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a b s t r a c t

We study the problem of minimizing the spread of influenza virus infections in
(dynamic) networks of people by isolating sick nodes (or vaccinating susceptible
nodes) over time. This can be viewed as removing nodes with certain characteristics
from networks of people over time. We present a novel integer linear programming
formulation for this problem that incorporates several practical aspects of the spread
of influenza virus infections. A comprehensive computational study demonstrates
the efficacy of the proposed formulation and several enhancement techniques.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Influenza outbreaks raise serious concerns for public health decision makers due to their impact on health
and economy. Each year, a significant number of people die from periodic influenza outbreaks and businesses
incur financial losses due to the absence (or poor performance) of the infected employees. Influenza outbreaks
often turn into epidemics, i.e. the spread is not worldwide but can infect hundreds of thousands of people.
An outbreak becomes even more serious when it turns into a pandemic, i.e. the spread is worldwide and it
can infect millions of people [1]. For example, Centers for Disease Controls and Prevention reports that an
H1N1 influenza outbreak infected approximately 60.8 million people and caused 12,469 deaths just in the
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United States from April 12, 2009 to April 10, 2010 [2]. So, not surprisingly, public health decision makers
are constantly in search for better solutions to further reduce/minimize the spread of influenza outbreaks
and their impact on the affected population.

The spread of an influenza virus infection depends highly on the connectivity of the network of people,
where nodes represent individuals and links represent their connections/interactions. So, minimizing the
spread of an outbreak can be attained by disconnecting the healthy and susceptible nodes of the network
from the sick nodes. This can be done by removing some of the nodes or links of the network. This approach
has been a common practice during the past influenza epidemics and pandemics. It is worth mentioning that
the option of removing links from a network of people is not very attractive since removing the connection
between two individuals is not usually easy. However, in many other real life networks, removing links
makes more sense than removing nodes. For example, if nodes represent airports, and links represent flights
between them then shutting down an entire airport may not be possible. However, to reduce the spread of
an infection, some flights may be canceled from/to origins/destinations where the spread of the infection is
highly prevalent [3]. A recent study conducted by Nandi and Medal [3] presents new integer linear programs
and heuristic solution approaches in the context of node removal. Other related papers on this topic are Enns
et al. [4], Kimura et al. [5], Marcelino and Kaiser [6,7], and Nandi et al. [8].

The focus of this study is on networks of people and hence a node removal strategy is of interest. Note
that removing a node does not imply physically destroying a node. It only means that we assure that there
is no way that the infection to be passed from that node to other nodes anymore. By this definition, two
common approaches for removing a node in a network of people are vaccination (if the node is healthy
and susceptible) and isolation (if the node is sick). Our assumption, in this study, is that both vaccination
and isolation are 100% effective. In other words, if we vaccinate a healthy and susceptible node then it
cannot become infected and cannot make other nodes infected anymore. Also, if we isolate a node then it
cannot make other nodes infected anymore. It is worth mentioning that removing nodes to minimize the
connectivity in a network has been studied for a long time in the fields of graph theory and/or network
optimization [9–15]. However, the only study, to our knowledge, that explores node removal in the context
of the spread of infections (in a broad sense and not influenza virus infections) is conducted by He et al.
[16]. In that study, the authors develop a novel approach for deleting both nodes and links at the same time.
They also propose new exact and approximate polynomial time algorithms for special cases of the problem.

In light of the above, we believe that, our study is the first attempt to apply mathematical optimization
techniques for node removal in the context of influenza virus infections. The main contributions of our paper
are as follows:

• We present an integer linear programming formulation to minimize the spread of an influenza virus
infection by removing a subset of nodes over time in a (dynamic) network of people. It is also worth
mentioning that the idea of using integer programming to control the spread of an infection is not new
(see for instance [17]). However, the methods by which influenza virus infections spread in practice
are quite complex. For example, it is quite possible that a susceptible individual who comes in contact
with one infected does not become infected. Also, there is a transition time between the moment
that an influenza virus enters to the body of a susceptible and the moment that the person becomes
sick. Consequently, modeling the spread of an influenza virus infection is quite challenging. In fact, in
this study, we attempt to develop a model that incorporates several practical aspects of the spread
of influenza virus infections. We are not aware of any network model with link removal and/or node
removal that considers the level of detail that we consider in this study for the virus transmission
process.

• We develop several potential enhancement techniques including variable fixing, moderating big-M
coefficients, and symmetry breaking for the proposed formulation. We conduct a computational study
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Fig. 1. Change of status of a node in consecutive time periods.

(though for relatively small networks) to demonstrate the value of our proposed formulation and the
potential enhancements on the run time and the optimality gap. We show that most of our proposed
techniques are useful for practical applications.

In the computational study, we impose a run time limit of 30 min for all our experiments and try to solve
instances with up to 200 nodes for a planning horizon of 60 days. Although our instances are reasonably
sized, our approach is not yet scalable for analyzing a real life epidemic or pandemic outbreaks which may
easily include millions of nodes. However, our proposed formulation can be used for smaller communities
such as rural communities which may include hundreds of people.

The rest of paper is organized as follows. In Section 2, we provide a detailed description of the problem.
In Section 3, a non-linear integer programming formulation for the problem is introduced. In Section 4,
we show how the non-linear formulation can be linearized. In Section 5, we explain the key concepts of the
proposed formulation on a small example. In Section 6, we introduce a few potential enhancement techniques
to improve our proposed formulation. In Section 7, we present the result of a computational study. Finally,
in Section 8, we give some concluding remarks.

2. Problem description

Given a (dynamic) network of people, i.e. the nodes representing individuals and the links representing
their interactions, we remove a subset of nodes with some certain characteristics over time to minimize
the spread of influenza virus infections (with large penalties for fatality). Specifically, the mathematical
formulation, that we develop, chooses a node to be removed only if it is sick. Note that selecting and
removing a sick node can be interpreted as isolating that node. Later we show that our formulation can be
easily modified to select a node to be removed only if it is healthy and susceptible. It is worth mentioning
that selecting and removing a healthy and susceptible node can be interpreted as vaccinating that node.

We denote by N := {1, . . . , N} the index set of nodes in the network and by T := {1, . . . , T} the index
set of time periods in the planning horizon. The main assumption of this study is that there is only one
strain of virus circulating, and there is no mutation or reassortment of the virus during the entire planning
horizon. The status of each node i ∈ N can be changed in consecutive time periods, i.e. t, t + 1 ∈ T , as
shown in Fig. 1. Next, we explain the key components of this figure in detail.

A healthy node can be either immune (a node that has recovered after infection) or not-immune
(susceptible). A healthy and immune node cannot become infected and consequently cannot infect other
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people. However, a healthy and susceptible node may become infected depending on the total risk of the
network (this concept will be formally defined later in this section) for that particular node. Specifically, if
the total risk of the network for a healthy and susceptible node is small at t ∈ T then that node remains
healthy and susceptible in the next time period, i.e. t+1. However, if the total risk of the network is medium
or large for a healthy and susceptible node at t ∈ T then that node will be considered as an infected node
in the next time period, i.e. t + 1. An infected node will be considered a sick node only after completing its
transition state, i.e. a number of time periods that the infection is evolving without having the capability
of infecting other nodes. The transition state is sometimes called as the latency period in the literature [18].
We denote the number of time periods in the transition state by tw ∈ N (a natural number). It is worth
mentioning that tw varies because it is estimated to follow a Weibull distribution with the power parameter
of 2.21 and the scale parameter of 1.10 [19]. However, since in this study, our goal is to develop a deterministic
model, we simply assume that tw = 3 for our computational experiments.

Sick and recovering nodes are those that initially were infected because the total risk of the network (for
each of them) was medium. These nodes will remain sick for a few time periods but they will finally become
healthy and immune. It is clear that as soon as we realize that a node is healthy and immune, we can assume
that it does not exist in the network for the subsequent time periods since that node cannot become infected
again and it cannot make other people infected. However, sick and dying nodes are those that initially were
infected because the total risk of the network (for each of them) was large. These nodes will remain sick for
a few time periods but they will finally die. Again, as soon as we realize that a node is dead, we can assume
that it does not exist in the network for the subsequent time periods.

We now formally introduce the concept of ‘the total risk of the network’ for a given node. In general,
based on the findings of Ferguson et al. [18,20], two important factors that can indicate whether a healthy
and susceptible node i ∈ N has become infected are (1) its level of interactions with the sick nodes and
(2) the contagious degree of the sick nodes that have some interactions with node i. The latter, i.e. the
contagious degree, quantifies the amount of the virus that can be spread by a node.

It is evident that at time period t ∈ T , the level of interactions of node i ∈ N with node j ∈ N \ {i},
denoted by wijt ∈ Z≥ (where Z≥ := {s ∈ Z : s ≥ 0}), can be simply viewed as the weight of the link/arc
between them. Similarly, at time period t ∈ T , the contagious degree of node i ∈ N , denoted by cit ∈ Z≥,
can be viewed as the weight of node i. So, the total risk of the network for node i ∈ N at time period t ∈ T
is defined as follows:

zit :=

⎧⎨⎩
∑

j∈N \{i}

wjitcjt if node i is healthy and susceptible,

0 otherwise.

It is worth mentioning that based on the findings of Ferguson et al. [18,20], the contagious degree has a
dynamic behavior. More specifically, the contagious degree of a sick node in the first time period of its illness
is different from the second time period and so on. Therefore, cit = 0 if node i is isolated or not sick at time
period t. Otherwise, cit ∈ {d1, . . . , dts} where dk is the contagious degree of a (not-isolated) sick node at
time period k of its illness and ts ∈ N is the maximum number of time periods that a node remains sick.

In practice, the contagious degree can be estimated by using the lognormal distribution with parameters
−0.72 and 1.18 [18,20]. Accordingly, ts varies but one can simply assume that ts = 3. Therefore, in practice,
d1 ≈ 2, d2 ≈ 0.25 and d3 ≈ 0.125. Given that the formulation that we will develop is an integer linear
program, it is computationally advantageous if we change these number to integers. Consequently, for our
computational experiments, we simply set d1 = 2 × 8 = 16, d2 = 0.25 × 8 = 2, and d3 = 0.125 × 8 = 1.

Next, we explain how we can determine whether the total risk of the network for a given node is small,
medium or large. Let β1 = 0 and β2, β3 ∈ N be some user-defined parameters such that,

0 = β1 < β2 < β3.
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Let M be a sufficiently large value, i.e. an upper bound for the maximum possible value of zit for all i ∈ N
and t ∈ T . For any given i ∈ N and t ∈ T , we say that zit is small, medium, and large if zit ∈ [β1, β2 − 1],
zit ∈ [β2, β3 − 1], and zit ∈ [β3, M ], respectively (we assume that β3 ≤ M).

3. A nonlinear formulation

In this section, we develop a nonlinear formulation for the problem. We assume that all nodes are healthy
and susceptible at the beginning, i.e. t = 1. The following decision variables are used in the nonlinear
formulation:

• xit is a binary decision variable for each i ∈ N and t ∈ T . If a sick node i is selected for isolation at
time period t then xit = 1, and xit = 0 otherwise.

• zit is an integer decision variable for each i ∈ N and t ∈ T . This variable captures the value of the
total risk of the network for node i at time period t. Note that we have previously defined this notation
in Section 2 but here, we treat it as a decision variable since its value has to be determined by the
formulation.

• y
(1)
it is a binary decision variable for each i ∈ N and t ∈ T . If zit ∈ [β1, β2 − 1] then y

(1)
it = 1, and

y
(1)
it = 0 otherwise.

• y
(2)
it is a binary decision variable for each i ∈ N and t ∈ T . If zit ∈ [β2, β3 − 1] then y

(2)
it = 1, and

y
(2)
it = 0 otherwise.

• y
(3)
it is a binary decision variable for each i ∈ N and t ∈ T . If zit ∈ [β3, M ] then y

(3)
it = 1, and y

(3)
it = 0

otherwise.

Let λ ∈ N be a user-defined parameter. The objective function of the problem can be defined as follows:

min
∑
i∈N

∑
t∈T

(y(2)
it + λy

(3)
it ). (1)

The objective function simply minimizes the weighted summation of the total number of infected nodes. It
is worth mentioning that based on the reports of World Health Organization (WHO), see for instance [21],
the influenza mortality rate can be even up to around 4% of the infected nodes. So, in our computational
experiments in this paper, we simply assume that from every 26 infected nodes, one may die. Consequently,
we simply set λ = 25 for all our computational experiments. This implies that from the view point of the
objective function, the cost of one sick and dying node is equivalent to the cost of 25 recovering and sick
nodes.

Next, we introduce the constraints of the problem. For each i ∈ N , we have,∑
t∈T

xit ≤ 1. (2)

This constraint ensures that node i can be selected for isolation at most once in the entire planning horizon.
Note that after choosing a node for isolation that node does not technically exist in the network until the
end of the planning horizon since it cannot threat any other node. For each i ∈ N and t ∈ T , we have,

3∑
l=1

y
(l)
it = 1. (3)

This constraint ensures that the total risk of the network for node i at time period t, i.e. zit, is either small
or medium or large. For each i ∈ N , we have,∑

t∈T
y

(2)
it + y

(3)
it ≤ 1. (4)
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This constraint guarantees that each person can be infected at most once in the entire planning horizon.
Next, we introduce a notation to facilitate the presentation of some of the remaining constraints. For each
i ∈ N and t ∈ T , we define,

sit :=
t−tw−1∑

t′=max{t−tw−ts,1}

y
(2)
it′ +

t−tw−1∑
t′=max{t−tw−ts,1}

y
(3)
it′ .

It is not hard to see that sit ∈ {0, 1}. More specifically if node i is sick at time period t then sit = 1 and
sit = 0 otherwise. Note that node i is sick at time period t only if it has been infected at time periods
t − tw − ts, . . . , t − tw − 1. As an aside, by definition, t′ cannot be non-positive, and that is the reason that
the term ‘max{t − tw − ts, 1}’ is used in the equation.

By using the new notation, we can now introduce two of the remaining constraints. For each i ∈ N and
t ∈ T , we have,

xit ≤ sit. (5)

This constraint guarantees that node i can only be selected for isolation at time period t if it is sick at that
time period. For each t ∈ T , we have, ∑

i∈N
xit ≤ α

∑
i∈N

sit, (6)

where α ∈ [0, 1] is a user-defined parameter. In practice, isolating all sick nodes may not be possible due
to the lack of resources or even lack of detecting all sick nodes. However, decision makers may attempt to
provide more resources if they see that the number of sick nodes is increasing. One way to capture these
observations is to use Constraint (6). This constraint ensures that at time period t ∈ T , the ratio of sick
nodes selected for isolation to the total number of sick nodes cannot be more than α. Note that Constraint (6)
can also be viewed differently. We know that, in practice, not all sick nodes may be discovered immediately
(for example because the symptoms may have not been appeared), and so α can be viewed as a cap for the
ratio of the sick nodes that can be discovered in each time period. Nevertheless, one may use a different
budget constraint instead of Constraint (6).

We assume that the total risk of the network for node i ∈ N at time period t = 1 is given as a parameter,
denoted by Datai ∈ Z≥. So, for each i ∈ N , we add the following constraint,

zi1 = Datai. (7)

We previously introduced the notation cjt in Section 2 for each j ∈ N and t ∈ T . This notation simply
captures the contagious degree of node j at time period t as follows,

cjt := (1 −
t∑

t′=1

xjt′)(
min{ts,t−tw−1}∑

k=1
dky

(2)
j,t−tw−k +

min{ts,t−tw−1}∑
k=1

dky
(3)
j,t−tw−k).

Note that, by Constraint (2), we know that 1 −
∑t

t′=1xjt′ ∈ {0, 1}. However, if 1 −
∑t

t′=1xjt′ = 0 then node
j has been isolated and so it cannot spread the infection at time period t. Also, if node j is sick at time
period t, and this node is at time period k ∈ {1, . . . , ts} of its illness then it must have been infected at time
period y

(2)
j,t−tw−k. By these observations, it is not hard to see that cjt = 0 if node j has been isolated or it is

not sick, and otherwise cjt = dk if it is at time period k ∈ {1, . . . , ts} of its illness. Note that we have used
the term ‘min{ts, t − tw − 1}’ in the equation since, by definition, we must have that t − tw − k > 0. By
using this notation, for each i ∈ N and t ∈ T \ {1}, we add the following constraint,

zit = (1 −
t−1∑
t′=1

y
(2)
it′ −

t−1∑
t′=1

y
(3)
it′ )

∑
j∈N \{i}

wjitcjt. (8)
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Note that by Constraint (4), we know that (1 −
∑t−1

t′=1y
(2)
it′ −

∑t−1
t′=1y

(3)
it′ ) ∈ {0, 1}. So, if (1 −

∑t−1
t′=1y

(2)
it′ −∑t−1

t′=1y
(3)
it′ ) = 0 then node i is not healthy and susceptible at time period t, and so by definition, we must

have zit = 0. Finally, for each i ∈ N and t ∈ T \ {1}, we add the following constraints,

y
(l)
it βl ≤ zit ∀l ∈ {1, 2, 3}, (9)

zit ≤ (βl+1 − 1 − M)y(l)
it + M ∀l ∈ {1, 2}. (10)

These constraints determine whether zit is small or medium or large. Note that Constraint (3) implies that
for each i ∈ N and t ∈ T , exactly one of y

(1)
it , y

(2)
it and y

(3)
it is one. So, it is easy to see from Constraints (9)

and (10) that if y
(1)
it = 1 then zit ∈ [β1, β2 − 1]. Also, if y

(2)
it = 1 then zit ∈ [β2, β3 − 1]. Finally, if y

(3)
it = 1

then zit ∈ [β3, M ]. Note that by definition, we always have zit ≤ M .

4. Linearizing the formulation

In the proposed nonlinear formulation, the only non-linear constraint is (8). So, in this section, in order
to obtain an integer linear programming formulation, Constraint (8) is replaced with some linear constraints
after introducing some new binary decision variables. We first note that the notation cjt captures the value
of a nonlinear function for each j ∈ N and t ∈ T . So, we first linearize that function.

Let ȳ
(2)
jtk be a new binary decision variable for each j ∈ N , t ∈ {tw + k + 1, . . . , T} and k ∈ {1, . . . , ts}.

We define ȳ
(2)
jtk := (1 −

∑t
t′=1xjt′)y(2)

j,t−tw−k and this non-linear equation is equivalent to the following linear
constraints:

ȳ
(2)
jtk ≤ y

(2)
j,t−tw−k, (11)

ȳ
(2)
jtk ≤ 1 −

t∑
t′=1

xjt′ , (12)

ȳ
(2)
jtk ≥ y

(2)
j,t−tw−k −

t∑
t′=1

xjt′ . (13)

Obviously, based on these constraints, if y
(2)
j,t−tw−k = 0 or

∑t
t′=1xjt′ = 1 then ȳ

(2)
jtk = 0, and ȳ

(2)
jtk = 1

otherwise. Similarly, let ȳ
(3)
jtk be a new binary decision variable for each j ∈ N , t ∈ {tw + k + 1, . . . , T} and

k ∈ {1, . . . , ts}. We define ȳ
(3)
jtk := (1 −

∑t
t′=1xjt′)y(3)

j,t−tw−k and this non-linear equation is equivalent to the
following linear constraints:

ȳ
(3)
jtk ≤ y

(3)
j,t−tw−k, (14)

ȳ
(3)
jtk ≤ 1 −

t∑
t′=1

xjt′ , (15)

ȳ
(3)
jtk ≥ y

(3)
j,t−tw−k −

t∑
t′=1

xjt′ . (16)

In the remaining of this section, we assume that these linear constraints are added to the formulation. So,
for each j ∈ N and t ∈ T , we can now redefine the notation cjt as follows:

cjt =
min{ts,t−tw−1}∑

k=1
dkȳ

(2)
jtk +

min{ts,t−tw−1}∑
k=1

dkȳ
(3)
jtk.

Consequently, the notation cjt now captures the value of a linear function for each j ∈ N and t ∈ T . Hence,
in the remaining of this section, whenever we use the notation cjt, readers should simply replace it with the
linear function presented above.
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Next, we linearize Constraint (8). This can be done by simply replacing Constraint (8) by the following
set of linear constraints:

zit ≤
∑

j∈N \{i}

wjitcjt, (17)

zit ≤ M(1 −
t−1∑
t′=1

y
(2)
it′ −

t−1∑
t′=1

y
(3)
it′ ), (18)

zit ≥
∑

j∈N \{i}

wjitcjt − M(
t−1∑
t′=1

y
(2)
it′ +

t−1∑
t′=1

y
(3)
it′ ). (19)

Obviously, if (1 −
∑t−1

t′=1y
(2)
it′ −

∑t−1
t′=1y

(3)
it′ ) = 0 then zit = 0, and zit =

∑
j∈N \{i}wjitcjt otherwise. So, we

were able to reformulate the problem as an integer linear program. Next we make a few comments:

• The proposed formulation is written to optimally choose a subset of sick nodes for isolation. However,
this formulation can be easily modified for choosing a subset of healthy and susceptible nodes for
vaccination. In order to do so, for each i ∈ N and t ∈ T , Constraint (5) should be replaced by the
following constraint,

xit ≤ 1 − (
t∑

t′=1

y
(2)
it′ +

t∑
t′=1

y
(3)
it′ ).

Also, in this case, one may want to replace Constraint (6) by some other budget constraint.
• Let u := max{d1, . . . , dts}. Note that, in practice, based on our discussion in Section 2, we have u = 16.

So, for each i ∈ N , we define zmax
i1 := Datai and zmax

it :=
∑

j∈N \{i}wjitu for t ∈ T \ {1}. It is evident
that, by definition, M can be safely set to max{zmax

it : i ∈ N , t ∈ T }. It is also worth mentioning
that, in Constraints (18) and (19), M can be simply replaced by zmax

it .

5. An example

In this section, we present a simple example with eight nodes, i.e. N = 8. We assume that the number of
time periods in the planing horizon is twenty, i.e. T = 20. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We assume that wji1 = · · · = wjiT = Aji for each i, j ∈ N . Based on this assumption, Fig. 2 shows the level
of interaction between nodes at each time period. We also assume that tw = 3, ts = 3, d1 = 16, d2 = 2,
d3 = 1, Data1 = 16, Data2 = · · · = Data8 = 0, β1 = 0, β2 = 10, β3 = 30, and α = 0.5.

Fig. 3 illustrates the changes of the network from t = 1 to t = 13 for a non-optimal solution. We use
dashed circles for the nodes that become infected. It is worth mentioning that at t = 1, we only assume that
Node 1 becomes infected as shown in Fig. 2. When a node is in its transition state, it is shaded (with green
color). Furthermore, if a node is sick then its contagious degree is given. A node is crossed if it is isolated,
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Fig. 2. The level of interactions between nodes at each time period.

and also filled by black color if it is healthy and immune. Note that since α = 0.5, no more than 50% of
sick nodes in each time period can be selected for isolation. So, in this solution only Node 3 is selected for
isolation at t = 9. We note that this solution is not optimal since the total risk of the network for Node 5
at t = 9 is large, i.e. 32, and so this node will die. Note too that our assumption is that the penalty of any
death incident is significant, i.e. λ = 25.

Fig. 4 illustrates the changes of the network from t = 8 to t = 13 for an optimal solution. Note that the
changes of the network from t = 2 to t = 7 are as same as those of Fig. 3. In this solution, only Node 4
is selected for isolation at t = 9. It is clear that no node dies by using this solution, but all nodes are
infected.

6. Potential enhancements

In this section, we introduce a few techniques that may result in reducing the solution time of integer
linear programming solvers for the proposed formulation.

6.1. Variable fixing

Since we have assumed that all nodes are healthy and susceptible at t = 1, the first sick node can be
observed no earlier than t = tw + 2. Consequently, the following constraints can be added,

xit = 0 ∀i ∈ N , t ∈ {1, . . . , tw + 1}, (20)
y

(1)
it = 1 ∀i ∈ N , t ∈ {2, . . . , tw + 1}. (21)

Also, let N 1 := {i ∈ N : Datai ∈ [β1, β2 − 1]}, N 2 := {i ∈ N : Datai ∈ [β2, β3 − 1]} and
N 3 := {i ∈ N : Datai ∈ [β3, M ]}. So, the following constraints can be added:

y
(1)
i1 = 1 ∀i ∈ N 1, (22)

y
(2)
i1 = 1 ∀i ∈ N 2, (23)

y
(3)
i1 = 1 ∀i ∈ N 3. (24)

Let St be the set of all nodes that may become infected at time period t ∈ T in the worst case
scenario, i.e. when we do not isolate anyone. We now show that St can be constructed recursively. Obviously,
S1 = N \ N 1 and S2 = · · · = Stw+1 = ∅. For each t ∈ {tw + 2, . . . , T}, we have,

St =
ts⋃

k=1: t−tw−k≥1
{i ∈ N : ∃j ∈ St−tw−k with wjit > 0}.
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Fig. 3. A non-optimal solution in which Node 5 dies and 5 nodes are infected in total. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

More specifically, in the worst case scenario, any node that has a positive interaction with any sick node
will become infected. Note that we used the union symbol since sick nodes can be in different time periods
of their illness, i.e. {1, . . . , ts}. Now, for each t ∈ {tw + 2, . . . , T} and i ∈ N \ St, the following constraints
can be added,

zit = 0, (25)
y

(1)
it = 1. (26)
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Fig. 4. An optimal solution in which all nodes are infected.

6.2. Moderating big-M coefficients

Linear programming relaxation of an integer linear programming formulation with disjunctive sets may
be improved by moderating its big-M parameters. We first show that the value of zmax

it can be improved.
For each i ∈ N , we denote the improved value by,

ẑmax
it := Datai if t = 1, (27)

ẑmax
it :=

∑
j∈Ŝt\{i}

wjitu if t ∈ T \ {1}, (28)

where

Ŝt :=
ts⋃

k=1: t−tw−k≥1
St−tw−k

is the set of all nodes that may be sick at time period t. Similar to our discussion at the end of Section 4,
by definition, M can now be safely set to max{ẑmax

it : i ∈ N , t ∈ T }. Also, in Constraints (18) and (19), M

can be simply replaced by ẑmax
it .

6.3. Symmetry breaking

An integer linear program is symmetric if its variables can be permuted without changing the structure of
the problem [22,23]. Our proposed integer programming formulation is symmetric because of the following
reason.

Suppose that in a given feasible solution, node i ∈ N is selected to be isolated at time period
t ∈ T \ {1, . . . , tw + 2}. It is evident that if the time period t is not the first day of the illness for node i, and∑

i∈N xi,t−1 < α
∑

i∈N si,t−1, then we can isolate node i at time period t − 1 (without making the objective
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value worse) since d1 > d2 > d3. So, to avoid this, for each i ∈ N and t ∈ T \ {1, . . . , tw + 2}, we can add
the following inequalities to our model if |Ŝt−1| > 0:

xit − y
(2)
i,t−tw−1 − y

(3)
i,t−tw−1 − (1 −

α
∑

i∈N si,t−1 −
∑

i∈N xi,t−1

|Ŝt−1|
) ≤ xi,t−1. (29)

In Inequality (29), if xit − y
(2)
i,t−tw−1 − y

(3)
i,t−tw−1 > 0 then we know that the time period t is not the

first day of illness for node i. Also, if
α
∑

i∈N si,t−1−
∑

i∈N xi,t−1

|Ŝt−1|
> 0 (and |Ŝt| > 0), then we know that∑

i∈N xi,t−1 < α
∑

i∈N si,t−1. Also, note that by definition, Ŝt is the set of all nodes that may be sick at time
period t ∈ T in the worst case scenario. So, if |Ŝt| > 0 then

α
∑

i∈N si,t−1 −
∑

i∈N xi,t−1

|Ŝt−1|
∈ [0, 1].

Consequently, the inequality (29) implies that if xit − y
(2)
i,t−tw−1 − y3

i,t−tw−1 > 0 and
∑

i∈N xi,t−1 <

α
∑

i∈N si,t−1, then xi,t−1 > 0. Obviously, this cannot be true for integer feasible solutions based on
Constraint (2).

7. Computational results

To evaluate the performance of the proposed formulation and the potential enhancements, a computa-
tional study is conducted. We use Julia (JuMP) to implement the formulation and enhancements and use
GUROBI 7.0.1 as the integer linear programming solver. All computational experiments are carried out on
a Dell PowerEdge R630 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30 MB), 128 GB RAM,
and the RedHat Enterprise Linux 6.8 operating system, and using eight threads. We impose a run time limit
of 1800 s for each experiment in this computational study. It is worth mentioning that, unfortunately, in the
literature, there is no standard dataset (to the best of our knowledge). In addition to this fact, we are the
first studying minimizing the spread of influenza virus by using node removal strategy and incorporating
many practical aspects. This makes finding standard instances even harder and so, in this computational
study, random instances are generated.

We now explain how the values of β2 and β3 are determined in this computational study. Note that, by
our assumptions, β1 = 0. However, unfortunately, computing the values of β2 and β3 are not obvious. We
first explain how the value of β3 is determined. It is clear that if we set the value of β3 too high, the rate
of mortality is probably always zero even if we do not isolate anyone. On the other hand, if we set it too
low, many nodes will die. Both of these cases are not reasonable since WHO reports that for an influenza
virus the mortality rate may be up to around 4% of the total number of infected people [21]. So, in our
computational study, we simply set

β3 = ⌊
∑

i∈N
∑

t∈T ẑmax
it

N × T
⌋,

Note that ẑmax
it is the maximum total risk of the network for node i at time period t. So, we basically set

β3 to the average total risk of the network for each node at any time (by assuming that the sick nodes have
the highest contagious degree).

Similar to β3, if we set the value of β2 too high, not many nodes can become infected. On the other hand,
if we set it too low, a lot of nodes can become infected. Both of these cases are not reasonable since WHO
reports that for an influenza virus, the infection rate may be up to around 50%−60% of the total population
size [21]. So, in our computational study, we simply set

β2 = ⌊

∑
i∈N

∑
t∈T

ẑmax
it

max
{∑

j∈Ŝt\{i}
I(wjit), 1

}
N × T

⌋,
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where I(wjit) is a binary function that takes the value of one if wjit > 0, and zero otherwise. So, we basically
set β2 to the average risk for each node at any time from each other node with some interactions (by assuming
that all such nodes are sick and have the highest contagious degree). In this case, we assure that a healthy
and susceptible node i can become infected by a sick node j at time period t only if it has a (relatively)
strong interaction with the sick node.

Next, we explain how a test instance is generated in this computational study, i.e. how the values of N ,
T , α, wjit for each i, j ∈ N and t ∈ T , and Datai for each i ∈ N are generated.

In our test instances, we set T = 60 (days) and the population size N is either 60 or 70 or 200. We also
assume that α is either 0.5 or 0.75. Note that, by definition, it is expected that the spread of the infection
to be controlled faster for higher values of α.

In order to generate the values of wjit for each i, j ∈ N and t ∈ T , we first create an undirected graph,
denoted by G(V, E), as follows:

• Step 0: We first generate N nodes.
• Step 1: We randomly create a Hamiltonian path, i.e. a path that visits each node exactly once (and

contains all nodes). This step ensures that the graph is connected.
• Step 2: For each node, i ∈ N , we randomly generate a number showing its minimum degree, i.e. the

minimum number of edges incident to that node, from a discrete uniform distribution on the interval
[2, ⌊0.05 × N⌋].

• Step 3: We now explore the nodes one by one. For node i ∈ N , we add extra randomly generated edges
to the partially constructed graph (if necessary) until the minimum number of edges incident to that
node is at least equal to its corresponding minimum degree.

Graph G(V, E) shows that which nodes have interactions with node i for each i ∈ N . It is worth mentioning
that, on average, the number of edges incident to each node is about 0.08N for the graphs constructed by
this method in this paper. After creating the graph, we generate the values of wjit for all i, j ∈ N and t ∈ T
as follows. We first set wjit = 0 for each i, j ∈ N and j ∈ T . For each edge (i, j) ∈ E, we then randomly
generate two numbers from a discrete uniform distribution on the interval [1, 10] and assign them to wjit

and wijt, respectively. For the sake of simplicity, we assume that wji1 = wji2 = · · · = wjiT for all i, j ∈ N .
To avoid generating trivial instances, we assume that at the beginning (approximately) 4% of the nodes

are infected. To accomplish that, we first set all Datai = 0. We then randomly select ⌊0.04 × N⌋ nodes
and set their corresponding Datai to 160. Note that in our test instances wjit ≤ 10 for all i, j ∈ N and
j ∈ T , and also u = 16. Therefore, by construction of β2 in this computational study, we must have that
β2 ≤ 10 × 16 = 160. Consequently, by setting Datai = 160 it is guaranteed that node i becomes infected.

7.1. Analyzing the optimal solution generated by solving the model

In this section, we analyze the optimal solution generated by solving the model. The goal is to numerically
show that how an optimal solution may change if we have initially created the network of people incorrectly
in a sense that some arcs are missing. It is evident that if an optimal solution does not change significantly
(or it is still partially correct) then that would be interesting from the practical point of view. Because that
is an indication that as long as the generated network is a reasonable estimation of real network, an optimal
solution of the estimated network would be almost optimal for the real network.

So, in this section, we first create a single network with N = 60 and α = 0.75, and based on that we
generate 25 instances by just randomly selecting the nodes that are supposed to initially become infected,
i.e. we set Datai = 160 for those nodes. Note that based on our assumptions, only about 4% of the nodes
are supposed to initially become infected in this computational study. This implies that only ⌊60×0.04⌋ = 2
nodes are randomly selected to initially become infected for each instance.
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Fig. 5. Infected nodes in the optimal solution obtained by solving the proposed model for each instance when adding 0%, 10%,
and 20% extra arcs.

Fig. 6. Isolated nodes in the optimal solution obtained by solving the proposed model for each instance when adding 0%, 10%,
and 20% extra arcs.

We solve these 25 instances under three different settings that are constructed by adding 0% or 10% or
20% extra arcs with positive weights to the original network. Note that the network with 0% extra arcs is
precisely the original network, and it is a subset of the network with 10% extra arcs. Similarly, the network
with 10% extra arcs is a subset of the network with 20% extra arcs.

Fig. 5 illustrates which nodes are infected under each setting for each instance in the optimal solution
produced by solving the model. Fig. 6 illustrates which nodes are isolated under each setting for each instance
in the optimal solution produced by solving the model. The summary of statistics of these two figures are
given in Table 1 where the column ‘Ins’ shows the instance index/number, columns with label ‘#Inf’ shows
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Table 1
Statistics of the optimal solution obtained by solving the proposed model for each instance when adding 0%, 10%, and 20% extra arcs.

Ins 0% 10% 20% Common infected nodes Common isolated nodes

#Inf #Iso #Inf #Iso #Inf #Iso (0,10) (0,20) (10,20) (0,10) (0,20) (10,20)

1 13 9 11 10 11 9 0.46 0.46 1.00 0.44 0.33 0.90
2 14 12 18 12 18 14 0.50 0.57 0.56 0.42 0.50 0.50
3 15 10 16 11 15 14 0.47 0.47 0.75 0.60 0.50 0.64
4 13 10 8 7 8 6 0.31 0.31 1.00 0.10 0.20 0.71
5 14 10 12 9 13 12 0.64 0.57 0.92 0.60 0.70 0.89
6 11 8 12 10 12 10 1.00 0.91 0.92 1.00 0.88 0.90
7 8 7 9 6 11 10 1.00 0.88 0.89 0.71 0.71 0.83
8 12 10 14 12 18 14 0.33 0.67 0.29 0.20 0.50 0.17
9 12 10 13 11 11 8 0.83 0.33 0.46 0.80 0.00 0.18

10 12 12 13 12 17 15 0.75 0.25 0.15 0.75 0.17 0.08
11 12 7 4 2 4 2 0.17 0.17 1.00 0.00 0.00 1.00
12 8 6 8 6 11 8 0.88 0.88 1.00 0.83 0.83 1.00
13 13 10 14 11 15 12 1.00 0.38 0.36 1.00 0.30 0.27
14 12 10 9 6 11 9 0.42 0.50 0.67 0.30 0.40 0.67
15 2 2 2 2 2 1 1.00 1.00 1.00 1.00 0.50 0.50
16 11 9 12 7 12 9 1.00 0.91 0.92 0.78 0.89 0.86
17 6 5 6 5 6 4 0.83 0.83 1.00 0.80 0.60 0.80
18 16 11 10 7 10 10 0.31 0.31 1.00 0.27 0.27 1.00
19 12 11 17 16 17 14 0.92 0.25 0.29 0.91 0.18 0.25
20 11 9 11 8 12 8 0.91 0.91 1.00 0.78 0.67 0.88
21 12 10 15 13 10 9 0.42 0.50 0.53 0.30 0.50 0.46
22 9 8 9 7 10 7 0.89 0.89 1.00 0.88 0.75 0.86
23 16 13 13 11 13 13 0.38 0.38 1.00 0.31 0.38 1.00
24 10 9 11 10 12 10 1.00 1.00 1.00 1.00 0.89 0.90
25 12 8 15 12 16 11 0.25 0.25 0.40 0.00 0.13 0.33

Avg 11.44 9.04 11.28 8.92 11.80 9.56 0.67 0.58 0.76 0.59 0.47 0.66

the number of infected nodes in the generated optimal solution, columns with label ‘#Iso’ shows the number
of isolated nodes in the generated optimal solution, and finally columns with label ‘(a,b)’ show the ratio
of the number of common infected/isolated nodes in the optimal solutions generated for the networks with
a% and b% extra arcs to the number of infected/isolated nodes in the optimal solution generated for the
network with a% extra arcs.

We observe that the number of infected and/or isolated nodes does not change much as we increase the
number of arcs. This can be justified since more arcs imply that more nodes may become infected at early
time periods in the planing horizon. However, since the cap for the number of sick nodes that can be isolated
is proportional to the total number of sick nodes, we were able to find a solution that does not change the
number of infected and/or isolated nodes significantly on average. Observe too that, on average, more than
50% of isolated or infected nodes have remained the same in the optimal solution by increasing the number
of arcs. Specifically, by comparing the optimal solutions produced by solving the networks with 0% and 10%
extra arcs, we see that the ratio of common infected nodes is 0.67 and the ratio of common isolated nodes is
0.59 on average. These ratios for the networks with 0% and 20% extra arcs are 0.58 and 0.47, respectively.
Also, for the networks with 10% and 20% extra arcs, the ratios are 0.76 and 0.66, respectively.

7.2. Analyzing the overall performance of the model

In this section, we analyze the overall performance of the formulation and enhancements techniques. So,
almost all our experiments are conducted under four different settings in this section:

• E0: No potential enhancements are employed.
• E1: All variable fixing techniques are employed.
• E2: All variable fixing, and moderating big-M coefficients techniques are employed.
• E3: All variable fixing, moderating big-M coefficients, and symmetry breaking techniques are

employed.
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Table 2
Overall performance of the model under setting E0 for a single network with N = 60.

Ins α = 0.5 α = 0.75

T (s) %Gap OV #Inf #D #Iso T (s) %Gap OV #Inf #D #Iso

1 46 0 21 21 0 14 45 0 13 13 0 9
2 1800 4 28 28 0 25 85 0 14 14 0 12
3 63 0 23 23 0 15 58 0 15 15 0 10
4 122 0 22 22 0 20 68 0 13 13 0 10
5 575 0 25 25 0 19 73 0 14 14 0 10
6 98 0 22 22 0 18 43 0 11 11 0 8
7 164 0 25 25 0 22 30 0 8 8 0 7
8 89 0 21 21 0 18 44 0 12 12 0 10
9 97 0 24 24 0 19 46 0 12 12 0 10

10 1800 79 47 47 0 36 48 0 12 12 0 12
11 334 0 28 28 0 19 55 0 12 12 0 7
12 595 0 23 23 0 14 20 0 8 8 0 6
13 91 0 27 27 0 22 66 0 13 13 0 10
14 113 0 21 21 0 18 43 0 12 12 0 10
15 13 0 2 2 0 2 11 0 2 2 0 2
16 129 0 25 25 0 19 40 0 11 11 0 9
17 86 0 25 25 0 19 16 0 6 6 0 5
18 365 0 22 22 0 18 415 0 16 16 0 11
19 124 0 22 22 0 17 65 0 12 12 0 11
20 88 0 25 25 0 16 45 0 11 11 0 9
21 98 0 23 23 0 20 47 0 12 12 0 10
22 62 0 22 22 0 16 17 0 9 9 0 8
23 105 0 27 27 0 22 121 0 16 16 0 13
24 260 0 23 23 0 15 38 0 10 10 0 9
25 534 0 22 22 0 19 46 0 12 12 0 8

Avg 314.0 3.3 23.8 23.8 0.0 18.5 63.5 0.0 11.4 11.4 0.0 9.0

To compare the performance of the proposed formulation under these four different settings, we have
used performance profiling. A performance profile is a graph with along the horizontal axis the ratio of the
run time (or optimality gap) of an instance to the minimum run time (or minimum optimality gap) for that
instance among all methods and along the vertical axis the fraction of instances that achieved a ratio that
is less than or equal to the ratio on the horizontal axis [24]. This implies that values in the upper left-hand
corner of the graph indicate the best performance. To deal with the value of zero in the run time or the
optimality gap, we have added a small positive value, i.e. 0.01, to all numbers while drawing performance
profiles in our computational study.

7.2.1. A single network
In this section, only two networks are created, one has N = 60 and the other has N = 70. In total, we

generate 50 instances, 25 instances for the network with N = 60 and 25 instances for the network with
N = 70, by just randomly selecting the nodes that are supposed to initially become infected, i.e. their
corresponding Datai = 160. The instances of the network with N = 60 are the same as the ones used in
Section 7.1.

The performance of the proposed formulation with no enhancement (E0), for N = 60 and N = 70, are
given in Tables 2 and 3, respectively. In these tables, ‘T(sec.)’ shows the run time in seconds; ‘%Gap’ shows
the optimality gap obtained; OV shows the best objective value obtained, and finally ‘#D’ shows the number
of dead nodes.

Based on the information given in Tables 2 and 3, we observe that instances with α = 0.75 are significantly
easier than instances with α = 0.5. More precisely, when N = 60 and α = 0.5, 23 out of 25 instances are
solved to optimality within the time limit. However, when N = 60 and α = 0.75, all instances are solved to
optimality within the time limit. Similarly, when N = 70 and α = 0.5, 15 out of 25 instances are solved to
optimality within the time limit. However, when N = 70 and α = 0.75, 20 out of 25 instances are solved
to optimality within the time limit. Also, we observe that instances with N = 70 are significantly harder
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Table 3
Overall performance of the model under setting E0 for a single network with N = 70.

Ins α = 0.5 α = 0.75

T (s) %Gap OV #Inf #D #Iso T (s) %Gap OV #Inf #D #Iso

1 1800 42 31 31 0 22 71 0 13 13 0 12
2 1800 74 42 42 0 39 47 0 12 12 0 10
3 1800 29 35 35 0 33 54 0 15 15 0 13
4 1318 0 30 30 0 18 257 0 12 12 0 10
5 805 0 25 25 0 22 51 0 11 11 0 9
6 1800 45 22 22 0 16 20 0 7 7 0 4
7 618 0 23 23 0 19 1800 45 20 20 0 17
8 1800 41 32 32 0 24 93 0 14 14 0 10
9 463 0 26 26 0 21 78 0 17 17 0 13

10 1800 6 32 32 0 26 19 0 7 7 0 4
11 1800 55 44 44 0 38 73 0 15 15 0 12
12 1328 0 26 26 0 14 1800 8 13 13 0 9
13 640 0 22 22 0 15 81 0 16 16 0 16
14 576 0 31 31 0 24 60 0 12 12 0 11
15 555 0 32 32 0 28 169 0 15 15 0 13
16 1394 0 27 27 0 24 80 0 16 16 0 13
17 248 0 29 29 0 24 1800 25 20 20 0 16
18 1800 61 46 46 0 35 57 0 14 14 0 12
19 1800 38 39 39 0 32 59 0 11 11 0 11
20 229 0 26 26 0 24 77 0 12 12 0 11
21 535 0 29 29 0 29 544 0 15 15 0 14
22 1800 3 32 32 0 28 1800 50 16 16 0 11
23 1075 0 26 26 0 22 1800 36 14 14 0 9
24 1381 0 26 26 0 21 79 0 16 16 0 13
25 658 0 23 23 0 21 466 0 16 16 0 13

Avg 1193.0 15.7 30.2 30.2 0.0 24.8 457.4 6.5 14.0 14.0 0.0 11.4

Fig. 7. Performance profile of the model under different settings for a single network with N = 60 and α = 0.5.

than instances with N = 60. For example, when α = 0.5, on average, the optimality gap of instances with
N = 70 is more than the optimality gap of instances with N = 60 by a factor of around 5.

The performance profile of E0, E1, E2, and E3 when α = 0.5 for N = 60 and N = 70 are given in Figs. 7
and 8, respectively. Note that in the performance profile related to the optimality gap, the run time does
not matter and only the optimality gap produced within the time limit is important. On the contrary, in
the performance profile related to the run time, only solution time obtained within the imposed time limit
is important. Observe that E0 and E2 are competitive in terms of the run time for the network with N = 60
and perform better than the others. However, in terms of the optimality gap, it seems that E3 performs
better than the others. For the network with N = 70, we see that E1 and E2 are competitive for both the
run time and the optimality gap. Note that the lines in Fig. 7a are flat since we have cut off the horizontal
axis from the value of 10. However, if we do not do that then all the lines will eventually increase until they
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Fig. 8. Performance profile of the model under different settings for a single network with N = 70 and α = 0.5.

reach to the value of 1 on the vertical axis. In that case, the maximum value on the horizontal axis can be
10,001 since, in the worst case scenario, one method may have reached to the optimality gap of 0% and one
other method may have the optimality gap of 100%. Hence, since for generating the graph, we revise the
optimality gaps by adding 0.01 to them, in the worst case scenario, we have that 100.01

0.01 = 10,001.
The performance profile of E0, E1, E2, and E3 when α = 0.75 for N = 60 and N = 70 are given in

Figs. 9 and 10, respectively. Observe that for the network with N = 60, E2 has the best performance. For
the network with N = 70, in terms of the optimality gap E3 is better, but in terms of the run time E1 is
dominating.

So, in conclusion, E1 and E2 seem to be competitive and they are overall the best choices. We observe
that E3 has some advantageous in some cases, but overall it is not as good as E1 and E2. This is probably
because the symmetry breaking is not effective. To show this, we combine the instances with N = 60,
N = 70, α = 0.5 and α = 0.75 together. Let E4 denote the performance of the model when all enhancements
but symmetry breaking are disactivated. The performance profile of E0 and E4 on the combined instances
are shown in Fig. 11. We see that E0 dominates E4 in terms of both the optimality gap and the run time.

7.2.2. Different networks
In this section, we randomly generate 25 networks with N = 60 and 25 networks with N = 70. Again,

for each of these 50 instances, we randomly select the nodes that are supposed to initially become infected.
In this section, we assume that α = 0.75.

The performance of the proposed formulation with no enhancement (E0) on the generated instances is
shown in Table 4. Not surprisingly, we observe that on average, the run time of instances with N = 70 is
more than the run time of the instances with N = 60 by a factor of around 3.

The performance profile of E0, E1, E2, and E3 for N = 60 and N = 70 are given in Figs. 12 and 13,
respectively. Again, we observe that E1 and E2 are competitive. Specifically, for the instances with N = 60,
E1 is slightly better but for the instances with N = 70, E2 is slightly better.

7.2.3. Large instances
In this section, 10 large different networks with N = 200 are generated. For each of these 10 instances,

we randomly select ⌊200 × 0.04⌋ = 8 nodes to become initially infected. In this section, we again assume
that α = 0.75.

The performance of the proposed formulation with no enhancement (E0) on the generated instances is
shown in Table 5. Not surprisingly, we observe that the optimality gap is no less than 80% for each instance
since the size of the test instances is large.
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Table 4
Overall performance of the model under setting E0 with α = 0.75.

Ins N = 60 N = 70

T (s) %Gap OV #Inf #D #Iso T (s) %Gap OV #Inf #D #Iso

1 37 0 11 11 0 9 135 0 13 13 0 8
2 45 0 11 11 0 10 155 0 19 19 0 16
3 35 0 10 10 0 10 68 0 16 16 0 13
4 77 0 15 15 0 15 137 0 21 21 0 19
5 74 0 16 16 0 11 263 0 13 13 0 11
6 122 0 16 16 0 13 1800 23 13 13 0 10
7 63 0 13 13 0 11 101 0 19 19 0 16
8 29 0 10 10 0 7 13 0 5 5 0 4
9 16 0 9 9 0 8 53 0 17 17 0 14

10 1800 8 12 12 0 11 105 0 18 18 0 15
11 14 0 8 8 0 4 22 0 9 9 0 7
12 168 0 14 14 0 11 1800 48 21 21 0 20
13 54 0 15 15 0 15 149 0 21 21 0 20
14 46 0 10 10 0 8 93 0 16 16 0 16
15 30 0 11 11 0 8 1800 80 44 44 0 44
16 59 0 13 13 0 12 145 0 12 12 0 12
17 36 0 11 11 0 10 18 0 4 4 0 3
18 70 0 14 14 0 13 254 0 13 13 0 12
19 41 0 12 12 0 9 77 0 16 16 0 15
20 30 0 12 12 0 10 193 0 18 18 0 18
21 274 0 19 19 0 14 92 0 17 17 0 13
22 209 0 14 14 0 9 967 0 17 17 0 14
23 62 0 15 15 0 14 212 0 12 12 0 10
24 15 0 9 9 0 8 1800 68 34 34 0 32
25 18 0 6 6 0 4 65 0 14 14 0 11

Avg 137.0 0.3 12.2 12.2 0.0 10.2 420.7 8.7 16.9 16.9 0.0 14.9

Fig. 9. Performance profile of the model under different settings for a single network with N = 60 and α = 0.75.

The performance profile of E0, E1, E2, and E3 for the instances with N = 200 are given in Fig. 14.
Note that since no instance is solved to optimality within the time limit, only the performance profile of
the optimality gap is given. Observe that E1 is performing better than others, but its superiority is almost
negligible.

Overall, we observe that by the proposed formulation and its enhancement techniques, solving instances
with 200 nodes (or larger) seems to be quite challenging (if not impossible). This is mainly because the
optimality gap is around 80% for each instance on average (even under E1). So, the main question is now
how the solution time can be improved even further?

Let F be the formulation presented in Section 4. Below, we give two alternative integer linear programming
formulations and conduct an experiment where they reach better optimality gaps for the same time limit.
We define F1 as F after removing Constraints (11), (12), (14), (15), (17), and (18). Also, we define F2 as
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Fig. 10. Performance profile of the model under different settings for a single network with N = 70 and α = 0.75.

Fig. 11. Performance profile of the model under settings E0 and E4 for a single network with N ∈ {60, 70} and α ∈ {0.5, 0.75}.

Fig. 12. Performance profile of the model under different settings for different networks with N = 60 and α = 0.75.

F1 after replacing Constraints (13) and (16) by

ȳjtk ≥ y
(2)
j,t−tw−k + y

(3)
j,t−tw−k −

t∑
t′=1

xjt′
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Fig. 13. Performance profile of the model under different settings for different networks with N = 70 and α = 0.75.

Fig. 14. Performance profile of the model under different settings for instances with N = 200 and α = 0.75.

Table 5
Overall performance of the model under setting E0 with N = 200
and α = 0.75.

Ins T (s) %Gap OV #Inf #D #Iso

1 1800 80 158 158 0 154
2 1800 81 176 176 0 176
3 1800 81 160 160 0 159
4 1800 85 200 200 0 148
5 1800 87 224 199 1 8
6 1800 81 166 166 0 160
7 1800 82 200 200 0 193
8 1800 82 157 157 0 125
9 1800 83 174 174 0 173

10 1800 84 173 173 0 171

Avg 1800.0 82.5 178.8 176.3 0.1 146.7

for each j ∈ N , t ∈ {tw + k + 1, . . . , T} and k ∈ {1, . . . , ts} where ȳjtk ∈ {0, 1} is a binary variable. Note
that by doing so, the previous definition of cjt (in Section 4) can be simplified to

cjt =
min{ts,t−tw−1}∑

k=1
dkȳjtk

for each j ∈ N and t ∈ T .
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Fig. 15. Optimality gap of different models under setting E1 for instances with N = 200 and α = 0.75.

Proposition 1. F1 and F2 are correct formulations.

Proof. We first prove the correctness of F1. Note that Constraints (11), (12), (14), (15), (17), and (18)
are generated as a result of linearizing Constraint (8), and they all simply impose upper bounds for their
corresponding variables. For each i ∈ N and t ∈ T \{1}, Constraint (8) captures the value of zit which is the
total risk of the network for node i at time period t. Note that the objective function of the proposed integer
linear program attempts to minimize the (positive) weighted summation of the total number of infected
nodes. This implies that the proposed integer linear program tends to minimizes zit because this variable
indirectly shows whether node i is infected or not at time period t. So, Constraints (11), (12), (14), (15),
(17), and (18) are all unnecessary for an optimal solution.

We now prove the correctness of F2. Again note that Constraints (13) and (16) are generated as a result
of linearizing Constraint (8). Specifically, they are defined to linearize cjt for j ∈ N and t ∈ T :

cjt = (1 −
t∑

t′=1

xjt′)(
min{ts,t−tw−1}∑

k=1
dky

(2)
j,t−tw−k +

min{ts,t−tw−1}∑
k=1

dky
(3)
j,t−tw−k),

which is equivalent to:

cjt = (1 −
t∑

t′=1

xjt′)
min{ts,t−tw−1}∑

k=1
dk(y(2)

j,t−tw−k + y
(3)
j,t−tw−k).

So, we could simply linearize (1 −
∑t

t′=1xjt′)(y(2)
j,t−tw−k + y

(3)
j,t−tw−k) rather than (1 −

∑t
t′=1xjt′)y(2)

j,t−tw−k

and (1 −
∑t

t′=1xjt′)y(3)
j,t−tw−k individually. In other words, let ȳjtk := (1 −

∑t
t′=1xjt′)(y(2)

j,t−tw−k + y
(3)
j,t−tw−k).

By Constraint (4), we know that
∑

t∈T y
(2)
jt + y

(3)
jt ≤ 1. Also, note that Constraints (11), (12), (14), (15),

(17), and (18) can be removed. So, the result immediately follows. □

To show the strength of the new formulations, we compare the optimality gap obtained by F , F1, and
F2 under setting E1 for instances with N = 200 and α = 0.75 within 1800 s in Fig. 15. Observe that the
optimality gap is reduced from around 80% on average for F to around 6.3% on average for F1 and to
around 4.7% on average for F2. In fact more than half of the instances are solved to optimality for F2 within
the imposed time limit.

So, observe that even (many) large instances with 200 nodes can be solved to optimality (within half an
hour) using the new proposed integer linear programs. It is worth mentioning that a recent study conducted
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by Nandi and Medal [3] also solves similar size instances to optimality within two hours. Our proposed
formulation is significantly different from the one given by Nandi and Medal [3]. In our case, the removal
is produced on nodes instead of links. We also take into account many practical aspects of the spread of
influenza virus infections that none of the previous studies considered them. However, this computational
study shows that even with such differences, similar size instances can still be solved.

8. Final remarks

We studied the spread of influenza virus infections on (dynamic) networks of people. We presented an
integer linear programming formulation to minimize the spread of infections by removing nodes which can
be interpreted as isolating infected nodes (or vaccinating the healthy and susceptible nodes). The novelty
of the formulation comes from the fact that it incorporates many practical aspects of the spread of an
influenza virus infection. Moreover, several potential enhancement techniques for improving the performance
of the formulation were introduced and tested via a computational study. Specifically, it was shown that
employing variable fixing and moderating big-M coefficients techniques can reduce the run time and/or
the optimality gap. It is worth mentioning that the proposed formulation is a deterministic formulation.
However, some of the parameters of the formulation are naturally uncertain, for example tw and ts, in
practice. Hence incorporating some levels of uncertainty for such parameters require further research. In
other words, applying stochastic or robust optimization techniques can be a future research direction for
this study. Also, our proposed formulation can be used for either isolation or vaccination and not both. So,
modifying the formulation to include both of them requires further research. Finally, developing effective
custom-built heuristic/exact solvers for the problem is another future research direction.
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