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Data competitions rely on real-time leaderboards to rank competitor entries and stim-

ulate algorithm improvement. While such competitions have become quite popular

and prevalent, particularly in supervised learning formats, their implementations by

the host are highly variable. Without careful planning, a supervised learning compe-

tition is vulnerable to overfitting, where the winning solutions are so closely tuned

to the particular set of provided data that they cannot generalize to the underlying

problem of interest to the host. This paper outlines some important considerations

for strategically designing relevant and informative data sets to maximize the learn-

ing outcome from hosting a competition based on our experience. It also describes a

postcompetition analysis that enables robust and efficient assessment of the strengths

and weaknesses of solutions from different competitors, as well as greater under-

standing of the regions of the input space that are well-solved. The postcompetition

analysis, which complements the leaderboard, uses exploratory data analysis and

generalized linear models (GLMs). The GLMs not only expand the range of results

we can explore, they also provide more detailed analysis of individual subquestions

including similarities and differences between algorithms across different types of

scenarios, universally easy or hard regions of the input space, and different learn-

ing objectives. When coupled with a strategically planned data generation approach,

the methods provide richer and more informative summaries to enhance the inter-

pretation of results beyond just the rankings on the leaderboard. The methods are

illustrated with a recently completed competition to evaluate algorithms capable of

detecting, identifying, and locating radioactive materials in an urban environment.
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1 INTRODUCTION

Data competitions, sometimes called machine learning

competitions, have attracted considerable attention among

the world’s community of data and analytics scientists

and discipline-specific subject matter experts. This broad

involvement provides a model of crowdsourcing for busi-

ness and government to solve tough high-impact problems

in a cost-effective way. Competition hosts often use a com-

mercial platform, such as Kaggle (www.kaggle.com), to hold

the competition, rank competitors, and provide a prize (from

thousands to millions of dollars) to reward winners. By bring-

ing in new approaches to solving problems, there is potential

to accelerate cutting-edge research through the use of data sci-

ence approaches and the involvement of a more technically

diverse set of experts.

Hosting a data competition is time-consuming and often

expensive. In this paper we present strategies for designing a

competition that will better answer a host’s questions of inter-

est, and we build on those design strategies to extract more
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information from a completed competition than a simple rank-

ing of competitors. These strategies enable hosts to consider

more in-depth questions, such as

• Are there fundamental differences between the top com-

petitors?

• What regions of the input space are being solved well, and

which poorly?

• Are there changes in competitor rankings for different

regions of the input space?

With these planned and implemented approaches, a host

can evaluate the alternative solutions and make informed

choices for subsequent studies or competitions, thus enhanc-

ing their return on investment. Throughout the paper we

illustrate our strategies and methods with examples from a

data competition we designed and analyzed to evaluate algo-

rithms developed to detect, identify, and locate radiological

sources in an urban environment.

There has been limited work in the literature provid-

ing guidance or exploring strategies for effectively hosting

competitions. Blum and Hardt [8] discuss the overfitting

issue when allowing multiple submissions for general com-

petitions. Anderson-Cook et al. [6] describe strategies for

building a scalar metric that appropriately balances different

aspects of a complex competition problem.

The remainder of the paper is structured as follows: Section

2 describes the typical setup for many data competitions and

introduces the urban radiological search example that we refer

to throughout the paper. Section 3 describes strategies for cre-

ating an effective, impactful competition through the strategic

design of data sets and the choice of the scoring metric for

ranking competitors. Section 4 describes the postcompetition

analysis opportunities enabled by a thoughtful design. These

allow a host to gain insights beyond a simple ranking of com-

petitors, and they include both exploratory data analysis and

model-based analyses. Finally, Section 5 contains conclusions

and discussion.

2 STRUCTURE OF A DATA COMPETITION

The kinds of data competitions we consider here are con-

ducted in a supervised learning framework [11]. That is,

competitors are provided two sets of data: a training set, for

which the answers are provided, and a test set, for which

the competitors will provide their predicted answers for scor-

ing. Competitors develop or “train” their algorithms using the

training set, then refine them based on the feedback given by

their combined scores on a fraction of the test set data. Typ-

ically, the platform that runs the competition will provide a

real-time public leaderboard that reflects each competitor’s

best score and ranking based on their predicted answers for

the test set. Competitors can make multiple submissions over

the course of the competition, and each is scored and incorpo-

rated into the leaderboard if it reflects an improvement over

the previous best submission for that competitor. Most com-

petitions impose caps on the maximum daily or total number

of submissions.

Within the test set, there is a further division of the data,

whose details are. Not disclosed to the participants. A fraction

of test data forms the public test set, which is used to score

and rank the competitors on the public leaderboard while the

competition is running. The remaining test data form the pri-
vate test set. The final score for each competitor is based on

the private test set and is not shared with the competitors until

the competition closes. The private leaderboard, based on the

scores on the private test set, specifies the final ranking and

winners of the competition.

The host has the flexibility to specify what data comprises

the training, public test, and private test sets, often subject to a

practical limit on the total amount of available data. The host

also chooses a static evaluation formula or scoring metric to

define the score of each submission and its ranking on the

public and private leaderboards. It is our understanding that

the vast majority of current data competitions rely exclusively

on the leaderboard to evaluate and rank the submitted solu-

tions. To provide timely, succinct feedback on competitors’

performance during the competition, the scoring metric is

usually a simple scalar summary that quantifies the accuracy

and effectiveness of a solution for solving the competition

task(s). This metric, when properly defined, encompasses

the key aspects of the problem under investigation with the

competition, and seeks to identify its top solutions. How-

ever, there are several potential limitations to this approach:

First, by necessity, the scoring metric is created before the

competition opens. Hence anything that the host learns by

observing competitor contributions cannot be incorporated

into revisions of the metric. Second, the leaderboard sum-

mary is a global number that amalgamates responses across

a large number of instances, each of which could represent

different regions of the problem space. One solution might

be best in one region of this space, while another might be

superior elsewhere. When the host wants to choose a solu-

tion for a particular region of interest, understanding relative

performance could lead to different choices that should be tai-

lored to the individual question to be answered. Finally, since

many data competitions involve multiple tasks, the scoring

metric for the leaderboard must combine evaluation of all of

these tasks and may be too simplistic to allow deeper under-

standing of the relative performance of the different solutions

and address multiple questions of interest to the host. How to

weigh the different contributions through penalties for incor-

rect portions of the answer can have a profound effect on how

different competitors are ranked.

The postcompetition analysis described in Section 4 allows

uncoupling of the different aspects of the problem as well as

detailed comparisons between competitor solutions through-

out the problem space. Since the constraint of summarizing

and ranking the competitors with a single summary has been
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relaxed, exploratory data analyses and model-based charac-

terization of the solutions can be used to describe patterns in

the solutions. The postcompetition analysis can be made more

powerful and informative by having a well-chosen set of data

for the competition as described in Section 3. Anderson-Cook

et al. [6] describe strategies for selecting an intentional coher-

ent test set for data arising from simulated or measured

sources. By combining a strategic construction of the compe-

tition data with a detailed analysis, it is possible to maximize

the information gained and value from hosting a competition.

Case study: Urban radiological search.
Throughout this paper, we provide concrete

examples of the strategies and methods in the

context of a competition to detect, identify, and

locate radiological sources in an urban environ-

ment, datacompetitions.lbl.gov/competition/1/.

This competition used simulated measurements

mimicking those collected by a radiation detec-

tor being driven along typical urban streets.

The simulations were performed at Oak Ridge

National Laboratory, where they could flexibly

simulate data for a wide variety of scenarios.

The inputs for these scenarios were chosen to

mimic the diversity of urban environments seen

in practice.

A key feature of urban radiological search

is being able to separate the background signal

(generated from benign emitters of radiation,

like buildings and pavement, in the urban envi-

ronment) from a localized source. We divided

the input factors into several categories: char-

acteristics of the background, characteristics of

the sources, and characteristics of the detector’s

movement. For the background factors, several

versions of urban streets were used with dif-

ferent configurations and compositions for the

buildings and features.

For the source factors, we considered five

different radioactive source types, plus an addi-

tional source defined as a combination of two

of the sources. These sources include weapons

grade materials and isotopes common in medi-

cal or industrial settings:

1 HEU: Highly enriched uranium

2 WGPu: Weapons grade plutonium

3 131I: Iodine, a medical isotope

4 60Co: Cobalt, an industrial isotope

5 99mTc: Technetium, a medical isotope

6 A combination of HEU and 99mTc

The other source factors included its location

on the street, its strength, and whether it was

shielded in a dampening container. With close

engagement from the subject matter experts, we

combined the location, strength, and shielding

factors into a measure of the signal-to-noise

ratio (SNR), which is used as a descriptor in the

analysis later.

For the detector factors we considered its

speed in meters per second as it traveled along

the street, the traffic lane of travel, and the

starting/ending points within a street.

The data were generated using a stochas-

tic simulation code developed at Oak Ridge

National Laboratory. Each “run” or instance of

data in the training and test sets was specified

by selecting values for more than 100 param-

eters. The individual file sizes for each run

ranged from 160 kB (when the detector is mov-

ing quickly and over a shorter section of road)

to 7.3 MB (moving slowly over a longer path

with more active background). To keep down-

loads and manipulation of the data manageable

for the competitors, we constrained the total file

size for the zipped data (training and test sets

together) to 10 GB. This served as a “budget”

for the number of runs to be included in the

combined training and test data sets.

The urban radiological search competition

was open to competitors working at or affiliated

with U.S. government laboratories and ran from

February through May 2018. Sixteen teams par-

ticipated, and each team could be comprised

of multiple individual participants. Across all

of the teams there were nearly 1000 total sub-

missions, with the top four teams contributing

between 100 and 250 submissions each. In the

examples that follow we focus primarily on

the top three teams: LBNL (Lawrence Berke-

ley National Laboratory), LANL-W (one of two

teams from Los Alamos National Laboratory),

and Python Hacks (one of four teams from

Lawrence Livermore National Laboratory).

3 DESIGN CONSIDERATIONS FOR DATA
COMPETITIONS

Like designed experiments offer more cost-efficient strategies

to simultaneously change multiple input factors for studying

the underlying relationship between the input and response

variables, strategically designed competition data can offer

more efficient information to accelerate improvements

and drive better solutions from hosting data competitions.

With a limited size of the competition data, simply using a

collection of raw data that satisfy the size constraint could

result in a loss of opportunity. For example, if the goal of a

competition was to find an algorithm that offers the high-

est success rate for classifying some rare event of interest,

https://datacompetitions.lbl.gov/
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using the typical data that are severely unbalanced may have

preserved the raw data features but could fail to make good use

of the valuable competition resources and lose the opportu-

nities to develop more efficient machine learning algorithms

for detecting cases of interest. For a competition with the

goal of finding a general solution suitable for a broad scenar-

ios of interest, using convenient data from localized regions

or narrow time windows or specific scenarios that are hard

to generalize to broader scenarios might easily lead to com-

petitors solving a constrained or even wrong problem. We

think the goal of the competition should not just be to find

the best solution for the particular data set provided to the

competitors, but rather to identify best approaches to the

general class of problems that the host intends to solve.

This should drive the process for hosting the competition,

and help with making choices about which data to choose

(what to include and exclude) to encourage the competitors

to build robust and general solutions.

While perhaps obvious to state, the competition should have

a clearly specified and articulated goal against which data can

be compared to evaluate if the competition has potential to

achieve success. A critical part of success of the competi-

tion is to have clear objectives for what a desirable participant

solution should be able to do, ensuring that the available data

are adequate to match the goals, and that the provided data sets

are informative and effective for driving the best sustainable

solutions.

Here we describe six strategies for designing competition

data sets to drive the maximum outcome of the competition:

1 Encourage competitors from diverse technical back-

grounds.

2 Select data that adequately cover the region of interest.

3 Emphasize data of maximum interest.

4 Discourage algorithms from overfitting to idiosyncrasies

in the data.

5 Adapt standard design of experiments principles to the

competition scenario while preventing competitors from

exploiting unintended artifacts in the data.

6 Create a leaderboard to balance the goals of the competi-

tion, and appropriately reward the most desirable perfor-

mance characteristics.

We discuss each strategy in more detail below and illus-

trate their implementation in our urban radiological search

competition.

3.1 Encourage competitors from diverse technical
backgrounds

One of the advantages of data competition or crowdsourced

solutions is that they can draw from a larger candidate pool

of experts than might not normally be involved. In order

to take advantage of the opportunity to include a technically

diverse set of competitors, we think it is beneficial to think

about what information should be provided to allow those

new to the subject area to gain traction. For instance, spe-

cialized information that subject matter experts traditionally

use to solve the problem should be included. This will allow

each discipline’s competitors to leverage and build upon their

current state-of-the-art tools. In addition, potential obstacles

to participation, such as downloading the data, understanding

its format, and making submissions, should all be carefully

thought out to minimize the overhead for competitors to get

started. If making the first submission to enter the competition

has too steep a learning curve, potential participants might

be lost.

For the urban radiological search competition,

we provided basic information about radiation

detection data. This included providing plots

and data illustrating spectra for each of the

sources measured in a vacuum, both with and

without shielding. This allowed competitors

with data science backgrounds and no expertise

in or experience with radiation detection data to

quickly make progress. The competition web-

site included information about file formats, and

we limited the total size of the zipped data to

10 GB to make it easier for competitors with

limited computational resources to participate.

3.2 Select data that adequately cover the region
of interest

As with traditional design of experiment (DoE) [10,21],

matching the design region to the problem of interest is essen-

tial for designing an effective, informative competition that

answers the right questions. This entails identifying the fac-

tors to be varied, the appropriate ranges of each of the factors,

and potential constraints on viable factor combinations that

may make the region irregular. As with traditional DoE,

subject matter experts (SMEs) typically begin with a larger

number of candidate factors, and then downselect to iden-

tify those thought to be most influential. We suggest, where

possible, to begin with an available “superset” of candidate

data considerably larger than the training and test sets that the

competitors will ultimately receive.

This strategy may change for a data competition because

of constraints on available data. When the competition builds

on simulated data, the capability of the data generator may

restrict which regions are available. If the currently available

data sets are too limited to span the space of interest, we think

it is helpful to invest resources to expand the available superset

of data to improve the ability of the competition to answer the

real aims of the host.

For the urban radiological search competition,

the initial version of the Oak Ridge simulation

model allowed generation of detector data for

a vehicle moving in a single direction down a
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fixed-length multiblock stretch of a single street.

When we examined an initial superset of data,

similarities between runs were quite strong. The

initial data sets essentially asked the competitors

to develop an algorithm to answer the ques-

tion “Can you detect a source on this particular

street?”, when the desired goal was to develop

methods to detect a source on any American

urban street. By focusing on the overall goal of

seeking a general solution, the Oak Ridge team

redesigned their simulation to allow consider-

able additional flexibility and variability in the

generated data.

While the SME investment made to enrich the

simulation was substantial, their efforts enabled

the competition to answer the true question of

interest. As a consequence, the quality of solu-

tions developed by the competitors may have

been substantially higher.

3.3 Emphasize data of maximum interest

After defining the factors of interest and their appropriate

ranges, we need to choose instances from throughout that

space to form the training and test sets. However, not all

regions of the space have equal value for answering the ques-

tions of interest. We want instances that are sufficiently

challenging to push algorithm development. We also want a

collection of instances that can effectively highlight the dif-

ferences between solutions. Some instances might be trivially

simple while others are impossibly hard. Data sets that lead

to all of the competitors getting the same answer (all right, or

all wrong) are an inefficient use of resources. The sweet spot

for providing the most informative data to the competitors is

in the middle range, with sufficient challenges but also a good

possibility of getting the right answer if the algorithms are

sufficiently capable.

For simplicity, consider a binary classification problem

where the competitors are asked to predict a 1 or a 0 for each

instance in the test set. A logistic model based on the levels

of the input factors can be used to model how these differ-

ent input factors drive changes on the correct classification

rate. With a range of anticipated algorithm performance, tra-

ditional design selection and optimization strategies can be

leveraged for selecting more informative data for the training

and test sets. If we further simplify and just consider a single

input with a known relationship to the probability of correct

classification, the D-optimal design [17] that offers the most

precise estimation of model parameters under the assumed

relationship places half of the points at the location with prob-

ability of success 0.176 and the other half at the location with

probability of success 0.824 [1].

However, data competitions often have a number of impor-

tant complicating factors that preclude the use of this simple

design strategy:

• This is an inherently high dimensional space with multiple

inputs, for which we want to understand the relationship

between inputs and our questions of interest.

• Often, we have multiple questions that we wish the com-

petitors to answer.

• We have multiple competitors, each potentially contribut-

ing multiple submissions, who will have solutions that

perform differently across different regions of the input

space for each of the different questions.

• Perhaps most importantly, we do not know a priori what

the algorithms will look like and how well they will be able

to solve the different aspects of our competition.

Hence we think the goal for creating the data sets should

be to provide sufficient data in the regions of interest that we

anticipate will allow for good estimation of performance for

each of the competitors near the top of the leaderboard.

Quinlan et al. [19] and Quinlan & Anderson-Cook [18]

propose strategies for creating designs based on two or more

prior distributions for the anticipated probability of correctly

answering a single question of interest. We suggest using two

priors to bound the space of performance of interest. One

of the priors quantifies current capability for the best avail-

able algorithm before the competition. This is assumed as

the lower bound for the performance of interest, since the

competition hopes to inspire improvement beyond that capa-

bility. The second prior is the dream capability that might be

achievable by the top competitors by the end of the competi-

tion, which can be specified with the help from the SMEs.

Based on these two priors, the goal is to select a range

for each factor that allows us to distinguish between com-

petitors with high probability. In high dimensions, we select

the most interesting range for each factor separately. Values

of the factor for which the priors suggest P(success)> 0.824

are unlikely to yield many failures, and values for which

P(success)< 0.176 are unlikely to yield many successes. If

values in the ranges between these lower and upper bounds are

emphasized more in the competition data, then we increase

the likelihood of good estimation of performance and mean-

ingful comparisons between competitors.

Of course, eliciting appropriate priors in a high dimen-

sional input space from SMEs can be challenging. Based

on our experience, a good strategy for choosing the lower

bound is to run the best available algorithm on the entire

superset and use this to calibrate the difficulty level of the

problem. Identifying a useful upper bound is more challeng-

ing, but using the current best model of performance can

provide a baseline for expectations of improvement from the

new algorithms. While this may provide an imprecise esti-

mate of performance, it at least can help to rank the relative

difficulty of different regions. In addition, SMEs may be able

to provide some insights about physical limitations of what

any algorithm might be able to solve, and these could serve as

a proxy for that dream performance prior at the upper end of

difficulty.
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For the urban radiological search competition,

we had multiple questions for the competitors:

detection, identification, and location of differ-

ent sources. Since identification was considered

the most important of the three questions, we

focused primarily on this for defining the most

interesting region. Our superset included one

partition for each source type plus another for

runs containing no source. We used the best

available detection and identification algorithm

on the entire superset of data. Within each par-

tition, we used the results from the algorithm

to fit logistic models as a function of back-

ground level, detector speed, and (for the source

partitions) source strength and shielding. Using

this model, we determined regions in the input

space that were sufficiently difficult for the cur-

rent algorithm to justify their inclusion in the

training and test sets.

In addition, we consulted with SMEs to frame

the region where they thought that an excep-

tional algorithm might be able to discern a sig-

nal, both for detection and identification. This

was used as an upper bound. To reduce depen-

dence on this as a prior, and since the range of

interest for each of the inputs had been deter-

mined separately, we continued to use the entire

range for each of the inputs, weighting the more

promising regions more heavily. At the conclu-

sion of this phase, the entire region of the input

space was still represented, with some regions

emphasized more heavily than others to reflect

their anticipated relative importance to under-

standing and comparing competitor solutions.

3.4 Discourage algorithms overfitting
to idiosyncrasies in the data

One of the obstacles to using data competitions to develop

long-term solutions for complex problems is the required

static nature of the data sets. In order to have fair comparisons

between competitors and for them to understand the require-

ments of the solution, the training and test sets remain

unchanged throughout the competition. At the same time,

the competition structure allows the competitors to repeat-

edly submit answers for the static test set to improve their

algorithm performance. From the competitor perspective, this

provides opportunities for learning from their previous sub-

missions and experimenting with adjustments to the solution

algorithms. If the training and test sets share similar perfor-

mance characteristics—say in the case where the host ran-

domly assigns available data to the training or test set—then

competitors can improve the leaderboard score by increasing

the complexity of their models to capture the idiosyncrasies

found in the training data.

From the host perspective, these fixed data sets could

potentially lead to competitors solving the wrong problem,

especially if the training and test sets share artifacts that are

unique to the competition data and not to general scenarios of

interest. Then even the winning solution is likely to be inef-

fective when used on a more general problem. Ultimately, the

host wants the winning solution to perform well, not only in

the competition setting, but also in new (perhaps currently

unanticipated) scenarios.

The potential risks of model overfitting based on a single

data set are well documented [11], but this problem is exac-

erbated because of the repeated submission aspect of data

competitions [8]. Hence, we think it is important to use the

construction of the training and test sets as a way of mitigat-

ing overfitting and encouraging extrapolation to unexplored

regions. The useful practice of subdividing the test set into

the public and private components as described in Section 2

presents an opportunity for implementing this mitigation.

To force competitors to handle new scenarios well, we think

it is helpful to construct the training, public test, and private

test sets with increasing levels of difficulty. If the training

set excludes the most difficult scenarios that the competitors

will be scored against, their algorithms will need to be able to

adapt for solving new challenges first presented in the public

test set. In addition, since the private test set will ultimately

determine the winner, we think it is helpful to include new

scenarios that the competitors could not tune their algorithms

to through multiple submissions against the public test set. In

this way, the private test set data provide a good proxy for

assessing how algorithms might be expected to perform on

more general scenarios of interest.

Figure 1 shows a two input variable “cartoon” to demon-

strate our strategy for differentiating the various data sets to

help prevent overfitting. The bottom left corner represents the

easiest corner of the input space, while values of the inputs

moving to the right or top increase the level of difficulty. We

begin with the private test set in yellow, which ultimately

determines the competition winner. We include the entire

region of interest in the private test set since we want to esti-

mate performance throughout. We choose the public test set,

where competitors receive feedback on their submissions, to

be a subregion of the entire space. The most difficult portions

of the range for some or all of the factors are removed or dra-

matically undersampled. In addition, “holes” in the space are

created where no data are included for a portion of some factor

ranges. Finally, the training data, where both data and answers

are provided, is a further subset of the public test set space.

Holes are again incorporated, some of which correspond to

those between the public and private test sets (shown as “yel-

low holes” in Figure 1), and some distinct to the training and

public test sets (shown as a “blue hole”).

The reasoning behind this strategy is to force the com-

petitors’ algorithms to demonstrate the ability to handle both

interpolation and extrapolation. Based on the training data,

competitors have not seen answers in the more difficult region
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FIGURE 1 Relationship between the training, public test, and private test

data for a 2D input space

in the public test set (blue perimeter outside of red training

set), and hence their solutions need to demonstrate the abil-

ity to expand into new scenarios. This process is repeated for

the stretch from the public to private test sets, where the host

can see how well the algorithms can again extend to further

new scenarios. The interpolation elements (holes) provide an

opportunity to check if there are differences in local behavior

that can be a symptom of overfitting.

To ensure a fair competition, we recommend clearly

describing that there are differences between the training,

public and private data sets to the competitors. This can be

done in the instructions or description of the competition

dataset available for almost all data competitions. Making

this information available can help the competitors calibrate

their expectations on the competition tasks, reinforce the idea

of solving the general problem of interest and avoid overfit-

ting to the particular training data that are provided, and also

help them choose appropriate strategies for seeking the best

solution that the host desires.

Taking subranges of multiple inputs can quite rapidly

diminish the amount of data available to assign to the train-

ing and public test sets. How much to reduce the ranges

should be balanced with data availability when populating

these data sets.

For the urban radiological search competition,

beginning with a superset 10 times the size

of the final competition data sets allowed for

aggressive divisions into training, public test,

and private test sets. We first considered the

extrapolation part of specifying the data for

the factors speed, shielding, and background.

Detecting a source becomes more difficult at

higher speeds. Similarly, shielding a source

makes it more difficult to detect or iden-

tify. Some of the background conditions were

also known to make the search more difficult.

For each of these factors, with an anticipated

gradient from easy to hard, we specified sub-

ranges from which to draw the training and

public test sets.

For the interpolation aspect, we considered

the multiple configurations of the street and the

multiple locations for placing a source. While

the street configurations produced different pat-

terns of background, they were considered

effectively of the same difficulty. Hence, only

half of the street configurations were shared in

the training set, three fourth of them included in

the public test set, and all of them included in

the private test set. Similarly, half, three fourth,

and all source locations were used in the three

data sets, respectively.

3.5 Adapt standard design of experiments principles
to the competition scenario

In this section we consider principles from traditional design

of experiments [15,17] that we translated into strategies for

effective hosting of a data competition. A key distinction from

typical experimentation is that we consider the competitors

to be adversaries who are trying to leverage any information

communicated through the data sets. This includes informa-

tion both intentionally and unintentionally shared by the host.

In most other experiments, the choice of factor combinations

is dictated solely by the goals of the experiments or con-

straints. Hence some design principles, such as replication,

design balance, and randomization, need to be considered

through fresh eyes. We discuss each principle below.

3.5.1 Replication
Since many competition responses are categorical (eg,

detect/no detect or which source type in our example), having

replicates can dramatically improve the power of a logis-

tic regression model to quantify performance throughout

the region. If the simulator has a stochastic component,

then creating replicates at the same nominal input conditions

should result in differences between the replicates. Nuisance

factors (those factors which make the data look different

to the competitor, but are not thought to meaningfully impact

the difficulty or nature of the problem) can be used to make

replicates look less similar. However, current file utilities

make comparisons between files straightforward, so includ-

ing instances too similar to each other may be of limited value

since this is might be detected by savvy competitors.

For the urban radiological search competition,

the duration of the detector moving along the

street was treated as a nuisance factor, since this

duration was not of interest to the subject mat-

ter experts, and was not thought to impact the
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difficulty of the problem. Hence manipulating it

to vary the look of the replicates did not com-

promise our ability to estimate performance. In

this way replicates of a scenario could be used,

where the stochastic nature of the simulation

generating code and the selected starting and

ending points on the street made the runs look

quite different to the competitors.

3.5.2 Design balance
Typically in designed experiments, a goal is to have perfect

or near-perfect balance between levels of each factor. That is,

we typically include the same number of instances of each

level of a factor. This allows for better orthogonality between

factors and independent estimation of their effects, as well

as similar standard errors, which make comparisons between

the magnitudes of effect more straightforward.

For the design of a competition, balance needs to be

tempered by unequal emphases on different regions of the

design space as described earlier, as well as an interest in

avoiding unintended artifacts that competitors can leverage

when tuning their solutions. For competition questions that

involve identifying different categories of responses, the goals

of the competition should dictate choices that are made.

For example, consider the trade-off between false positives

(sounding an alarm when there is nothing to respond to) and

false negatives (missing an actual event). These generally

have very different associated costs, and so the competition

test sets should be designed to provide adequate precision for

estimating each of these rates.

For the urban radiological search competition,

we treated the design for each source type

(six source types plus no source) as sepa-

rate mini-experiments, which were constructed

independently and then combined at the end.

Balance, in particular for the number of runs for

each source, was a feature that the competitors

could potentially exploit. The balance between

the number of runs containing a source and

those containing no source was also something

that needed to be managed between the data

sets. In an actual urban radiological search set-

ting, the number of “no source” runs would (we

hope) vastly outnumber those “with source,” but

there is no requirement to have the competition

data set mimic reality based on this aspect. We

wanted to have adequate information to be able

to precisely assess the false positive rate in dif-

ferent regions of the input space. So we decided

on the fraction of no source vs with source runs

for the public test set and for the private test set,

and then divided the “with source” runs among

the six different sources. We intentionally did

not balance the number of runs for each source.

We estimated the minimum number required to

estimate the relationship between inputs and the

response for a given source, and then used this

as the number of runs for the easiest source.

The remaining sources were assigned slightly

more runs, to avoid too much balance between

sources. In addition, we intentionally had differ-

ent fractions of runs for each source between the

public and private test sets.

3.5.3 Randomization
In a traditional experiment, randomization serves the pur-

pose of protecting against unknown systematic effects during

the running of the experiment. This seems less critical in a

simulated data set, since it is much less likely that there will

be lurking factors impacting the results. However, there are

still good reasons to randomize the order of files for the pub-

lic and private test sets. Since the training data set contains

the complete set of answers, there is no reason to randomize

the order of instances within it. In fact it may be helpful for the

competitors to group all runs within a category together

for ease of understanding patterns.

For our test data, we intermixed the public and

private subsets in the test data to complicate

probes by the competitors to identify which runs

are associated with different aspects of the test

set. We also randomized the order of source and

no source runs.

3.6 Create a leaderboard to reflect the goals of the
competition

The scoring metric provides a single formula chosen before

the launch of the competition for ranking the competitor

solutions from best to worst on the leaderboard. As the com-

petitors making their best efforts to improve their leaderboard

scores during the competition, this scoring metric will drive

the direction of the competition and competencies of the

resulted solutions. If this ranking is not strategically chosen

to match the goals of hosting the competition, then competi-

tors could focus on aspects of the problem that are of lesser

importance, and/or the overall winner might not be the one

that provides the most desired solution to the competition.

By intentionally matching the goals of the competition to the

construction of the leaderboard, the host has control to appro-

priately emphasize the different aspects of the competition.

In the urban radiological search competition,

“no source” runs (scored with 1 for correct clas-

sification or 0 otherwise) were weighted half

as much as “with source” runs, since they rep-

resented answering a simpler question. For the
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“with source” runs, the multiple different cri-

teria were combined into a single score with

an additive desirability function [9]. The three

components of detect, identify, and locate were

combined with an additive form:

Scoresource =wdetDet+widenIden+wlocLoc

with
∑

w• = 1

We consulted with the SMEs to determine

initial weights for each of the components that

were thought to reflect competition priorities.

Then we constructed various mock competi-

tor submissions with systematic errors—for

example, a submission that answered every

test set run correctly except for those contain-

ing highly enriched uranium (HEU) sources,

or a submission that answered every test set

run correctly but got the location wrong by

1 second—and computed the leaderboard for

all the mock submissions using those initial

weights. We then made changes to the weights

to ensure that the rankings best matched the

SMEs’ priorities for a winning submission.

Anderson-Cook [3] describes this approach to

spot-checking alternative weightings to obtain a

desirable robust ranking of top contenders.

4 POSTCOMPETITION ANALYSES

The design portion of hosting a data competition is critical

for its success, since providing the right data enables quality

answers to the questions of interest. Having a robust analysis

strategy to consider the different questions of interest allows

for greater knowledge and understanding to be extracted from

the investment of the competition. Indeed a good design

enables a rich analysis.

Here we discuss both exploratory data analysis and

model-based analyses to support better understanding of the

input space, comparisons between solutions, and evaluation

of the chosen leaderboard metric. We discuss each approach

in turn.

4.1 Exploratory data analysis

Exploratory data analysis of each submission can provide

useful summaries can be used to provide preliminary informa-

tion about performance and team-to-team differences. Global

summaries about the fraction of correct answers for differ-

ent portions of the data can give an indication of overall

performance.

Contingency tables [2,7] are effective descriptive sum-

maries for categorical responses. A confusion matrix [10,11]

is a contingency table with two dimensions, typically with

the true answers listed as rows and the predicted answers as

columns. Along the diagonal are the counts or proportions

of instances that a competitor predicted correctly, and the off

diagonal entries show instances where the competitor was

“confused” by the problem. Note that the amount of data

for different questions of interest is likely to be unbalanced,

for instance due to intentional choices made during the data

selection process to avoid unintended artifacts in the data.

In addition to global summaries, it is helpful to explore dif-

ferences in the results for different input values. Graphical

summaries that connect the responses for individual runs to

the inputs used to create the data.

The summaries illustrated in this section consider just the

raw data and presented different subsets of it to gain pre-

liminary understanding of fundamental differences between

the results obtained by different teams. This can be helpful

for probing areas for deeper exploration with more formal

approaches.

In the urban radiological search competition,

there were several aspects of interest. For runs

where a source is present: (a) detecting the pres-

ence of the source, (b) identifying which of the

six possible sources it is, and (c) locating where

along the path the source is placed. For runs

where no source is present: (d) correctly stating

that no source is present. We initially focus on

the detection and identification portions of the

competition and categorize the answers for each

of the runs. Since each team could enter mul-

tiple submissions, we begin the exploration by

using the results from the best scoring submis-

sion for each team.

Figure 2 shows a confusion matrix sum-

mary for both detection and identification for

the winning team’s (LBNL) best submission as

scored against the test set data (both the public

and private test sets combined). Rows corre-

spond to the true state while columns indicate

what the competitor specified as their answer.

Figure 2A shows the conditional detection prob-

abilities for the entire test set data, with the

first row showing that the probability of detect-

ing a source when a source (S) is present is

approximately 74.7% (peach color), while the

probability of correctly saying no source (NoS)

is present is 93.2% (red color). Figure 2B shows

the conditional identification probabilities, with

information about how each of the sources was

classified among the seven possible choices.

Clearly the diagonal shows that the most com-

mon choice for each source is the correct iden-

tification. The lighter blue color in the last col-

umn shows that each of the sources is sometimes

missed and called a no source run. Source 6



10 ANDERSON-COOK ET AL.

Pred−S

Pred−NoS

True−NoS

True−S

Prediction

T
ru

e
 S

o
u

rc
e

0.00
0.25
0.50
0.75
1.00

Pre
d−

S1

Pre
d−

S2

Pre
d−

S3

Pre
d−

S4

Pre
d−

S5

Pre
d−

S6

Pre
d−

N
oS

True−NoS

True−S6

True−S5

True−S4

True−S3

True−S2

True−S1

Identification Prediction

T
ru

e
 S

o
u

rc
e

0.00

0.25

0.50

0.75

1.00

(A) (B)

FIGURE 2 Confusion matrix summaries for LBNL’s best submission for (a) detection and (b) identification. S and NoS mean “source present” and “no

source present,” respectively

(which is a mixture of sources 1 and 5) is most

frequently misidentified as source 1.

The summary in Figure 2 provides a global look

across all the runs. Because the runs are con-

structed by specifying different input choices,

it is also possible to examine how the correct

and incorrect answers are distributed in key

input regions. For example, Figure 3 shows the

spread of the results for the winning submis-

sion on the portion of the private test data from

weapons grade plutonium (WGPu) with shield-

ing. (We consistently use WGPu with shielding

for the purpose of illustration.) Similar plots

could be constructed for each of the sources, for

any subset of the input space, and for complete

exploration of the results. Key inputs were cho-

sen for the x-axis (the speed of the detector in

meters per second) and y-axis (the SNR, which

summarizes the strength of the source signal

relative to the background noise). In the plot,

green indicates correct detection and identifica-

tion, orange is correct detection and incorrect

identification, and red means that the source was

not detected. Based on this plot, it is clear that

the most difficult regions are for low SNR, and

there is some increase in difficulty as the speed

of the detector increases. The clustering of the

orange points for low speeds and small SNRs

suggests that this is a region where detecting a

source is possible, but correctly identifying it

is challenging. Also, the relatively small num-

ber of orange points suggests that if WGPu is

detected, it is most often correctly identified.

We can also make comparisons between

teams. Each panel in Figure 4 provides infor-

mation about the subset of data for one sce-

nario (each source or no source), broken out

by correct identification (green), correct detec-

tion with incorrect identification (orange), or no

source detected (red). Each bar in each panel

represents the performance of one of the teams,

sorted from highest overall score to lowest.

From this plot, we are able to extract some gen-

eral trends from the data. First, HEU and WGPu

are generally harder to detect or identify than

iodine (131I) and cobalt (60Co) as seen by the

relatively larger red regions. Secondly, for most

sources, if teams were able to detect the source,

then they could also correctly identify it (as seen

by the small orange regions for most source

types). The exception to this is Source 6, which

was a mixture of HEU and technetium (99Tc).

Here the detection rate was high (better than

for any other source), but not surprisingly there

were greater problems with correctly identify-

ing that source.

If teams had all used fundamentally similar

approaches, we might expect that the results

would monotonically decrease from left to right

in a given panel in Figure 4, as the best teams

were able to solve the problem a bit better than

teams with lower scores. However, we do see

that some teams were able to do better at detec-

tion or identification than the best team for

some sources. These differences between teams

and different subcategories of the data provide

incentive to explore more deeply to understand

differences between teams’ solutions. If teams
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FIGURE 3 Scatterplot of identification for the best submission from team LBNL for data based on runs with weapons grade plutonium (WGPu) present and

with shielding. Here we consider the parameters detector speed (in m/s on the x-axis) and source signal-to-noise ratio (SNR, y-axis). (a) green, correct

detection and identification; (b) orange, correct detection, incorrect identification; (c) red, source not detected
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indicates correct detection and identification, orange shows correct detection and incorrect identification, and red indicates that no source was found

could solve different parts of the overall com-

petition with varying degrees of success, then

this may represent an opportunity to leverage

the best of each solution into a “super-solution”

that can dramatically outperform any individual

team’s results.

Table 1 and Figure 5 show some initial explo-

ration of the different strengths and weaknesses

of the solutions of the top two teams. In Table 1

the rows correspond to correct detection and

identification (I), correct detection with incor-

rect identification (D), and incorrectly missing

the source entirely (X) for the top team, LBNL.

The columns show the same information for

the second best team, LANL-W. The diagonal

entries show where the teams reached consis-

tent results, while the off-diagonals identify

differences in algorithm performance. In gen-

eral, we anticipate that the larger the fraction

of off-diagonal entries, the greater the poten-

tial differences in the approaches used for their

solutions.

When we compare the top two teams, we see

that LBNL correctly identified slightly more

cases (1068 vs 967) and correctly detected

slightly more (39 vs 15). However, it is
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TABLE 1 Summary of differences between top submissions from 1st
(LBNL) and 2nd (LANL-W) place teams for WGPu

Team 2: LANL-W

I D X Total
Team 1: LBNL I 930 (0.504) 4 (0.002) 134 (0.073) 1068 (0.578)

D 4 (0.002) 1 (0.001) 34 (0.018) 39 (0.021)

X 33 (0.018) 10 (0.005) 697 (0.377) 740 (0.401)

Total 967 (0.524) 15 (0.008) 865 (0.468) 1847 (1)

I, correct detect and identification; D, correct detection, but incorrect iden-

tification; X, incorrectly missed source. Bold entries indicate where the two

teams obtained the same results. The first entry is the cell count, while the

entry in parentheses indicates the fraction of the total number of WGPu

runs.

interesting to note that LANL-W was able to

correctly identify 37 cases that were incor-

rectly identified by LBNL (rows D and X of

column I), with four of those being detected

by LBNL, and 33 having been missed com-

pletely. Seeing that nearly 12% (219 of 1847)

of the WGPu cases lie on the off-diagonals

(4 + 134+ 34+ 4 + 33+ 10 = 219) reveals

potential differences in the teams’ approaches,

even though the overall scores for the teams

were quite close.

To dig more deeply into where these differ-

ences lie, a variation of the scatterplot shown

in Figure 3 can be considered. Figure 5 shows

the WGPu data for just the scenarios where

shielding was included, with Figure 5A showing

data corresponding to the diagonals in Table 1.

Figures 5B and C show the off-diagonal cases

where LBNL outperformed LANL-W and vice

versa. From this figure, some patterns can be

explored. For example, LBNL seemed to be bet-

ter than LANL-W at detecting WGPu for low

SNR and slow speeds (cluster of pink points in

bottom left corner of Figure 5B). If there are

strong clusters in regions of the input space, then

this may represent opportunities to compare

solution approaches to leverage improved per-

formance of one algorithm over the other.

4.2 Model-based analyses

As the analysis of the different competitor solutions evolves,

the methods used to gain understanding become more for-

mal. In the early stages, looking at the raw data and outcomes

can show differences at a high level, while later delv-

ing into more detail can reveal more subtle comparisons

between the solutions of different competitors. An under-

lying theme in the postcompetition analysis is the goal

of exploring whether competitors used different approaches

to solve the problem, and whether these differences can be

exploited to perhaps develop a super-solution which leverages

the best of each of several algorithms to achieve even higher

performance.

Using a model to summarize the relationship between the

input factors and the results of different subquestions of the

competition can provide a more formal way to gain a deeper

understanding of patterns in the data. For categorical vari-

ables, such as the detection and identification portions of the

urban radiological search competition, a generalized linear

model (GLM) [14,16] can be helpful. For continuous vari-

ables, such as the size of the miss for the location portion

of the urban radiological search competition, a standard lin-

ear model [12] for characterizing a response surface [17] can

provide insights.

GLMs are flexible extensions of linear regression models

to handle broader distributions of the response variable than

just continuous responses well modeled by the Normal dis-

tribution. GLMs allow the response variable to follow any
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FIGURE 5 Scatterplot of comparisons between performance of top two teams (LBNL and LANL-W) for WGPu with shielding. (a) Results where teams

match (green open circle, correct detection and identification, orange filled circle, correct detection but incorrect identification, red X, missed source). (b)

Runs where LBNL outperformed LANL-W (top-right cases in Table 1) with blue filled circle, LBNL correctly detected and identified, LANL-W correctly

detected but misidentified; purple open circle, LBNL correctly detected and identified, LANL-W missed source; pink +, LBNL detected but misidentified,

LANL-W missed source. (c) Runs where LANL-W outperformed LBNL, with same color coding as (b) but with teams reversed
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distribution in the exponential family, which includes the

commonly used Normal, binomial, and Poisson distributions,

and also allow the mean response to depend on the explana-

tory variables through a link function (eg, logit, probit, or

log). GLMs are popular models for categorical responses.

For example, Poisson regression models are often used

for modeling count data. The logistic or probit regression

models are popular choices for modeling binary response

variables. More specifically, if Y represents a binary response

which follows a Bernoulli distribution with p=Pr(Y = 1),

then the logistic regression model links the expected mean

response (ie, the proportion), p=E(Y), to the exploratory

variables, x, through the logit link function as given by

logit(p) = log
(

p
1−p

)
= x′𝜷.

For the urban radiological search competition,

the test set data were partitioned into seven sepa-

rate subsets, one for each of the six source types

and one for the no source data. To understand

both the estimated probability of detection and

probability of identification for each source, the

following logistic models were fit:

P(detection) = ex′𝛽

1+ex′𝛽 and

P(identification) = ex′𝛽

1+ex′𝛽

where

x′𝛽 = 𝛽0 + 𝛽SNRXSNR + 𝛽ShieldIShield

+ 𝛽SpeedXSpeed + 𝛽BackgroundIBack

+ 𝛽LaneXLane + interaction terms

for the input factors SNR (continuous), shield-

ing (indicator variable 0/1), speed (continuous),

background (indicator variable for one of mul-

tiple) and traffic lane (closest or furthest from

source—continuous for one of four lanes). We

performed careful model selection to obtain the

best fitted model for each team based on its

top submission for each source. We first con-

sidered a full model including all the relevant

input variables and their interactions for all the

scenarios to allow for greater flexibility in the

modeled shape of the response surfaces. Then

we sequentially removed nonsignificant higher

order terms from the full model to avoid overfit-

ting and reduce the variability of the prediction

for each individual scenario. We performed a

lack-of-fit test between the full and the reduced

model to check the adequacy of the simpli-

fied model. By removing some of the spurious

terms from the model, the overall variance of the

model was reduced, leading to improved inter-

pretability and less risk of overfitting to idiosyn-

crasies in the data. We fit these models to the top

scoring submission from each of the top teams

to obtain tailored estimations of individual team

performances across the different source types.

In terms of gross similarities across the

different input factors, the SNR, speed, and

shielding were highly significant, while the

background layout and the lane were rarely

significant. This was unintuitive to the SMEs

who helped to design the simulations used for

the competition, as they had anticipated that

being further from the source would make it

more difficult to detect it. The differences in the

layout of the background captured by IBack were

not thought to fundamentally change the level

of difficulty of the problem to be solved, but

were primarily used to obfuscate the patterns of

the background. Figure 6 shows contour plots

for the highly significant input factors for dif-

ferent cases of the WGPu scenario for the top

team, LBNL. We also found that the three-factor

interaction was rarely significant. Among the

two-factor interactions, the interactions between

SNR and shielding and between SNR and speed

were significant more often than the interaction

between speed and shielding across all explored

scenarios and competitors.

Examining the results from Figure 6, we note

some patterns in the estimated surfaces. First,

the probability of detection (top panels) is equal

to or higher than the probability of identifica-

tion (bottom panels) for all regions of the input

space. The difference between the two surfaces

at a given location corresponds to the size of the

“correctly detect and incorrectly identify” group

in Figure 3. Second, when we compare the left

and right plots in a given row, we see that the

“with shielding” scenario was generally harder

than “no shielding”. Third, the LBNL team was

able to have very high probability of detection

and probability of identification for cases when

the SNR ratio was large and for slower speeds of

the detector (upper-left regions of each panel).

There is a large proportion of the input space

where the probability of both detection and

identification is greater than 90%, indicating

that for these cases, it is quite likely that LBNL’s

solution can adequately solve the problem of

interest. This matches the qualitative results that

were observed in Figure 3 with few errors in

detection or identification in the top portion of

the plot.

Next, we can also examine the relative impact

of the different factors on the two probabilities.

Since the contours are more horizontal for the
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FIGURE 6 Contour plots of the probability of detection (top panels) and the probability of identification (bottom panels) for WGPu based on the results

from the best submission from the top team, LBNL. The left and right panels of each row are estimated from the same model, but shown for IShield = 0 and 1,

respectively

“no shielding” case, we can infer that changes in

the SNR have a greater impact on the capability

of detection or identification than changes in the

speed of the detector. For the “with shielding”

case, the contours are more curved with similar

changes in the vertical and horizontal directions.

This suggests that for the shielded case, changes

in SNR and speed have similar impacts on the

probabilities of detection and identification.

If there is an interest in assessing which regions of the input

space look to be well-solved and those for which there is still

need for improvement in the solution, it is helpful to look more

broadly than just the top team. We can use our model-based

analyses to compare teams.

Recall from Table 1 and Figure 5 that there were

runs which the second place team, LANL-W,

was able to answer correctly while the top

team was not. Hence, Figure 7 shows the

contour plots for the top two teams for the

WGPu with shielding scenario to compare their

performance. The general shape of the two sets

of contours look similar, with some small dif-

ferences in the curvature of each contour. How-

ever, based on these results, it does look like

for SNR values greater than 5 and speeds less

than 6 (top left corner), both algorithms have

a very high probability of correctly identifying

WGPu.

In addition, if we examine the bottom right

corner, we can gain some understanding about

how challenging the different algorithms find

the low SNR and high speed cases. Neither

teams exceeded a 20% probability of identifying

the source for these most difficult cases. This

matches with what we saw in Figure 3 for the top

team with few runs with correct identification

in this corner of the input space.

For the runs with sources, the additional

component of the competition, besides detec-

tion and identification, was to see how well the

competitors could locate where the source was

placed in the urban environment. In this case, a
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FIGURE 7 Contour plot of the probability of identification for WGPu with shielding for the top two teams

standard linear regression model could be used

to examine patterns. The response of interest

was formulated as the size of the miss from the

true source location in seconds, where misses

before and after the true location were treated as

equivalent. Hence a model of the form

∣ time miss ∣ = 𝛽0 + 𝛽SNRXSNR + 𝛽ShieldIShield

+ 𝛽SpeedXSpeed + 𝛽BackgroundIBack

+ 𝛽LaneXLane + 𝜀

was used where the factors considered were the

same as for the probability of detection or iden-

tification. We assume that the error terms, 𝜀, are

independent and identically distributed. Again,

results for this response followed similar pat-

terns across all of the sources. The SNR, speed,

and shielding factors were highly significant

with increases in the size of the miss increas-

ing for more difficult versions of each factor.

This time, in addition to these factors, the traffic

lane was also moderately significant for some of

the sources, such that being in the lane furthest

away from the location of the source increased

the size of the miss. Overall, this portion of the

competition was generally less difficult for the

competitors and there were fewer distinctions

between teams. In other words, if the competi-

tors could detect and identify the source, then

pinpointing its exact location was not that chal-

lenging.

For the runs with no source, the response of

interest was the probability of correct classifica-

tion as a run with no source. Since many of the

input factors included previously were functions

of the source, the modeling for this response was

considerably simpler. Again, a GLM was used

where the relevant input factors to explore were

the speed of the detector and differences in the

background configurations. We fit a model of

the form

P(correct classification)

= ex′𝛽

1 + ex′𝛽 with x′𝛽 = 𝛽0

+ 𝛽SpeedXSpeed + 𝛽BackgroundIBack

+ higher order terms

for each competitor’s best submission and com-

pared the results. Note the linear component of

the GLM x′
𝛽 can include higher order terms

for related explanatory variables. We performed

model selection to choose the best-fitting model

for each team. For our example, the background

variable was almost never significant for mod-

eling the probability of correction classification

for the no source case for the top winning teams.

Both the linear and the quadratic terms of the

speed were significant for the top two teams,

LBNL and LANL-W. Figure 8 shows the esti-

mated probability of correct classification for

the no source scenario for these teams with

the associated estimated uncertainty as mea-

sured by confidence intervals for the curves. It is

interesting that the probability of correct classi-

fication generally rises as the detector moves at

higher speeds. One possible explanation is that

those runs do not provide enough data (because
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FIGURE 8 The probability of correct detection (true negative) for no

source cases for the top 2 teams with the estimated uncertainty (the 95%

pointwise confidence bands)

the simulated detector is not on the street for

a long enough time) for competitors to confuse

a background element for an actual extraneous

source.

As we compare the top two teams, we see that

the winning team does not have the best per-

formance on correctly classifying the no source

scenario. The second place team, LANL-W,

has consistently higher estimated probability of

correct classification than the winning team.

With the large size of the competition data, the

estimates have quite good precision with nar-

row pointwise confidence bands for both curves.

The two teams perform similarly at very high

speed values (above 12 m/s) since it becomes

too hard to detect anything when the detector is

moving really fast.

Through the use of GLMs and standard regression, it is

possible to develop response surface models that describe the

general patterns of each team’s solution. From this explo-

ration is it possible to gain understanding about which of

the input factors play a role in influencing the quality of the

solution, to quantify relative impact, and to visualize where

regions of excellent, fair, and poor performance exist.

We can also use model-based analyses to quantify differ-

ences between competitor results for different input regions.

This could reveal opportunities for combining complemen-

tary approaches to create an even stronger hybrid algorithm.

To make precise where these opportunities lie, we now

illustrate using our models to find regions in the input space

with differences in performance.
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FIGURE 9 Contour plot of the difference in the mean estimated surfaces

for the probability of identification for WGPu with shielding between the

top two teams: LBNL vs LANL-W. Positive values (in blue shades) indicate

that LBNL has a higher probability of identification, while negative values

(in yellow-orange-red shades) indicate better performance by LANL-W.

The white and black solid circles and black open circles indicate input

locations with significant differences with P-values being less than 0.01,

between 0.01 and 0.05, and between 0.05 and 0.1, respectively. We adjust

for multiple comparisons with the Bonferroni approach

In Table 1 and Figure 5 we summarized

an exploration of where the top two teams

performed similarly and differently. Here we

consider this question more formally using the

GLMs estimated above. Figure 7 shows contour

plots for the probability of correct identifica-

tion for the top two teams for the scenario of

WGPu with shielding. While the gross patterns

of the surfaces seem similar, it can be challeng-

ing to identify where there are differences in the

probability of identification.

Figure 9 highlights the differences between

the fitted models for the top two teams (LBNL

vs LANL-W) for the probability of identifica-

tion for WGPu with shielding. Values of zero

in this plot (light blue regions) correspond to

the two surfaces having the same probabilities,

while positive (darker blue) regions show where

LBNL has a higher probability of identifica-

tion than LANL-W. We use a P-value approach

from hypothesis testing of the two surfaces hav-

ing the same mean to evaluate the statistical

significance of the observed difference consid-

ering the estimation uncertainty. In Figure 9,

different symbols are used to indicate differ-

ent significance levels: white solid circles for

P-values less than 0.01, black solid circles for

P-values between 0.01 and 0.05, and black
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open circles for P-values between 0.05 and 0.1.

Since multiple comparisons are made across a

large number of input locations across the input

space of interest, we use a Bonferroni approach

[12] to adjust the P-value for conducting mul-

tiple simultaneous comparisons by multiplying

the P-value of a pointwise comparison by the

number of input locations evaluated (ie, the

number of comparisons that are considered).

This approach can be quite conservative when

a large number of input locations are evaluated

across the input space. If an improved power

is desired for the simultaneous test, then a less

conservative approach should be used for mak-

ing the multiple comparison adjustment, or a

coarser grid of input locations could be used for

the evaluation. Figure 9 clearly shows that the

largest positive difference between the two sur-

faces (LBNL outperforming LANL-W) is found

for SNR values close to 2 and slower speeds.

What is also identified, that was more difficult

to see from Figure 7, is that there is a region

for high speeds and larger SNR values where

the LANL-W team is slightly outperforming the

LBNL team (yellow region). However, this is

not statistically significant based on the Bonfer-

roni simultaneous test.

One concern of the P-value approach based on hypothesis

testing is that with a large sample size it is easy to declare

a statistical significance for a small amount of difference

which might not be of practical importance to the problem of

interest. Equivalence testing [4,24,25] has been developed for

evaluating the practical equivalence between groups. Equiv-

alence testing is still a P-value based approach that relies on

a formal test. Stevens and Anderson-Cook [22,23] describe

a more flexible strategy for characterizing the difference

between two response surfaces based on fitted logistic regres-

sion models. Although originally developed for a reliability

context, the described probability of agreement is suitable for

examining if the difference between the fitted surfaces are of

practical importance. The question of whether different pop-

ulations should be treated as practically equivalent is one that

occurs in a wide variety of applications. For the purposes of

this exploration, formal testing is not necessarily needed, but

some quantification of how likely two surfaces are to overlap

could be beneficial.

A key difference between traditional hypothesis testing and

the probability of agreement is how the initial assumption

about the two surfaces is stated. Traditional hypothesis testing

assumes that the surfaces to be compared are equivalent until

there is evidence to the contrary. Probability of agreement, on

the other hand, starts with the assumption that the surfaces

are different until there is sufficient evidence to assert that

they are practically equivalent [20]. Another key difference

is that the user has the option to specify what a meaning-

ful difference between the surfaces is for each application.

The probability of agreement can be used as an alternative

or complementary summary to the difference plot (Figure 9)

for evaluating the practical importance of the observed differ-

ences between teams.

By comparing the estimated response surfaces

for the different responses in the urban

radiological search competition, we were

able to more precisely identify opportunities

where further exploration into the competi-

tors’ approaches might lead to advantages and

the potential to improve the overall solution.

It is worth noting that the top two teams were

formed by experts from quite different fields.

The top team, LBNL, mainly had radiation

detection expertise, while the second place

team, LANL-W, was made up of five statisti-

cians. Learning the strengths and weaknesses of

the two completely different sets of skills could

increase the opportunities to leverage strengths

of different techniques for creating improved

solutions.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have presented some strategies for both

the design and analysis of data competitions. Because

the effort and financial investment of hosting a competition

is substantial, being intentional about what data to present

to competitors is critical for getting good returns. We think

selecting data which provide maximum ability to distinguish

between the performance of different submissions while stim-

ulating growth of solutions is key to taking advantage of the

opportunity that a competition offers. We also think it is

important to be inclusive for a breadth of different techni-

cal audiences, and to construct a leaderboard metric which

reflects the priorities of the most desirable solution. By focus-

ing on matching the data to where competitor solutions are

sought, it is more likely to avoid rewarding the wrong charac-

teristics of the solutions.

While the leaderboard is an essential part of evaluation of

the competitors’ submissions in a data competition, it must

be simplistic and scalar by necessity to meet the real-time

unique ranking requirements. We propose that a more detailed

postcompetition analysis can be highly beneficial to maxi-

mize what is learned through the competition. One of the

goals of this analysis is to understand if there is potential for

the best of each team’s submission to be combined into a

global solution that surpasses all of the individual contribu-

tions. Initially starting with exploratory data analysis methods

can provide basic insights about where top competitors were

able to perform well, and also observed differences between
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results from different teams. To make these comparisons

more formal, model-based analysis such as GLMs or standard

regression models can be used to characterize the relation-

ships between the inputs and the responses with response

surfaces. For binary categorical responses, such as for correct

classification, detection, or identification, logistic regression

can provide a simple model form for easy interpretability and

comparison. For continuous responses, linear models are use-

ful. These models allow assessment of the relative importance

of different factors on the quality of the answers and also

facilitate the construction of response surfaces and visualiza-

tion of the relationships. Tools such as difference plots and

formal evaluation of these differences can compare solutions

to understand where they are effectively the same, and where

they are potentially complementary.

In the urban radiological search competition, the postcom-

petition analysis showed a number of useful results about

where in the input space the top teams could solve the ques-

tions posed well, and where additional work is still needed.

It also revealed some differences between the top teams and

showed that the second place team might have better local

performance in some regions of the input space for answer-

ing a certain subquestion than the winning team. While the

numerical and graphical summaries shown throughout the

paper were based on our example, their general nature should

allow them to be easily adapted to other competitions where

the objectives may be different. Our goal in presenting the

example was not to provide an exhaustive list of summaries

to be used in competitions, but rather to illustrate the poten-

tial for decomposing the leaderboard scoring metric into more

detailed components for which the right summary can be

developed.

We anticipate that many competition hosts will not be

involved in just a single competition, but rather a sequence

of competitions that evolve from each other. For this pur-

pose, the postcompetition analysis has an additional bene-

fit of providing insights about where to focus future data,

both for comparison of the algorithms that were developed

in each competition, and to explore regions where further

development of solutions is still needed to meet the host’s

needs.

There are areas where additional research would be bene-

ficial, including examining the robustness of the leaderboard

scoring metric to the subjective weighting of multiple objec-

tives of a competition, such as the urban radiological search

competition’s interest in the three components of detection,

identification, and location of potential sources. A Pareto

fronts approach [5,13,17], which identifies nondominated

solutions for simultaneously optimizing multiple objectives

and explores trade-offs and robustness of solutions to differ-

ent user priorities, could provide insights into how the host

valued the individual components of the scoring, and how this

affected the overall ranking.

When a sequence of competitions is planned, the

improved understanding from the postcompetition analysis

of a previous competition can help calibrate the leader-

board scoring metric for the later competitions. There

are also opportunities to provide other carefully designed

in-competition summaries to the participants which could

foster accelerated improvements to their algorithms without

inadvertently alerting them to the structure of the particu-

lar data used in the competition. As competitions become

increasingly prevalent, it will be beneficial to have a suite of

analysis methods that provide the right tools to enable the

host to make the most of their financial and effort investment.
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