
data competition we designed and analyzed to evaluate algo-
rithms developed to detect, identify, and locate radiological
sources in an urban environment.

There has been limited work in the literature provid-
ing guidance or exploring strategies for effectively hosting
competitions. Blum and Hardt [8] discuss the overfitting
issue when allowing multiple submissions for general com-
petitions. Anderson-Cook et al. [6] describe strategies for
building a scalar metric that appropriately balances different
aspects of a complex competition problem.

The remainder of the paper is structured as follows: Section
2 describes the typical setup for many data competitions and
introduces the urban radiological search example that we refer
to throughout the paper. Section 3 describes strategies for cre-
ating an effective, impactful competition through the strategic
design of data sets and the choice of the scoring metric for
ranking competitors. Section 4 describes the postcompetition
analysis opportunities enabled by a thoughtful design. These
allow a host to gain insights beyond a simple ranking of com-
petitors, and they include both exploratory data analysis and
model-based analyses. Finally, Section 5 contains conclusions
and discussion.

2 | STRUCTURE OF A DATA COMPETITION

The kinds of data competitions we consider here are con-
ducted in a supervised learning framework [11]. That is,
competitors are provided two sets of data: a training set, for
which the answers are provided, and a fest set, for which
the competitors will provide their predicted answers for scor-
ing. Competitors develop or “train” their algorithms using the
training set, then refine them based on the feedback given by
their combined scores on a fraction of the test set data. Typ-
ically, the platform that runs the competition will provide a
real-time public leaderboard that reflects each competitor’s
best score and ranking based on their predicted answers for
the test set. Competitors can make multiple submissions over
the course of the competition, and each is scored and incorpo-
rated into the leaderboard if it reflects an improvement over

the previous best submission for that competitor. Most com-
petitions impose caps on the maximum daily or total number
of submissions.

Within the test set, there is a further division of the data,
whose details are. Not disclosed to the participants. A fraction
of test data forms the public test set, which is used to score
and rank the competitors on the public leaderboard while the
competition is running. The remaining test data form the pri-
vate test set. The final score for each competitor is based on
the private test set and is not shared with the competitors until
the competition closes. The private leaderboard, based on the
scores on the private test set, specifies the final ranking and
winners of the competition.

The host has the flexibility to specify what data comprises
the training, public test, and private test sets, often subject to a
practical limit on the total amount of available data. The host
also chooses a static evaluation formula or scoring metric to
define the score of each submission and its ranking on the
public and private leaderboards. It is our understanding that
the vast majority of current data competitions rely exclusively
on the leaderboard to evaluate and rank the submitted solu-
tions. To provide timely, succinct feedback on competitors’
performance during the competition, the scoring metric is
usually a simple scalar summary that quantifies the accuracy
and effectiveness of a solution for solving the competition
task(s). This metric, when properly defined, encompasses
the key aspects of the problem under investigation with the
competition, and seeks to identify its top solutions. How-
ever, there are several potential limitations to this approach:
First, by necessity, the scoring metric is created before the
competition opens. Hence anything that the host learns by
observing competitor contributions cannot be incorporated
into revisions of the metric. Second, the leaderboard sum-
mary is a global number that amalgamates responses across
a large number of instances, each of which could represent
different regions of the problem space. One solution might
be best in one region of this space, while another might be
superior elsewhere. When the host wants to choose a solu-
tion for a particular region of interest, understanding relative
performance could lead to different choices that should be tai-
lored to the individual question to be answered. Finally, since
many data competitions involve multiple tasks, the scoring
metric for the leaderboard must combine evaluation of all of
these tasks and may be too simplistic to allow deeper under-
standing of the relative performance of the different solutions
and address multiple questions of interest to the host. How to
weigh the different contributions through penalties for incor-
rect portions of the answer can have a profound effect on how
different competitors are ranked.

The postcompetition analysis described in Section 4 allows
uncoupling of the different aspects of the problem as well as
detailed comparisons between competitor solutions through-
out the problem space. Since the constraint of summarizing
and ranking the competitors with a single summary has been
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relaxed, exploratory data analyses and model-based charac-
terization of the solutions can be used to describe patterns in
the solutions. The postcompetition analysis can be made more
powerful and informative by having a well-chosen set of data
for the competition as described in Section 3. Anderson-Cook
et al. [6] describe strategies for selecting an intentional coher-
ent test set for data arising from simulated or measured
sources. By combining a strategic construction of the compe-
tition data with a detailed analysis, it is possible to maximize
the information gained and value from hosting a competition.

combined the location, strength, and shielding
factors into a measure of the signal-to-noise
ratio (SNR), which is used as a descriptor in the
analysis later.

For the detector factors we considered its
speed in meters per second as it traveled along
the street, the traffic lane of travel, and the
starting/ending points within a street.

The data were generated using a stochas-
tic simulation code developed at Oak Ridge
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Case study: Urban radiological search.
Throughout this paper, we provide concrete
examples of the strategies and methods in the
context of a competition to detect, identify, and
locate radiological sources in an urban environ-
ment, datacompetitions.lbl.gov/competition/1/.
This competition used simulated measurements
mimicking those collected by a radiation detec-
tor being driven along typical urban streets.
The simulations were performed at Oak Ridge
National Laboratory, where they could flexibly
simulate data for a wide variety of scenarios.
The inputs for these scenarios were chosen to
mimic the diversity of urban environments seen
in practice.

A key feature of urban radiological search
is being able to separate the background signal
(generated from benign emitters of radiation,
like buildings and pavement, in the urban envi-
ronment) from a localized source. We divided
the input factors into several categories: char-
acteristics of the background, characteristics of
the sources, and characteristics of the detector’s
movement. For the background factors, several
versions of urban streets were used with dif-
ferent configurations and compositions for the
buildings and features.

For the source factors, we considered five
different radioactive source types, plus an addi-
tional source defined as a combination of two
of the sources. These sources include weapons
grade materials and isotopes common in medi-
cal or industrial settings:

1 HEU: Highly enriched uranium
WGPu: Weapons grade plutonium
13IT: Todine, a medical isotope

%0Co: Cobalt, an industrial isotope
99mTe- Technetium, a medical isotope
A combination of HEU and *™Tc

A Ut AW

The other source factors included its location
on the street, its strength, and whether it was
shielded in a dampening container. With close
engagement from the subject matter experts, we

National Laboratory. Each “run” or instance of
data in the training and test sets was specified
by selecting values for more than 100 param-
eters. The individual file sizes for each run
ranged from 160 kB (when the detector is mov-
ing quickly and over a shorter section of road)
to 7.3 MB (moving slowly over a longer path
with more active background). To keep down-
loads and manipulation of the data manageable
for the competitors, we constrained the total file
size for the zipped data (training and test sets
together) to 10 GB. This served as a “budget”
for the number of runs to be included in the
combined training and test data sets.

The urban radiological search competition
was open to competitors working at or affiliated
with U.S. government laboratories and ran from
February through May 2018. Sixteen teams par-
ticipated, and each team could be comprised
of multiple individual participants. Across all
of the teams there were nearly 1000 total sub-
missions, with the top four teams contributing
between 100 and 250 submissions each. In the
examples that follow we focus primarily on
the top three teams: LBNL (Lawrence Berke-
ley National Laboratory), LANL-W (one of two
teams from Los Alamos National Laboratory),
and Python Hacks (one of four teams from
Lawrence Livermore National Laboratory).

3 | DESIGN CONSIDERATIONS FOR DATA
COMPETITIONS

Like designed experiments offer more cost-efficient strategies
to simultaneously change multiple input factors for studying
the underlying relationship between the input and response
variables, strategically designed competition data can offer
more efficient information to accelerate improvements
and drive better solutions from hosting data competitions.
With a limited size of the competition data, simply using a
collection of raw data that satisfy the size constraint could
result in a loss of opportunity. For example, if the goal of a
competition was to find an algorithm that offers the high-
est success rate for classifying some rare event of interest,
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using the typical data that are severely unbalanced may have
preserved the raw data features but could fail to make good use
of the valuable competition resources and lose the opportu-
nities to develop more efficient machine learning algorithms
for detecting cases of interest. For a competition with the
goal of finding a general solution suitable for a broad scenar-
ios of interest, using convenient data from localized regions
or narrow time windows or specific scenarios that are hard
to generalize to broader scenarios might easily lead to com-
petitors solving a constrained or even wrong problem. We
think the goal of the competition should not just be to find
the best solution for the particular data set provided to the
competitors, but rather to identify best approaches to the
general class of problems that the host intends to solve.
This should drive the process for hosting the competition,
and help with making choices about which data to choose
(what to include and exclude) to encourage the competitors
to build robust and general solutions.

While perhaps obvious to state, the competition should have
a clearly specified and articulated goal against which data can
be compared to evaluate if the competition has potential to
achieve success. A critical part of success of the competi-
tion is to have clear objectives for what a desirable participant
solution should be able to do, ensuring that the available data
are adequate to match the goals, and that the provided data sets
are informative and effective for driving the best sustainable
solutions.

Here we describe six strategies for designing competition
data sets to drive the maximum outcome of the competition:

1 Encourage competitors from diverse technical back-
grounds.

2 Select data that adequately cover the region of interest.

Emphasize data of maximum interest.

4 Discourage algorithms from overfitting to idiosyncrasies
in the data.

5 Adapt standard design of experiments principles to the
competition scenario while preventing competitors from
exploiting unintended artifacts in the data.

6 Create a leaderboard to balance the goals of the competi-
tion, and appropriately reward the most desirable perfor-
mance characteristics.

w

We discuss each strategy in more detail below and illus-
trate their implementation in our urban radiological search
competition.

3.1 | Encourage competitors from diverse technical
backgrounds

One of the advantages of data competition or crowdsourced
solutions is that they can draw from a larger candidate pool
of experts than might not normally be involved. In order
to take advantage of the opportunity to include a technically
diverse set of competitors, we think it is beneficial to think
about what information should be provided to allow those

new to the subject area to gain traction. For instance, spe-
cialized information that subject matter experts traditionally
use to solve the problem should be included. This will allow
each discipline’s competitors to leverage and build upon their
current state-of-the-art tools. In addition, potential obstacles
to participation, such as downloading the data, understanding
its format, and making submissions, should all be carefully
thought out to minimize the overhead for competitors to get
started. If making the first submission to enter the competition
has too steep a learning curve, potential participants might
be lost.

For the urban radiological search competition,
we provided basic information about radiation
detection data. This included providing plots
and data illustrating spectra for each of the
sources measured in a vacuum, both with and
without shielding. This allowed competitors
with data science backgrounds and no expertise
in or experience with radiation detection data to
quickly make progress. The competition web-
site included information about file formats, and
we limited the total size of the zipped data to
10 GB to make it easier for competitors with
limited computational resources to participate.

3.2 | Select data that adequately cover the region
of interest

As with traditional design of experiment (DoE) [10,21],
matching the design region to the problem of interest is essen-
tial for designing an effective, informative competition that
answers the right questions. This entails identifying the fac-
tors to be varied, the appropriate ranges of each of the factors,
and potential constraints on viable factor combinations that
may make the region irregular. As with traditional DoE,
subject matter experts (SMEs) typically begin with a larger
number of candidate factors, and then downselect to iden-
tify those thought to be most influential. We suggest, where
possible, to begin with an available “superset” of candidate
data considerably larger than the training and test sets that the
competitors will ultimately receive.

This strategy may change for a data competition because
of constraints on available data. When the competition builds
on simulated data, the capability of the data generator may
restrict which regions are available. If the currently available
data sets are too limited to span the space of interest, we think
itis helpful to invest resources to expand the available superset
of data to improve the ability of the competition to answer the
real aims of the host.

For the urban radiological search competition,
the initial version of the Oak Ridge simulation
model allowed generation of detector data for
a vehicle moving in a single direction down a
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fixed-length multiblock stretch of a single street.
When we examined an initial superset of data,
similarities between runs were quite strong. The
initial data sets essentially asked the competitors
to develop an algorithm to answer the ques-
tion “Can you detect a source on this particular
street?”, when the desired goal was to develop
methods to detect a source on any American
urban street. By focusing on the overall goal of
seeking a general solution, the Oak Ridge team
redesigned their simulation to allow consider-
able additional flexibility and variability in the
generated data.

While the SME investment made to enrich the
simulation was substantial, their efforts enabled
the competition to answer the true question of
interest. As a consequence, the quality of solu-
tions developed by the competitors may have
been substantially higher.

3.3 | Emphasize data of maximum interest

After defining the factors of interest and their appropriate
ranges, we need to choose instances from throughout that
space to form the training and test sets. However, not all
regions of the space have equal value for answering the ques-
tions of interest. We want instances that are sufficiently
challenging to push algorithm development. We also want a
collection of instances that can effectively highlight the dif-
ferences between solutions. Some instances might be trivially
simple while others are impossibly hard. Data sets that lead
to all of the competitors getting the same answer (all right, or
all wrong) are an inefficient use of resources. The sweet spot
for providing the most informative data to the competitors is
in the middle range, with sufficient challenges but also a good
possibility of getting the right answer if the algorithms are
sufficiently capable.

For simplicity, consider a binary classification problem
where the competitors are asked to predict a 1 or a O for each
instance in the test set. A logistic model based on the levels
of the input factors can be used to model how these differ-
ent input factors drive changes on the correct classification
rate. With a range of anticipated algorithm performance, tra-
ditional design selection and optimization strategies can be
leveraged for selecting more informative data for the training
and test sets. If we further simplify and just consider a single
input with a known relationship to the probability of correct
classification, the D-optimal design [17] that offers the most
precise estimation of model parameters under the assumed
relationship places half of the points at the location with prob-
ability of success 0.176 and the other half at the location with
probability of success 0.824 [1].

However, data competitions often have a number of impor-
tant complicating factors that preclude the use of this simple
design strategy:

o This is an inherently high dimensional space with multiple
inputs, for which we want to understand the relationship
between inputs and our questions of interest.

e Often, we have multiple questions that we wish the com-
petitors to answer.

e We have multiple competitors, each potentially contribut-
ing multiple submissions, who will have solutions that
perform differently across different regions of the input
space for each of the different questions.

o Perhaps most importantly, we do not know a priori what
the algorithms will look like and how well they will be able
to solve the different aspects of our competition.

Hence we think the goal for creating the data sets should
be to provide sufficient data in the regions of interest that we
anticipate will allow for good estimation of performance for
each of the competitors near the top of the leaderboard.

Quinlan et al. [19] and Quinlan & Anderson-Cook [18]
propose strategies for creating designs based on two or more
prior distributions for the anticipated probability of correctly
answering a single question of interest. We suggest using two
priors to bound the space of performance of interest. One
of the priors quantifies current capability for the best avail-
able algorithm before the competition. This is assumed as
the lower bound for the performance of interest, since the
competition hopes to inspire improvement beyond that capa-
bility. The second prior is the dream capability that might be
achievable by the top competitors by the end of the competi-
tion, which can be specified with the help from the SMEs.

Based on these two priors, the goal is to select a range
for each factor that allows us to distinguish between com-
petitors with high probability. In high dimensions, we select
the most interesting range for each factor separately. Values
of the factor for which the priors suggest P(success) > 0.824
are unlikely to yield many failures, and values for which
P(success) < 0.176 are unlikely to yield many successes. If
values in the ranges between these lower and upper bounds are
emphasized more in the competition data, then we increase
the likelihood of good estimation of performance and mean-
ingful comparisons between competitors.

Of course, eliciting appropriate priors in a high dimen-
sional input space from SMEs can be challenging. Based
on our experience, a good strategy for choosing the lower
bound is to run the best available algorithm on the entire
superset and use this to calibrate the difficulty level of the
problem. Identifying a useful upper bound is more challeng-
ing, but using the current best model of performance can
provide a baseline for expectations of improvement from the
new algorithms. While this may provide an imprecise esti-
mate of performance, it at least can help to rank the relative
difficulty of different regions. In addition, SMEs may be able
to provide some insights about physical limitations of what
any algorithm might be able to solve, and these could serve as
a proxy for that dream performance prior at the upper end of
difficulty.
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For the urban radiological search competition,
we had multiple questions for the competitors:
detection, identification, and location of differ-
ent sources. Since identification was considered
the most important of the three questions, we
focused primarily on this for defining the most
interesting region. Our superset included one
partition for each source type plus another for
runs containing no source. We used the best
available detection and identification algorithm
on the entire superset of data. Within each par-
tition, we used the results from the algorithm
to fit logistic models as a function of back-
ground level, detector speed, and (for the source
partitions) source strength and shielding. Using
this model, we determined regions in the input
space that were sufficiently difficult for the cur-
rent algorithm to justify their inclusion in the
training and test sets.

In addition, we consulted with SMEs to frame
the region where they thought that an excep-
tional algorithm might be able to discern a sig-
nal, both for detection and identification. This
was used as an upper bound. To reduce depen-
dence on this as a prior, and since the range of
interest for each of the inputs had been deter-
mined separately, we continued to use the entire
range for each of the inputs, weighting the more
promising regions more heavily. At the conclu-
sion of this phase, the entire region of the input
space was still represented, with some regions
emphasized more heavily than others to reflect
their anticipated relative importance to under-
standing and comparing competitor solutions.

3.4 | Discourage algorithms overfitting
to idiosyncrasies in the data

One of the obstacles to using data competitions to develop
long-term solutions for complex problems is the required
static nature of the data sets. In order to have fair comparisons
between competitors and for them to understand the require-
ments of the solution, the training and test sets remain
unchanged throughout the competition. At the same time,
the competition structure allows the competitors to repeat-
edly submit answers for the static test set to improve their
algorithm performance. From the competitor perspective, this
provides opportunities for learning from their previous sub-
missions and experimenting with adjustments to the solution
algorithms. If the training and test sets share similar perfor-
mance characteristics—say in the case where the host ran-
domly assigns available data to the training or test set—then
competitors can improve the leaderboard score by increasing
the complexity of their models to capture the idiosyncrasies
found in the training data.

From the host perspective, these fixed data sets could
potentially lead to competitors solving the wrong problem,
especially if the training and test sets share artifacts that are
unique to the competition data and not to general scenarios of
interest. Then even the winning solution is likely to be inef-
fective when used on a more general problem. Ultimately, the
host wants the winning solution to perform well, not only in
the competition setting, but also in new (perhaps currently
unanticipated) scenarios.

The potential risks of model overfitting based on a single
data set are well documented [11], but this problem is exac-
erbated because of the repeated submission aspect of data
competitions [8]. Hence, we think it is important to use the
construction of the training and test sets as a way of mitigat-
ing overfitting and encouraging extrapolation to unexplored
regions. The useful practice of subdividing the test set into
the public and private components as described in Section 2
presents an opportunity for implementing this mitigation.

To force competitors to handle new scenarios well, we think
it is helpful to construct the training, public test, and private
test sets with increasing levels of difficulty. If the training
set excludes the most difficult scenarios that the competitors
will be scored against, their algorithms will need to be able to
adapt for solving new challenges first presented in the public
test set. In addition, since the private test set will ultimately
determine the winner, we think it is helpful to include new
scenarios that the competitors could not tune their algorithms
to through multiple submissions against the public test set. In
this way, the private test set data provide a good proxy for
assessing how algorithms might be expected to perform on
more general scenarios of interest.

Figure 1 shows a two input variable “cartoon” to demon-
strate our strategy for differentiating the various data sets to
help prevent overfitting. The bottom left corner represents the
easiest corner of the input space, while values of the inputs
moving to the right or top increase the level of difficulty. We
begin with the private test set in yellow, which ultimately
determines the competition winner. We include the entire
region of interest in the private test set since we want to esti-
mate performance throughout. We choose the public test set,
where competitors receive feedback on their submissions, to
be a subregion of the entire space. The most difficult portions
of the range for some or all of the factors are removed or dra-
matically undersampled. In addition, “holes” in the space are
created where no data are included for a portion of some factor
ranges. Finally, the training data, where both data and answers
are provided, is a further subset of the public test set space.
Holes are again incorporated, some of which correspond to
those between the public and private test sets (shown as “yel-
low holes” in Figure 1), and some distinct to the training and
public test sets (shown as a “blue hole”).

The reasoning behind this strategy is to force the com-
petitors’ algorithms to demonstrate the ability to handle both
interpolation and extrapolation. Based on the training data,
competitors have not seen answers in the more difficult region
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Private test set

Factor 2 -

easy

easy Factor 1 hard

FIGURE 1
data for a 2D input space

Relationship between the training, public test, and private test

in the public test set (blue perimeter outside of red training
set), and hence their solutions need to demonstrate the abil-
ity to expand into new scenarios. This process is repeated for
the stretch from the public to private test sets, where the host
can see how well the algorithms can again extend to further
new scenarios. The interpolation elements (holes) provide an
opportunity to check if there are differences in local behavior
that can be a symptom of overfitting.

To ensure a fair competition, we recommend clearly
describing that there are differences between the training,
public and private data sets to the competitors. This can be
done in the instructions or description of the competition
dataset available for almost all data competitions. Making
this information available can help the competitors calibrate
their expectations on the competition tasks, reinforce the idea
of solving the general problem of interest and avoid overfit-
ting to the particular training data that are provided, and also
help them choose appropriate strategies for seeking the best
solution that the host desires.

Taking subranges of multiple inputs can quite rapidly
diminish the amount of data available to assign to the train-
ing and public test sets. How much to reduce the ranges
should be balanced with data availability when populating
these data sets.

For the urban radiological search competition,
beginning with a superset 10 times the size
of the final competition data sets allowed for
aggressive divisions into training, public test,
and private test sets. We first considered the
extrapolation part of specifying the data for
the factors speed, shielding, and background.
Detecting a source becomes more difficult at
higher speeds. Similarly, shielding a source
makes it more difficult to detect or iden-
tify. Some of the background conditions were
also known to make the search more difficult.

For each of these factors, with an anticipated
gradient from easy to hard, we specified sub-
ranges from which to draw the training and
public test sets.

For the interpolation aspect, we considered
the multiple configurations of the street and the
multiple locations for placing a source. While
the street configurations produced different pat-
terns of background, they were considered
effectively of the same difficulty. Hence, only
half of the street configurations were shared in
the training set, three fourth of them included in
the public test set, and all of them included in
the private test set. Similarly, half, three fourth,
and all source locations were used in the three
data sets, respectively.

3.5 | Adapt standard design of experiments principles
to the competition scenario

In this section we consider principles from traditional design
of experiments [15,17] that we translated into strategies for
effective hosting of a data competition. A key distinction from
typical experimentation is that we consider the competitors
to be adversaries who are trying to leverage any information
communicated through the data sets. This includes informa-
tion both intentionally and unintentionally shared by the host.
In most other experiments, the choice of factor combinations
is dictated solely by the goals of the experiments or con-
straints. Hence some design principles, such as replication,
design balance, and randomization, need to be considered
through fresh eyes. We discuss each principle below.

3.5.1 | Replication

Since many competition responses are categorical (eg,
detect/no detect or which source type in our example), having
replicates can dramatically improve the power of a logis-
tic regression model to quantify performance throughout
the region. If the simulator has a stochastic component,
then creating replicates at the same nominal input conditions
should result in differences between the replicates. Nuisance
factors (those factors which make the data look different
to the competitor, but are not thought to meaningfully impact
the difficulty or nature of the problem) can be used to make
replicates look less similar. However, current file utilities
make comparisons between files straightforward, so includ-
ing instances too similar to each other may be of limited value
since this is might be detected by savvy competitors.

For the urban radiological search competition,
the duration of the detector moving along the
street was treated as a nuisance factor, since this
duration was not of interest to the subject mat-
ter experts, and was not thought to impact the
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difficulty of the problem. Hence manipulating it
to vary the look of the replicates did not com-
promise our ability to estimate performance. In
this way replicates of a scenario could be used,
where the stochastic nature of the simulation
generating code and the selected starting and
ending points on the street made the runs look
quite different to the competitors.

3.5.2 | Design balance

Typically in designed experiments, a goal is to have perfect
or near-perfect balance between levels of each factor. That is,
we typically include the same number of instances of each
level of a factor. This allows for better orthogonality between
factors and independent estimation of their effects, as well
as similar standard errors, which make comparisons between
the magnitudes of effect more straightforward.

For the design of a competition, balance needs to be
tempered by unequal emphases on different regions of the
design space as described earlier, as well as an interest in
avoiding unintended artifacts that competitors can leverage
when tuning their solutions. For competition questions that
involve identifying different categories of responses, the goals
of the competition should dictate choices that are made.
For example, consider the trade-off between false positives
(sounding an alarm when there is nothing to respond to) and
false negatives (missing an actual event). These generally
have very different associated costs, and so the competition
test sets should be designed to provide adequate precision for
estimating each of these rates.

For the urban radiological search competition,
we treated the design for each source type
(six source types plus no source) as sepa-
rate mini-experiments, which were constructed
independently and then combined at the end.
Balance, in particular for the number of runs for
each source, was a feature that the competitors
could potentially exploit. The balance between
the number of runs containing a source and
those containing no source was also something
that needed to be managed between the data
sets. In an actual urban radiological search set-
ting, the number of “no source” runs would (we
hope) vastly outnumber those “with source,” but
there is no requirement to have the competition
data set mimic reality based on this aspect. We
wanted to have adequate information to be able
to precisely assess the false positive rate in dif-
ferent regions of the input space. So we decided
on the fraction of no source vs with source runs
for the public test set and for the private test set,
and then divided the “with source” runs among
the six different sources. We intentionally did

not balance the number of runs for each source.
We estimated the minimum number required to
estimate the relationship between inputs and the
response for a given source, and then used this
as the number of runs for the easiest source.
The remaining sources were assigned slightly
more runs, to avoid too much balance between
sources. In addition, we intentionally had differ-
ent fractions of runs for each source between the
public and private test sets.

3.5.3 | Randomization

In a traditional experiment, randomization serves the pur-
pose of protecting against unknown systematic effects during
the running of the experiment. This seems less critical in a
simulated data set, since it is much less likely that there will
be lurking factors impacting the results. However, there are
still good reasons to randomize the order of files for the pub-
lic and private test sets. Since the training data set contains
the complete set of answers, there is no reason to randomize
the order of instances within it. In fact it may be helpful for the
competitors to group all runs within a category together
for ease of understanding patterns.

For our test data, we intermixed the public and
private subsets in the test data to complicate
probes by the competitors to identify which runs
are associated with different aspects of the test
set. We also randomized the order of source and
NO SOUrce runs.

3.6 | Create aleaderboard to reflect the goals of the
competition

The scoring metric provides a single formula chosen before
the launch of the competition for ranking the competitor
solutions from best to worst on the leaderboard. As the com-
petitors making their best efforts to improve their leaderboard
scores during the competition, this scoring metric will drive
the direction of the competition and competencies of the
resulted solutions. If this ranking is not strategically chosen
to match the goals of hosting the competition, then competi-
tors could focus on aspects of the problem that are of lesser
importance, and/or the overall winner might not be the one
that provides the most desired solution to the competition.
By intentionally matching the goals of the competition to the
construction of the leaderboard, the host has control to appro-
priately emphasize the different aspects of the competition.

In the urban radiological search competition,
“no source” runs (scored with 1 for correct clas-
sification or O otherwise) were weighted half
as much as “with source” runs, since they rep-
resented answering a simpler question. For the
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“with source” runs, the multiple different cri-
teria were combined into a single score with
an additive desirability function [9]. The three
components of detect, identify, and locate were
combined with an additive form:

Scoregource = WaetDet + wigenlden + wyoLLoc
with Y we =1

We consulted with the SMEs to determine
initial weights for each of the components that
were thought to reflect competition priorities.
Then we constructed various mock competi-
tor submissions with systematic errors—for
example, a submission that answered every
test set run correctly except for those contain-
ing highly enriched uranium (HEU) sources,
or a submission that answered every test set
run correctly but got the location wrong by
1 second—and computed the leaderboard for
all the mock submissions using those initial
weights. We then made changes to the weights
to ensure that the rankings best matched the
SMEs’ priorities for a winning submission.
Anderson-Cook [3] describes this approach to
spot-checking alternative weightings to obtain a
desirable robust ranking of top contenders.

4 | POSTCOMPETITION ANALYSES

The design portion of hosting a data competition is critical
for its success, since providing the right data enables quality
answers to the questions of interest. Having a robust analysis
strategy to consider the different questions of interest allows
for greater knowledge and understanding to be extracted from
the investment of the competition. Indeed a good design
enables a rich analysis.

Here we discuss both exploratory data analysis and
model-based analyses to support better understanding of the
input space, comparisons between solutions, and evaluation
of the chosen leaderboard metric. We discuss each approach
in turn.

4.1 | Exploratory data analysis

Exploratory data analysis of each submission can provide
useful summaries can be used to provide preliminary informa-
tion about performance and team-to-team differences. Global
summaries about the fraction of correct answers for differ-
ent portions of the data can give an indication of overall
performance.

Contingency tables [2,7] are effective descriptive sum-
maries for categorical responses. A confusion matrix [10,11]
is a contingency table with two dimensions, typically with
the true answers listed as rows and the predicted answers as

columns. Along the diagonal are the counts or proportions
of instances that a competitor predicted correctly, and the off
diagonal entries show instances where the competitor was
“confused” by the problem. Note that the amount of data
for different questions of interest is likely to be unbalanced,
for instance due to intentional choices made during the data
selection process to avoid unintended artifacts in the data.
In addition to global summaries, it is helpful to explore dif-
ferences in the results for different input values. Graphical
summaries that connect the responses for individual runs to
the inputs used to create the data.

The summaries illustrated in this section consider just the
raw data and presented different subsets of it to gain pre-
liminary understanding of fundamental differences between
the results obtained by different teams. This can be helpful
for probing areas for deeper exploration with more formal
approaches.

In the urban radiological search competition,
there were several aspects of interest. For runs
where a source is present: (a) detecting the pres-
ence of the source, (b) identifying which of the
six possible sources it is, and (c) locating where
along the path the source is placed. For runs
where no source is present: (d) correctly stating
that no source is present. We initially focus on
the detection and identification portions of the
competition and categorize the answers for each
of the runs. Since each team could enter mul-
tiple submissions, we begin the exploration by
using the results from the best scoring submis-
sion for each team.

Figure 2 shows a confusion matrix sum-
mary for both detection and identification for
the winning team’s (LBNL) best submission as
scored against the test set data (both the public
and private test sets combined). Rows corre-
spond to the true state while columns indicate
what the competitor specified as their answer.
Figure 2A shows the conditional detection prob-
abilities for the entire test set data, with the
first row showing that the probability of detect-
ing a source when a source (S) is present is
approximately 74.7% (peach color), while the
probability of correctly saying no source (NoS)
is present is 93.2% (red color). Figure 2B shows
the conditional identification probabilities, with
information about how each of the sources was
classified among the seven possible choices.
Clearly the diagonal shows that the most com-
mon choice for each source is the correct iden-
tification. The lighter blue color in the last col-
umn shows that each of the sources is sometimes
missed and called a no source run. Source 6
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(which is a mixture of sources 1 and 5) is most
frequently misidentified as source 1.

The summary in Figure 2 provides a global look
across all the runs. Because the runs are con-
structed by specifying different input choices,
it is also possible to examine how the correct
and incorrect answers are distributed in key
input regions. For example, Figure 3 shows the
spread of the results for the winning submis-
sion on the portion of the private test data from
weapons grade plutonium (WGPu) with shield-
ing. (We consistently use WGPu with shielding
for the purpose of illustration.) Similar plots
could be constructed for each of the sources, for
any subset of the input space, and for complete
exploration of the results. Key inputs were cho-
sen for the x-axis (the speed of the detector in
meters per second) and y-axis (the SNR, which
summarizes the strength of the source signal
relative to the background noise). In the plot,
green indicates correct detection and identifica-
tion, orange is correct detection and incorrect
identification, and red means that the source was
not detected. Based on this plot, it is clear that
the most difficult regions are for low SNR, and
there is some increase in difficulty as the speed
of the detector increases. The clustering of the
orange points for low speeds and small SNRs
suggests that this is a region where detecting a
source is possible, but correctly identifying it
is challenging. Also, the relatively small num-
ber of orange points suggests that if WGPu is
detected, it is most often correctly identified.
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FIGURE 2 Confusion matrix summaries for LBNL’s best submission for (a) detection and (b) identification. S and NoS mean “source present” and “no

We can also make comparisons between
teams. Each panel in Figure 4 provides infor-
mation about the subset of data for one sce-
nario (each source or no source), broken out
by correct identification (green), correct detec-
tion with incorrect identification (orange), or no
source detected (red). Each bar in each panel
represents the performance of one of the teams,
sorted from highest overall score to lowest.
From this plot, we are able to extract some gen-
eral trends from the data. First, HEU and WGPu
are generally harder to detect or identify than
iodine (!3'T) and cobalt (°°Co) as seen by the
relatively larger red regions. Secondly, for most
sources, if teams were able to detect the source,
then they could also correctly identify it (as seen
by the small orange regions for most source
types). The exception to this is Source 6, which
was a mixture of HEU and technetium (**Tc).
Here the detection rate was high (better than
for any other source), but not surprisingly there
were greater problems with correctly identify-
ing that source.

If teams had all used fundamentally similar
approaches, we might expect that the results
would monotonically decrease from left to right
in a given panel in Figure 4, as the best teams
were able to solve the problem a bit better than
teams with lower scores. However, we do see
that some teams were able to do better at detec-
tion or identification than the best team for
some sources. These differences between teams
and different subcategories of the data provide
incentive to explore more deeply to understand
differences between teams’ solutions. If teams
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FIGURE 3  Scatterplot of identification for the best submission from team LBNL for data based on runs with weapons grade plutonium (WGPu) present and
with shielding. Here we consider the parameters detector speed (in m/s on the x-axis) and source signal-to-noise ratio (SNR, y-axis). (a) green, correct
detection and identification; (b) orange, correct detection, incorrect identification; (c) red, source not detected
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FIGURE 4 Barplots of correct detection, identification, and no source found for each source for the best submission for each of the top 12 teams. Green
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could solve different parts of the overall com-
petition with varying degrees of success, then
this may represent an opportunity to leverage
the best of each solution into a “super-solution”
that can dramatically outperform any individual
team’s results.

Table 1 and Figure 5 show some initial explo-
ration of the different strengths and weaknesses
of the solutions of the top two teams. In Table 1
the rows correspond to correct detection and
identification (I), correct detection with incor-
rect identification (D), and incorrectly missing
the source entirely (X) for the top team, LBNL.

The columns show the same information for
the second best team, LANL-W. The diagonal
entries show where the teams reached consis-
tent results, while the off-diagonals identify
differences in algorithm performance. In gen-
eral, we anticipate that the larger the fraction
of off-diagonal entries, the greater the poten-
tial differences in the approaches used for their
solutions.

When we compare the top two teams, we see
that LBNL correctly identified slightly more
cases (1068 vs 967) and correctly detected
slightly more (39 vs 15). However, it is
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TABLE 1 Summary of differences between top submissions from 1st

(LBNL) and 2nd (LANL-W) place teams for WGPu
Team 2: LANL-W

I D X Total
Team 1: LBNL I 930 (0.504) 4(0.002) 134 (0.073) 1068 (0.578)

D 4(0.002)  1(0.001) 34(0.018) 39 (0.021)
X 33(0.018) 10(0.005) 697 (0.377) 740 (0.401)
Total 967 (0.524) 15 (0.008) 865 (0.468) 1847 (1)

I, correct detect and identification; D, correct detection, but incorrect iden-
tification; X, incorrectly missed source. Bold entries indicate where the two
teams obtained the same results. The first entry is the cell count, while the
entry in parentheses indicates the fraction of the total number of WGPu
runs.

interesting to note that LANL-W was able to
correctly identify 37 cases that were incor-
rectly identified by LBNL (rows D and X of
column I), with four of those being detected
by LBNL, and 33 having been missed com-
pletely. Seeing that nearly 12% (219 of 1847)
of the WGPu cases lie on the off-diagonals
(4 +134+4344+ 4 +33+ 10 =219) reveals
potential differences in the teams’ approaches,
even though the overall scores for the teams
were quite close.

To dig more deeply into where these differ-
ences lie, a variation of the scatterplot shown
in Figure 3 can be considered. Figure 5 shows
the WGPu data for just the scenarios where
shielding was included, with Figure SA showing
data corresponding to the diagonals in Table 1.
Figures 5B and C show the off-diagonal cases
where LBNL outperformed LANL-W and vice
versa. From this figure, some patterns can be
explored. For example, LBNL seemed to be bet-
ter than LANL-W at detecting WGPu for low

SNR and slow speeds (cluster of pink points in
bottom left corner of Figure 5B). If there are
strong clusters in regions of the input space, then
this may represent opportunities to compare
solution approaches to leverage improved per-
formance of one algorithm over the other.

4.2 | Model-based analyses

As the analysis of the different competitor solutions evolves,
the methods used to gain understanding become more for-
mal. In the early stages, looking at the raw data and outcomes
can show differences at a high level, while later delv-
ing into more detail can reveal more subtle comparisons
between the solutions of different competitors. An under-
lying theme in the postcompetition analysis is the goal
of exploring whether competitors used different approaches
to solve the problem, and whether these differences can be
exploited to perhaps develop a super-solution which leverages
the best of each of several algorithms to achieve even higher
performance.

Using a model to summarize the relationship between the
input factors and the results of different subquestions of the
competition can provide a more formal way to gain a deeper
understanding of patterns in the data. For categorical vari-
ables, such as the detection and identification portions of the
urban radiological search competition, a generalized linear
model (GLM) [14,16] can be helpful. For continuous vari-
ables, such as the size of the miss for the location portion
of the urban radiological search competition, a standard lin-
ear model [12] for characterizing a response surface [17] can
provide insights.

GLMs are flexible extensions of linear regression models
to handle broader distributions of the response variable than
just continuous responses well modeled by the Normal dis-
tribution. GLMs allow the response variable to follow any
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FIGURE 5 Scatterplot of comparisons between performance of top two teams (LBNL and LANL-W) for WGPu with shielding. (a) Results where teams
match (green open circle, correct detection and identification, orange filled circle, correct detection but incorrect identification, red X, missed source). (b)
Runs where LBNL outperformed LANL-W (top-right cases in Table 1) with blue filled circle, LBNL correctly detected and identified, LANL-W correctly
detected but misidentified; purple open circle, LBNL correctly detected and identified, LANL-W missed source; pink +, LBNL detected but misidentified,
LANL-W missed source. (c) Runs where LANL-W outperformed LBNL, with same color coding as (b) but with teams reversed
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distribution in the exponential family, which includes the
commonly used Normal, binomial, and Poisson distributions,
and also allow the mean response to depend on the explana-
tory variables through a link function (eg, logit, probit, or
log). GLMs are popular models for categorical responses.
For example, Poisson regression models are often used
for modeling count data. The logistic or probit regression
models are popular choices for modeling binary response
variables. More specifically, if Y represents a binary response
which follows a Bernoulli distribution with p=Pr(Y =1),
then the logistic regression model links the expected mean
response (ie, the proportion), p=E(Y), to the exploratory
variables, x, through the logit link function as given by

logit(p) = log <ﬁ> =x'p.

For the urban radiological search competition,
the test set data were partitioned into seven sepa-
rate subsets, one for each of the six source types
and one for the no source data. To understand
both the estimated probability of detection and
probability of identification for each source, the
following logistic models were fit:

. _ CX/
P(detection) = o and
. i L. _ i
P(identification) = T
where

X' B = Po+ PsnrXsnr + Bsnictalshieta
+ ﬂSpeedXSpeed + ﬁBuckgroundIBack

+ PraneXrane + interaction terms

for the input factors SNR (continuous), shield-
ing (indicator variable 0/1), speed (continuous),
background (indicator variable for one of mul-
tiple) and traffic lane (closest or furthest from
source—continuous for one of four lanes). We
performed careful model selection to obtain the
best fitted model for each team based on its
top submission for each source. We first con-
sidered a full model including all the relevant
input variables and their interactions for all the
scenarios to allow for greater flexibility in the
modeled shape of the response surfaces. Then
we sequentially removed nonsignificant higher
order terms from the full model to avoid overfit-
ting and reduce the variability of the prediction
for each individual scenario. We performed a
lack-of-fit test between the full and the reduced
model to check the adequacy of the simpli-
fied model. By removing some of the spurious
terms from the model, the overall variance of the
model was reduced, leading to improved inter-
pretability and less risk of overfitting to idiosyn-
crasies in the data. We fit these models to the top
scoring submission from each of the top teams

to obtain tailored estimations of individual team
performances across the different source types.

In terms of gross similarities across the
different input factors, the SNR, speed, and
shielding were highly significant, while the
background layout and the lane were rarely
significant. This was unintuitive to the SMEs
who helped to design the simulations used for
the competition, as they had anticipated that
being further from the source would make it
more difficult to detect it. The differences in the
layout of the background captured by Ip, were
not thought to fundamentally change the level
of difficulty of the problem to be solved, but
were primarily used to obfuscate the patterns of
the background. Figure 6 shows contour plots
for the highly significant input factors for dif-
ferent cases of the WGPu scenario for the top
team, LBNL. We also found that the three-factor
interaction was rarely significant. Among the
two-factor interactions, the interactions between
SNR and shielding and between SNR and speed
were significant more often than the interaction
between speed and shielding across all explored
scenarios and competitors.

Examining the results from Figure 6, we note
some patterns in the estimated surfaces. First,
the probability of detection (top panels) is equal
to or higher than the probability of identifica-
tion (bottom panels) for all regions of the input
space. The difference between the two surfaces
at a given location corresponds to the size of the
“correctly detect and incorrectly identify” group
in Figure 3. Second, when we compare the left
and right plots in a given row, we see that the
“with shielding” scenario was generally harder
than “no shielding”. Third, the LBNL team was
able to have very high probability of detection
and probability of identification for cases when
the SNR ratio was large and for slower speeds of
the detector (upper-left regions of each panel).
There is a large proportion of the input space
where the probability of both detection and
identification is greater than 90%, indicating
that for these cases, it is quite likely that LBNL’s
solution can adequately solve the problem of
interest. This matches the qualitative results that
were observed in Figure 3 with few errors in
detection or identification in the top portion of
the plot.

Next, we can also examine the relative impact
of the different factors on the two probabilities.
Since the contours are more horizontal for the

WILEY——2
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FIGURE 6 Contour plots of the probability of detection (top panels) and the probability of identification (bottom panels) for WGPu based on the results
from the best submission from the top team, LBNL. The left and right panels of each row are estimated from the same model, but shown for /g,y = 0 and 1,

respectively

“no shielding” case, we can infer that changes in
the SNR have a greater impact on the capability
of detection or identification than changes in the
speed of the detector. For the “with shielding”
case, the contours are more curved with similar
changes in the vertical and horizontal directions.
This suggests that for the shielded case, changes
in SNR and speed have similar impacts on the
probabilities of detection and identification.

If there is an interest in assessing which regions of the input
space look to be well-solved and those for which there is still
need for improvement in the solution, it is helpful to look more
broadly than just the top team. We can use our model-based
analyses to compare teams.

Recall from Table 1 and Figure 5 that there were
runs which the second place team, LANL-W,
was able to answer correctly while the top
team was not. Hence, Figure 7 shows the
contour plots for the top two teams for the
WGPu with shielding scenario to compare their

performance. The general shape of the two sets
of contours look similar, with some small dif-
ferences in the curvature of each contour. How-
ever, based on these results, it does look like
for SNR values greater than 5 and speeds less
than 6 (top left corner), both algorithms have
a very high probability of correctly identifying
WGPu.

In addition, if we examine the bottom right
corner, we can gain some understanding about
how challenging the different algorithms find
the low SNR and high speed cases. Neither
teams exceeded a 20% probability of identifying
the source for these most difficult cases. This
matches with what we saw in Figure 3 for the top
team with few runs with correct identification
in this corner of the input space.

For the runs with sources, the additional
component of the competition, besides detec-
tion and identification, was to see how well the
competitors could locate where the source was
placed in the urban environment. In this case, a
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standard linear regression model could be used
to examine patterns. The response of interest
was formulated as the size of the miss from the
true source location in seconds, where misses
before and after the true location were treated as
equivalent. Hence a model of the form

| time miss | = fo + BsnrXsnr + Bsnietalshieia
+ ﬁSpeedXSpeed + ﬂBackgroundIBack
+ BraneXrane + €

was used where the factors considered were the
same as for the probability of detection or iden-
tification. We assume that the error terms, €, are
independent and identically distributed. Again,
results for this response followed similar pat-
terns across all of the sources. The SNR, speed,
and shielding factors were highly significant
with increases in the size of the miss increas-
ing for more difficult versions of each factor.
This time, in addition to these factors, the traffic
lane was also moderately significant for some of
the sources, such that being in the lane furthest
away from the location of the source increased
the size of the miss. Overall, this portion of the
competition was generally less difficult for the
competitors and there were fewer distinctions
between teams. In other words, if the competi-
tors could detect and identify the source, then
pinpointing its exact location was not that chal-
lenging.

For the runs with no source, the response of
interest was the probability of correct classifica-
tion as a run with no source. Since many of the
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Contour plot of the probability of identification for WGPu with shielding for the top two teams

input factors included previously were functions
of the source, the modeling for this response was
considerably simpler. Again, a GLM was used
where the relevant input factors to explore were
the speed of the detector and differences in the
background configurations. We fit a model of
the form

P(correct classification)
x!

-l with X' f = §
1+ef 0

+ ﬁSpeedXSpeed + ﬂBackgroundIBack

+ higher order terms

for each competitor’s best submission and com-
pared the results. Note the linear component of
the GLM x f can include higher order terms
for related explanatory variables. We performed
model selection to choose the best-fitting model
for each team. For our example, the background
variable was almost never significant for mod-
eling the probability of correction classification
for the no source case for the top winning teams.
Both the linear and the quadratic terms of the
speed were significant for the top two teams,
LBNL and LANL-W. Figure 8 shows the esti-
mated probability of correct classification for
the no source scenario for these teams with
the associated estimated uncertainty as mea-
sured by confidence intervals for the curves. Itis
interesting that the probability of correct classi-
fication generally rises as the detector moves at
higher speeds. One possible explanation is that
those runs do not provide enough data (because
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for the probability of identification for WGPu with shielding between the
top two teams: LBNL vs LANL-W. Positive values (in blue shades) indicate
that LBNL has a higher probability of identification, while negative values
(in yellow-orange-red shades) indicate better performance by LANL-W.
The white and black solid circles and black open circles indicate input

FIGURE 8 The probability of correct detection (true negative) for no
source cases for the top 2 teams with the estimated uncertainty (the 95%
pointwise confidence bands)

the simulated detector is not on the street for
a long enough time) for competitors to confuse
a background element for an actual extraneous

locations with significant differences with P-values being less than 0.01,
between 0.01 and 0.05, and between 0.05 and 0.1, respectively. We adjust
for multiple comparisons with the Bonferroni approach

source.

As we compare the top two teams, we see that
the winning team does not have the best per-
formance on correctly classifying the no source
scenario. The second place team, LANL-W,
has consistently higher estimated probability of
correct classification than the winning team.
With the large size of the competition data, the
estimates have quite good precision with nar-
row pointwise confidence bands for both curves.
The two teams perform similarly at very high
speed values (above 12 m/s) since it becomes
too hard to detect anything when the detector is
moving really fast.

Through the use of GLMs and standard regression, it is
possible to develop response surface models that describe the
general patterns of each team’s solution. From this explo-
ration is it possible to gain understanding about which of
the input factors play a role in influencing the quality of the
solution, to quantify relative impact, and to visualize where
regions of excellent, fair, and poor performance exist.

We can also use model-based analyses to quantify differ-
ences between competitor results for different input regions.
This could reveal opportunities for combining complemen-
tary approaches to create an even stronger hybrid algorithm.
To make precise where these opportunities lie, we now
illustrate using our models to find regions in the input space
with differences in performance.

In Table 1 and Figure 5 we summarized
an exploration of where the top two teams
performed similarly and differently. Here we
consider this question more formally using the
GLMs estimated above. Figure 7 shows contour
plots for the probability of correct identifica-
tion for the top two teams for the scenario of
WGPu with shielding. While the gross patterns
of the surfaces seem similar, it can be challeng-
ing to identify where there are differences in the
probability of identification.

Figure 9 highlights the differences between
the fitted models for the top two teams (LBNL
vs LANL-W) for the probability of identifica-
tion for WGPu with shielding. Values of zero
in this plot (light blue regions) correspond to
the two surfaces having the same probabilities,
while positive (darker blue) regions show where
LBNL has a higher probability of identifica-
tion than LANL-W. We use a P-value approach
from hypothesis testing of the two surfaces hav-
ing the same mean to evaluate the statistical
significance of the observed difference consid-
ering the estimation uncertainty. In Figure 9,
different symbols are used to indicate differ-
ent significance levels: white solid circles for
P-values less than 0.01, black solid circles for
P-values between 0.01 and 0.05, and black
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open circles for P-values between 0.05 and 0.1.
Since multiple comparisons are made across a
large number of input locations across the input
space of interest, we use a Bonferroni approach
[12] to adjust the P-value for conducting mul-
tiple simultaneous comparisons by multiplying
the P-value of a pointwise comparison by the
number of input locations evaluated (ie, the
number of comparisons that are considered).
This approach can be quite conservative when
a large number of input locations are evaluated
across the input space. If an improved power
is desired for the simultaneous test, then a less
conservative approach should be used for mak-
ing the multiple comparison adjustment, or a
coarser grid of input locations could be used for
the evaluation. Figure 9 clearly shows that the
largest positive difference between the two sur-
faces (LBNL outperforming LANL-W) is found
for SNR values close to 2 and slower speeds.
What is also identified, that was more difficult
to see from Figure 7, is that there is a region
for high speeds and larger SNR values where
the LANL-W team is slightly outperforming the
LBNL team (yellow region). However, this is
not statistically significant based on the Bonfer-
roni simultaneous test.

One concern of the P-value approach based on hypothesis
testing is that with a large sample size it is easy to declare
a statistical significance for a small amount of difference
which might not be of practical importance to the problem of
interest. Equivalence testing [4,24,25] has been developed for
evaluating the practical equivalence between groups. Equiv-
alence testing is still a P-value based approach that relies on
a formal test. Stevens and Anderson-Cook [22,23] describe
a more flexible strategy for characterizing the difference
between two response surfaces based on fitted logistic regres-
sion models. Although originally developed for a reliability
context, the described probability of agreement is suitable for
examining if the difference between the fitted surfaces are of
practical importance. The question of whether different pop-
ulations should be treated as practically equivalent is one that
occurs in a wide variety of applications. For the purposes of
this exploration, formal testing is not necessarily needed, but
some quantification of how likely two surfaces are to overlap
could be beneficial.

A key difference between traditional hypothesis testing and
the probability of agreement is how the initial assumption
about the two surfaces is stated. Traditional hypothesis testing
assumes that the surfaces to be compared are equivalent until
there is evidence to the contrary. Probability of agreement, on
the other hand, starts with the assumption that the surfaces
are different until there is sufficient evidence to assert that
they are practically equivalent [20]. Another key difference

is that the user has the option to specify what a meaning-
ful difference between the surfaces is for each application.
The probability of agreement can be used as an alternative
or complementary summary to the difference plot (Figure 9)
for evaluating the practical importance of the observed differ-
ences between teams.

By comparing the estimated response surfaces
for the different responses in the urban
radiological search competition,
able to more precisely identify opportunities
where further exploration into the competi-
tors’ approaches might lead to advantages and
the potential to improve the overall solution.
It is worth noting that the top two teams were
formed by experts from quite different fields.
The top team, LBNL, mainly had radiation
detection expertise, while the second place
team, LANL-W, was made up of five statisti-
cians. Learning the strengths and weaknesses of
the two completely different sets of skills could
increase the opportunities to leverage strengths
of different techniques for creating improved
solutions.

weE WwW€ere

5 | DISCUSSION AND CONCLUSIONS

In this paper, we have presented some strategies for both
the design and analysis of data competitions. Because
the effort and financial investment of hosting a competition
is substantial, being intentional about what data to present
to competitors is critical for getting good returns. We think
selecting data which provide maximum ability to distinguish
between the performance of different submissions while stim-
ulating growth of solutions is key to taking advantage of the
opportunity that a competition offers. We also think it is
important to be inclusive for a breadth of different techni-
cal audiences, and to construct a leaderboard metric which
reflects the priorities of the most desirable solution. By focus-
ing on matching the data to where competitor solutions are
sought, it is more likely to avoid rewarding the wrong charac-
teristics of the solutions.

While the leaderboard is an essential part of evaluation of
the competitors’ submissions in a data competition, it must
be simplistic and scalar by necessity to meet the real-time
unique ranking requirements. We propose that a more detailed
postcompetition analysis can be highly beneficial to maxi-
mize what is learned through the competition. One of the
goals of this analysis is to understand if there is potential for
the best of each team’s submission to be combined into a
global solution that surpasses all of the individual contribu-
tions. Initially starting with exploratory data analysis methods
can provide basic insights about where top competitors were
able to perform well, and also observed differences between
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results from different teams. To make these comparisons
more formal, model-based analysis such as GLMs or standard
regression models can be used to characterize the relation-
ships between the inputs and the responses with response
surfaces. For binary categorical responses, such as for correct
classification, detection, or identification, logistic regression
can provide a simple model form for easy interpretability and
comparison. For continuous responses, linear models are use-
ful. These models allow assessment of the relative importance
of different factors on the quality of the answers and also
facilitate the construction of response surfaces and visualiza-
tion of the relationships. Tools such as difference plots and
formal evaluation of these differences can compare solutions
to understand where they are effectively the same, and where
they are potentially complementary.

In the urban radiological search competition, the postcom-
petition analysis showed a number of useful results about
where in the input space the top teams could solve the ques-
tions posed well, and where additional work is still needed.
It also revealed some differences between the top teams and
showed that the second place team might have better local
performance in some regions of the input space for answer-
ing a certain subquestion than the winning team. While the
numerical and graphical summaries shown throughout the
paper were based on our example, their general nature should
allow them to be easily adapted to other competitions where
the objectives may be different. Our goal in presenting the
example was not to provide an exhaustive list of summaries
to be used in competitions, but rather to illustrate the poten-
tial for decomposing the leaderboard scoring metric into more
detailed components for which the right summary can be
developed.

We anticipate that many competition hosts will not be
involved in just a single competition, but rather a sequence
of competitions that evolve from each other. For this pur-
pose, the postcompetition analysis has an additional bene-
fit of providing insights about where to focus future data,
both for comparison of the algorithms that were developed
in each competition, and to explore regions where further
development of solutions is still needed to meet the host’s
needs.

There are areas where additional research would be bene-
ficial, including examining the robustness of the leaderboard
scoring metric to the subjective weighting of multiple objec-
tives of a competition, such as the urban radiological search
competition’s interest in the three components of detection,
identification, and location of potential sources. A Pareto
fronts approach [5,13,17], which identifies nondominated
solutions for simultaneously optimizing multiple objectives
and explores trade-offs and robustness of solutions to differ-
ent user priorities, could provide insights into how the host
valued the individual components of the scoring, and how this
affected the overall ranking.

When a sequence of competitions is planned, the
improved understanding from the postcompetition analysis

of a previous competition can help calibrate the leader-
board scoring metric for the later competitions. There
are also opportunities to provide other carefully designed
in-competition summaries to the participants which could
foster accelerated improvements to their algorithms without
inadvertently alerting them to the structure of the particu-
lar data used in the competition. As competitions become
increasingly prevalent, it will be beneficial to have a suite of
analysis methods that provide the right tools to enable the
host to make the most of their financial and effort investment.
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