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1 | INTRODUCTION

A first experience with the power of graphics to initiate and facilitate a discussion came for one of the authors
(Anderson-Cook), when presenting a summary of a new approach for predicting the reliability of a complex system to
a group of reliability engineers and managers. The goal of the analysis was to determine if it was appropriate to certify
the units in the stockpile (or population) as adequately reliable to remain in the field for additional 3 years (36 months).
Hence, extrapolation to predict the reliability beyond the currently observed ages was intrinsic to the problem, and the
summary plot provided to the decision team included the estimated reliability curve with associated uncertainty interval
for each age, drawn from age 0 to 12 years (144 months) beyond the age of the oldest unit. Figure 1A shows a sample of
the plot with the vertical dashed line indicating the current age of the oldest unit. Anderson-Cook had naively assumed
that the part of the presentation that would lead to vigorous discussion was the detailed description of underlying statis-
tics of the methods that used multiple sources of data, instead of just full system tests."> However, the simple reliability
plot ignited a firestorm of discussion. Why? Because Anderson-Cook had extrapolated the estimated curve beyond the
age of the oldest unit to include the ages about which a decision had to be made. Historically, the plots had just shown
the reliability curve in the observed age range of the units, and each member of the team has individually and privately
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FIGURE1 A, The individual reliability (IndRel) summary as a function of the age of the unit; B, The population reliability (PopRel)
summary as a function of the time from present

extrapolated the curves to the decision point in their heads. With one plot, the discussion was changed, from individuals
having their own private view of the decision space to one where the crux of the decision was now out in the open and avail-
able for direct discussion. Some team members thought the curve was too optimistic, whereas others thought it was too
pessimistic. However, being presented with a concrete visualization of the analysis that directly connected to the decision
at hand sharpened the focus of the discussions and positively changed the nature of the decision making. This seemingly
obvious choice to show the quantity on which the decision will be made, namely, for this example to match the plotted
age range to show the extrapolated reliability prediction, is the first of multiple strategies that are presented in this paper.

This example illustrates the use of graphics to effectively convey statistical analysis results and facilitate communi-
cation and discussion for making data-driven decisions. It is worth noting that graphics can play a broader role in the
entire quantitative problem solving process, from the exploration stage to the formal analysis and to the final stage of
communicating results and making decisions. The power of graphical summaries in exploratory data analysis and formal
statistical analysis has been broadly discussed and emphasized through various applications. This paper focuses on the
use of graphics in the decision-making process and how having the right graphics can support making transparent and
informed evidence-based decisions.

In the remainder of this paper, we present 5 examples from our experiences with facilitating discussion and decision
making that illustrate some strategies for making effective use of graphics with this goal. Rather than focusing on graphics
that are persuasive toward a particular conclusion or exploratory to discover new aspects of a set of data, in this paper, we
highlight approaches for comparing alternatives to encourage discussion and incorporating subjective prioritizations that
different decision makers bring to the process. The goal is to use carefully designed graphical tools to support informed
discussion on considering alternatives and helping reach consensus on a more justifiable decision. The remainder of
the introduction connects the roles of statisticians as facilitators to the broader discussion of these graphical strategies
and describes the define-measure-reduce-combine-select (DMRCS) process® for decision making. Section 2 revisits the
reliability example described to highlight other aspects of the decision. Section 3 illustrates a design selection example
where graphical summaries help examine multiple aspects of the design performance for comparing several competing
choices to justify a final decision. Section 4 examines approaches to choosing an optimal designed experiment when there
are competing objectives. Section 5 highlights the roles of variability and uncertainty in the decision-making process
and how graphical summaries can consider these aspects when optimizing multiple responses. Section 6 considers how
to allocate resources as part of stockpile prioritization where multiple diverse aspects need to be balanced. Finally, the
conclusions in Section 7 recap the general strategies outlined and provide some suggestions for implementing these ideas
for other applications.

In many business, industries, and government settings, statisticians are finding opportunities to participate in
decision-making teams. Anderson-Cook* discusses several keys to success when contributing statistical thinking and
uncertainty quantification to the process. These suggestions include translating the problem into a discussion of trade-offs
based on quantitative summaries of the objectives, streamlining the choices through elimination of noncompetitors, and
providing visualization tools to facilitate discussion. It is this third idea that we wish to expand upon with some concrete
suggestions for how to think about which graphics are beneficial and how to present them.

The ideas in this paper complement the DMRCS structured decision-making framework suggested in the work of
Anderson-Cook and Lu.? This framework focuses on translating an often vaguely defined set of aspects of a decision and
transforming them into specific measurable metrics, which can then be compared and contrasted across a range of differ-
ent prioritizations from different members of the decision-making team. The process culminates with a final decision that
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is understood in the context of the alternatives. Similar in spirit to the 6 sigma define-measure-analyze-improve-control
(DMAIC) (see the work of Hoerl and Snee®P-128137)  the decision-making counterpart DMRCS provides a structure for
selecting the best-suited choice based on several likely competing objectives. The Define step focuses on clarifying the
parameters of the decision to be made, characteristics to consider, and the space of possible solutions. As with DMAIC,
this step is critical for framing the decision to ensure a relevant solution is found. It is important to think broadly about
diverse aspects relevant to the decision and represent all key facets with an appropriate metric.

Another step that overlaps with the DMAIC process is the Measure step, which emphasizes having high-quality data
on which to base the decision. The quantitative criteria should be precisely and accurately measured to allow fair and
consistent comparisons between potential solutions. The goal of the Reduce step is to simplify and streamline. First, opti-
mizing based on too many criteria often leads to mediocre results individually, as the trade-offs between criteria typically
increase with the addition of more criteria. The second type of reduction to consider is eliminating noncontending solu-
tions from further consideration with the construction of a Pareto front (PF).® Understanding the highlighted choices is
an opportunity for graphical summaries.

The Combine step looks at information from different criteria, often measured on different scales simultaneously, and
considers graphical methods for representing different facets of the decision. Here, the decision makers' priorities and how
much they value good performance on different criteria are essential to identifying the best and most relevant solutions.
Finally, the Select step identifies the available solution best suited to the decision makers’ objectives and allows com-
parisons between close contenders. At the conclusion of the process, the decision-making team should have a preferred
choice and be able to articulate why it is best given their priorities.

As a reviewer pointed out, the DMRCS decision-making process is not completely independent from the DMAIC
problem-solving model but could be a useful complement when used for guiding an improved decision. In the DMAIC
context, decision making is involved when solutions are developed for dealing with the root causes identified from the
“Analyze” step, which are then tested for validity in the “Improve” step. The DMRCS model can add structure and rigor to
the often complicated and unstructured decision-making process and provides a better decision than what is often used
in the DMAIC process.

Table 1 contains a list of 15 recommendations about how to conceptualize, construct, and use graphical methods to assist
with the structured decision-making process. We have organized the list into categories that include general suggestions
and for each of the steps in the DMRCS process. The individual suggestions are highlighted in one or more of the examples
throughout the rest of this paper. We now consider the examples and use them as vehicles for outlining strategies to use
graphics to help facilitate discussion and decision making.

TABLE1 The general and define-measure-reduce-combine-select principles for improved discussion
and decision making

General

Gl Use a process to find common ground

G2  Clarify the difference between “right and wrong” and “choosing differently based on priorities”
Define

D1 Define and use an appropriate summary that directly connects to the decision

D2  Build the decision space to include diverse alternatives

D3  Push the boundaries on assumptions

D4 Incorporate cost into the comparisons of alternatives
Measure
M1 For realistic decision making, it is important to provide uncertainty quantification to inform the
decision makers about the uncertainty and potential risks associated with a specific decision
M2 Devise analysis summaries that reduce the uncertainty can improve the decision-making process
Reduce
R1 Itis helpful to take strategic steps to reduce the number of choices on which to do a detailed
comparison to a manageable number
Combine
C1 Allow common visualization and discussion about results, instead of keeping subjective
elements of the decision unshared
C2  When comparing the smaller set of contenders, choose plots that highlight the impact of
subjective choices to facilitate discussion
C3  Think globally and locally
C4  Consider dynamic graphics when dimensionality of problem suggests it
Select
S1  Create or use a graphical summary that appropriately captures the needed level of detail
S2  Include graphics to formalize conclusions
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2 | RELIABILITY ASSESSMENT FOR POPULATIONS OF UNITS

In the introduction, an initial description of the reliability assessment decision was outlined. We now provide some addi-
tional details and how graphical tools helped to facilitate an improved final outcome. The reliability of the individual units
can be assessed most directly from full system tests, which are both destructive and expensive. As a result, using exclu-
sively these data often leads to a wide uncertainty interval about the estimated or projected reliability (if a prediction into
the future is needed). To help reduce this uncertainty, several strategies were used, including using results from nonde-
structive component and subsystem level tests."? In addition, the analysis incorporated subject matter expertise leveraged
from design specifications and available data from sister systems sharing common characteristics and components. This
information was incorporated into the analysis through the use of informative priors with a Bayesian analysis.’

The plot of the estimated reliability of individual units projected to the age range of interest in Figure 1A was key to
initiating discussion and helping the decision-making team focus on data that was directly relevant to the decision. While
an improvement over previous figures that did not include all of the age range of interest, this was still not the right
summary for the decision. After further discussion, it became clear that there was still a gap between the information in
Figure 1A and what was needed for the final decision. The stockpile was comprised of units of various ages, since they
were purchased and added to the population over multiple years. The standard that dictated the certification process
was based on a lower uncertainty bound for the overall reliability of the population. Hence, while helpful to understand
the pattern of reliability changing as a function of age, the actual question of interest required a different summary. Lu
and Anderson-Cook?® define the Population Reliability (PopRel) summary that calculates the probability of a randomly
selected unit from the population working successfully at a current or future time point. In comparison with the individual
reliability (IndRel) summary as a function of age of the units shown in Figure 1A, the PopRel summary as a function of
the time from present is shown in Figure 1B, and this is a direct match to the requirements for the decision regarding the
stockpile of the units. Hence, to make the best possible decision, a number of factors contributed to the decision-making
process.

D1. Define and use an appropriate summary that directly connects to the decision (here, using PopRel, instead of looking
at the IndRel). Seemingly obvious, it is surprisingly common to try to use a convenient and yet indirect summary
for decision making, when with a bit of additional effort, a direct summary can be constructed.

M1. For realistic decision making, it is important to provide uncertainty quantification to inform the decision mak-
ers about the uncertainty and potential risks associated with a specific decision. The uncertainty bounds based on
the Bayesian credible interval are effective and informative to show the range of possible performance consistent
with observed data, instead of just the average performance (point estimate based on the mean). This allows an
appropriate and realistic decision based on what is actually known about the reliability.

M2. Devise analysis summaries that reduce the uncertainty can improve the decision-making process. It is helpful to
include supplementary but relevant data to better inform the decision (here, the combined analysis using component
and subsystem level data improved the analysis and made the credible intervals narrower). Use whatever is avail-
able and relevant to get as much information included in the decision-making process. In addition, when possible
incorporate subject matter expertise (here, a Bayesian analysis was used to allow for external sources of information
to be included through the use of informative priors). Digging more deeply to include additional information allows
for more complete assessment and deepens the buy-in from the decision-making team.

C1. Allow common visualization and discussion about results, instead of keeping subjective elements of the decision
unshared (here, extrapolating reliability results to include the time point for the decision). When the subjective
component and its impact are not available for examination and discussion, the decision-making team is likely to
struggle to understand each other's perceptions and positions.

3 | SELECTING AN IDEAL DESIGNED EXPERIMENT BASED ON MULTIPLE
CHARACTERISTICS

In this section, we consider a commonly occurring scenario of how to select the best designed experiment for a particular
set of objectives. Anderson-Cook and Lu®*® considered this multifaceted decision for a scenario when they were asked to
suggest a 14-run design in a design space where relatively little was known about the underlying relationship between
input factors and the response. Despite the original request for the statisticians to provide the design, we encourage
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providing several carefully selected alternatives that help to facilitate a discussion about what the goals are for the
experiment and which of several alternatives makes the most sense to best match these goals.

For this example,’ the original request from the engineer was to suggest a 14-run design for a screening experiment
involving 7 factors with a primary goal of estimating the main effects model with some concerns about potential active
2-factor interactions. However, 4 potential designs were examined in the end including a 14-run D-optimal design (14r),
the same design with a center run added (15rCR), a 15 run definitive screening design'' (15DSD), and a 16-run D-optimal
design (16r). An initial reaction to these choices might be that the statisticians were not very good at following instructions,
as all but one of the designs do not match the original request. While this is true, an important aspect of good decision
making is to probe the edges of the assumptions. In this case, the cost of the experiment (as defined by the number of runs
available to stay within budget) can be examined. Understanding what a slightly larger (or smaller) design can offer can
spawn discussion about whether the requested design size is adequate for the intended purpose and how that size was
originally determined. If the budget is truly fixed with no latitude for change, then it can still be beneficial to understand
its performance, both good and bad, in the context of alternatives. Since designed experiments are often run as part of a
larger sequence of exploration, finding the appropriate size should be examined in this context, ie, can we learn enough
from this experiment to be well-positioned for the next planned step? Or would a smaller design allow enough information
to be learned while saving more resources to be available at later stages in the sequence?

Considering alternatives frames the choices in a way that encourages questioning. For example, if you are shopping for
dish soap, the process looks very different if you are faced with near-empty shelves compared with having multiple choices.
If there is only a single choice, mentally, you are trying to justify that this choice could work. With several possibilities,
different alternatives are weighted and comparisons between the choices are natural (Is the extra cost worth it for name
brand? How big a bottle is needed? What scent do I really want?). For the dish soap, it is likely that there are not too many
bad choices, and the stakes are low. However, for a designed experiment, there likely are many quite poor choices that can
impact the quality of results and path forward. Therefore, considering different options is important, but what aspects of
the design should be compared to make a good choice?

A clear sense of what the designed experiment is trying to accomplish is important. For this experiment, the primary
goal was to gain understanding about which of the 7 inputs factors and their interactions are most influential on the
response. Hence, good estimation of the model parameters was paramount. Both the ability to formally test if different
sized effects are statistically significant, and avoiding ambiguity from confounding with other parameters are important.
Figure 2 shows several graphical summaries that compare multiple design choices based on relevant criteria. Figure 2A
shows the power™? of each design for all of the main effects as a function of how large the true effect is relative to the
natural variability (o) of the experiment. For example, if an effect has size 0.5¢, then the 15DSD has the worst power,
with about a 30% chance of finding it statistically significant, whereas the 16r design has about a 45% chance. Figure 2C
shows the map of correlations between different model parameters (main effects and 2-factor interactions). Ideally, the
correlation would be zero between all terms (denoted in blue), but for small designs that are looking to estimate a larger
model, this can often not be achieved. In these cases, it is of interest to examine how large the correlations are and between
which terms in the model (confounding effects). As can be seen in the figure, the designs have quite different correlation
patterns, ranges, and model terms affected. For example, the 15 DSD has no main effects correlated with any 2-factor
interactions, whereas 16r D-optimal design has completely unconfounded main effects.

A secondary objective of the experiment is to be able to predict the response well throughout the design space. The
fraction of design space plot** shown in Figure 2B allows direct comparisons between alternative designs, where consistent
low prediction variance (flat curve with small values) across all locations in the design space is ideal. Anderson-Cook
and Lu®'" discussed other aspects of the designs that are also important to consider, such as the capability of assessing
curvature and other optimality criteria that emphasize on different aspects of the design characteristics.

When comparing potential designed experiments, examining multiple aspects of the designs is highly desirable. Con-
sidering both the primary and secondary goals of the experiment and probing the outcome depending on different
assumptions is beneficial. Note how both Figures 2A and 2B are compact summaries that allow for multiple choices to be
directly compared. When possible, this helps with easy to understand summaries of an important characteristic of inter-
est. Alternately, Figure 2C shows detailed information that could be lost if reduced to low-dimensional summaries. In
this case, it is important to be able to look at this rich set of interest that has been organized to ease interpretability. In this
summary from JMP software,* the main effects are all listed first, which allows easy examination of main effect-by-main
effect, main-by-interaction, and interaction-by-interaction correlations (shown in different blocks of regions in the cor-
relation map). While a great deal of information is available in the plot, it can be examined at a high level to see gross
characteristics of each design.
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FIGURE 2 Graphical tools for design diagnostics. A, Power summary: estimated probability of finding any main effect of a given size
statistically significant at the 5% significance level (ie, p-values less than 0.05) for the 4 designs (14r, 15rCR, 15DSD, and 16r) discussed in
Section 3; B, Fraction of design space plot to show the quantiles of the prediction variance across the design region for factor level values in
[-1,+1] for the 4 designs; C, The correlation color maps for 14r, 15DSD, and 16r designs [Colour figure can be viewed at

wileyonlinelibrary.com]

We now summarize some of the lessons from this scenario.

G2. Clarify the difference between “right and wrong” and “choosing differently based on priorities” (here, different team

D2.

D3.

D4.

members are likely place different emphasis on some of the criteria or worry to different degrees about what might
go wrong. This should be a basis for discussion, not to be critical of others’ opinions).

Build the decision space to include diverse alternatives (here, considering larger designs than formally requested
facilitated deeper probing of what is needed and whether the original choice on the design size is appropriate for
design goals).

Push the boundaries on assumptions (here, the inclusion of a rich model including interactions provides deeper
understanding about what the outcome of the experiment might involve). An important part of the process is artic-
ulating assumptions, and, since these are often based on imperfect understanding, it is helpful to consider what the
outcome will be depending on how different assumptions turn out.

Incorporate cost into the comparisons of alternatives (here, expanding the mandate of the experiment to look at
alternatives of different size helps understand the space of options). Since cost (in time, effort or dollars) enters into
almost all decisions, formally including this in the decision-making process is important to fully explore the space.
Plotting the performance of different priced experiments against each other encourages discussion of what solution
is best for what is needed.
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S1. Create or use a graphical summary that appropriately captures the needed level of detail. When possible, direct
comparisons between alternative solutions are desirable, but for some rich criteria with richer dimensions of
information, the most desirable summaries allow for both high-level patterns and individual details to be extracted.

4 | PARETO FRONTS FOR DESIGN OPTIMIZATION

We now consider another related design of experiments problem where, in this case, the goal is to create a design for spe-
cialized scenario, where standard designs available in most statistical software does not necessarily match the aims of the
experiment. A variety of different scenarios with nonstandard goals®!*¢ provide examples of how different design metrics
can be selected to emphasize different priorities. For the split-plot designs, the performance of the design, as measured
by D-optimality for good model parameter estimation, is dependent on the ratio of the whole plot (WP) to subplot (SP)
variances (r = owp/osp).'” Since the size of either of these variances is typically not known before the experiment is run,
it is beneficial to select a design that will perform well across the range of the anticipated values. For the example con-
sidered in the work of Lu and Anderson-Cook," the engineers familiar with the process had little idea about the value of
the variance ratio, and so decided that the likely values of r could be in a very wide range [0.1,10]. The assumed model
for the 2 WP and 1 SP factors was a first-order model with 2-factor interactions, and the design size was constrained to a
maximum size of N = 16 runs. Each run was quite expensive to analyze, so there was interest in potentially using fewer
than the maximum allowable design size (N€[12, 16]). Resetting the hard-to-change factors for each WP is time intensive,
so there was interest in limiting the number of WPs. Hence, the goal of the experiment was to construct an ideal design
that optimized over 4 criteria, ie, (i) maximize D(0.1): D-optimality when r = 0.1, (ii) maximize D(10): D-optimality when
r = 10, (iii) minimize N: the overall design size, and (iv) minimize #WP: the number of WPs.

To find a set of contending designs to compare, the Pareto aggregating point exchange for split-plot designs search
algorithm'® was used to explore the vast set of potential designs. Central to this exploration of candidate designs is the
use of a PF, which considers only those solutions, here designs, that are not dominated by any other solutions. One solu-
tion S; is defined to dominate another solution S, if it has criterion values that are at least as good as S, for all criteria
and is strictly better for at least one criterion. It can be shown that, for a chosen set of criteria, the set of solutions on the
PF is the set of rational choices and will contain the best solution for any user priority often represented by the desir-
ability function® weighting of the different criteria. Figure 3 shows the set of PFs for each of the possible design sizes,
N €[12,16] with #WP €[5, N] where the different #WP are noted with different symbols. Note this single plot shows all of
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FIGURE 3 The paired values of (D(0.1) and D(10)) for all designs on the Pareto fronts of fixed combinations of N and #WP for an example
with N = 12-16, and a first-order model with 2-factor interactions
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the nondominated solutions based on the 4 criteria (D(0.1), D(10), N, and #WP). The D-optimality values are presented
as relative efficiencies compared with the best possible design for each of D(0.1) and D(10).

From Figure 3, we see that the PF approach was able to distill the set of desirable options for design down to a man-
ageable number of choices, with clear patterns in the results to help us understand the trade-offs between criteria. If we
look at the PF for a single N, we see that for small #WP, increasing the number of WPs improves both D(0.1) and D(10).
After reaching the maximum possible value of D(10) at #WP = 8 for a given N, further increasing the #WP leads to slight
improvements to D(0.1) but substantial decreases in performance for D(10). By comparing across different PFs for the
various N, we see the actual amount of benefits of increasing sample size for both D(0.1) and D(10).

When the engineers were presented with this summary, they were able to directly assess the cost benefit analysis of
increasing or decreasing the sample size relative to the improvement in precision of the model parameters. Based on this,
it was decided that the cost of using a design size of 16 was justified by the improvement in D-optimality across the range
of anticipated r values. In addition, the engineers could universally agree that the improvement in D(0.1) beyond #WP = 8
was so minimal that it did not justify the sharp decrease in D(10) plus the additional time to run the experiment with
an increased #WP. In this case, using the right summary in the Reduce step of the DMRCS process® with a manageable
number of designs to consider and clear patterns made consensus among the decision-making team straightforward.

However, there was still a final decision to be made between the N = 16 designs. In this case, there was no universal
agreement about how to value the differences in performance relative to the savings in time. Some additional graphical
tools were needed to help understand the trade-offs. Figure 4 shows the mixture and trade-off plots® comparing these
choices. The mixture plot (Figure 4A) shows what the best design is for all possible desirability function weightings of
the 3 criteria (D(0.1), D(10), and #WP) using the L;-norm on the log scale (which is equivalent to using the multiplicative
desirability function), where the scaling from [0,1] is based on the worst and best available values from among the designs
on the PF. Clearly when #WP is weighted very heavily (at the top of the simplex), the best design has #WP = 5. In the
bottom left corner, there are some tiny slivers of weights for which the improvement in the D(0.1) values make the designs
with #WP < 8 best. However, for a large fraction of the overall weights where the D-optimality criteria are weighted no
less than 30%, the #WP = 8 design is best. In Figure 4B, the trade-off plot shows the range of performance values for the
designs scaled by the desirability function scores in [0,1]. Here, it is possible to see the peak in D(10) for #WP = 8, and
the monotonic decrease in D(10) as #WP decreases. From Figure 4, the decision-making team was able to identify their 2
top choices as N = 16 with #WP = 5 or 8. The use of effective graphical tools in the Combine step of DMRCS? had further
reduced the set of promising solutions from 50 on the PF down to only 2 top choices from which to select.

Since only 1 design can ultimately be run, a final choice needed to be made. Figure 5 shows a direct comparison of
performance of the these designs with some comparative summaries of how these designs compare relative to the best
available designs at any weight combination of the criteria. The synthesized efficiency plot" in Figure 5A highlights the
performance of a given design where white indicates that a design is between 95% and 100% efficient relative to the best
available design considered. Each darker shade indicates a 5% drop in relative performance compared with the ideal.

#WP Rel. D-eff
100% T &- 4 o 8
|
87.9%7 5 ° 2
75.9%1 8 Al 8
63.8% -+ 8 =]
WP
D{0.1)
51.8% - 8- D(10) -8
16 13 2 1" 10 9 8 7 6 5
e

FIGURE 4 A, The mixture plot for designs selected from the Pareto front with N = 16, as shown in Figure 2, based on using the L;-norm
on the log scale for the 3 criteria, ie, D(0.1), D(10), and #WP. Designs with at least 10% weight for all 3 criteria and at least 1% of the total
simplex area are highlighted with #WP shown in corresponding regions; B, The trade-off plot with black symbols for highlighted designs for
designs shown in Figure 4A
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FIGURE 5 The synthesized efficiency plot of some selected designs (with 5 to 8 WPs) for different weightings of the 3 criteria, ie, D(0.1),
D(10), and #WP based on the L;-norm on the log scale for the 16-run split-plot design. A, Synthesized efficiency plot; B, Fraction of weight
space plot

When we compare the #WP = 5 and 8 designs, we see that the decrement in performance for the #WP = 8 design is never
below 75% efficient for any weight combination. The #WP = 5 design has some considerably darker shades for relative
efficiency. The fraction of weight space (FWS) plot® in Figure 5B is a global summary of all of the scores across all of
the weights. For a given point on the curve, it is possible to see what fractions of the weights (shown on the x-axis) have
efficiency at least as large as the value on the y-axis. The ideal line on the FWS has high values across all possible weights.
For this example, the #WP = 8 design stays near 100% large for almost 80% of the weights. After some deliberation in the
final Select step of the DMRCS process,® the decision-making team was able to reach an agreement that the best design
for their experiment was the N = 16 with #WP = 8 design. If the decision is not as straightforward as for this scenario,
Lu et al* suggests an approach for summarizing just a portion of the total weight space that can be agreed upon among
all team members. For example, it might be that the team can agree that no criterion should be weighted less than 20%.
In this case, another version of the mixture, synthesized efficiency, and FWS plots can be constructed to just reflect this
subregion. Looking at a more focused region can help build consensus on the team by identifying common areas of
prioritization and also eliminate some unappealing potential solutions.
We now highlight some of the lessons from this example.

D1. Itisimportant to define and use an appropriate summary that directly connects to the decision. In this case, consid-
erable effort and care was taken by the engineers to select the right experiment specific metrics that characterized
their priorities. The process of identifying these metrics before any individual designs were considered helpful to
build team cohesiveness and focus the discussion. This initial identification of the metrics allowed for the Pareto
aggregating point exchange for split-plot designs search algorithm to be implemented for seeking tailored solutions.
Efficient graphical summaries were used to include all 4 of the metrics on a single plot to see how they were related
to each other.

D2. Build the decision space to include diverse alternatives. If a single rough guess of the variance ratio was inserted
to simplify the decision at the beginning, then it is very likely to choose a suboptimal solution if the initial guess
is somewhat off from the unknown true value. By considering different possible WP to SP variance ratios, more
realistic assessment of what is possible was included in the search for a best design. Having an appropriate sense of
the plausible outcomes and how the designs will perform across that space is important.

D4. Incorporate cost into the comparisons of alternatives. Although the budget was originally set at 16 runs, it was
helpful to explore whether this was the right size of experiment, or whether it would be possible to save some of the
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resources for other priorities. In the end, the engineers chose to use the full budget but with greater understanding of
why it was the right thing. The time to run the experiment was included in the cost discussion with different #WPs
considered. A plot that compared the impact on performance relative to the different costs highlighted this trade-off.
It is helpful to take strategic steps to reduce the number of choices on which to do a detailed comparison to a man-
ageable number. The use of a PF objectively eliminated inferior solutions, allowed for the results of the search to
be efficiently presented, and kept the team from being overwhelmed with too much information. From the graphi-
cal summary of the PF, systematic pattern could easily be extracted, and the priorities of the decision-making team
were clarified.

Clarify the difference between “right and wrong” and “choosing differently based on priorities (revisited)”. Removing
anoncontender from consideration based on agreed criteria is an objective choice, whereas preferring 1 PF solution
to another is typically a matter of different priorities.

When comparing the smaller set of contenders, choose plots that highlight the impact of subjective choices to facil-
itate discussion. The mixture, trade-off, and synthesized efficiency plots all allow direct comparisons of alternative
solutions in different ways. With this suite of graphics, discussion about how different team members prioritize the
criteria is straightforward, and the impact of different priories is clearly shown.

| PARETO FRONTS FOR SIMULTANEOUSLY OPTIMIZING MULTIPLE

RESPONSES

In Section 4, the power of the PF to eliminate noncontenders to improve the focus for team discussion and decision mak-
ing was illustrated in the context of designed experiments. In that scenario, the metrics for each design could be calculated
with no associated uncertainty. In this next paradigm, we consider another situation where the use of the PF is very effec-
tive, but now, uncertainty from the natural variability of the response and the model fitting process associated with each
result should be included when making a decision. We consider the example described in the works of Chapman et al*
and Myers et al,”® where the goal is to simultaneously optimize 3 responses from a chemical process by selecting a pre-
ferred location in a 2-dimensional (time and temperature) input space. Figure 6A shows overlaid contour plots of the 3
responses, where the goal is to maximize yield (solid lines), minimize molecular weight (dashed lines), and hit a target
value for viscosity (shading indicates distance from the target) (See the works of Chapman et al*> and Myers et al?*P-333),
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FIGURE 6 A, The overlaid contour plot for the estimated response surfaces for the example in the work of Myers et al?3; B, The plot of
input locations on the Pareto front (shown with the solid circles) based on simultaneously maximizing yield, minimizing molecular weight,

and targeting viscosity at 65
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A quick inspection of the 3 response surfaces shows that the individual optima lie in different regions of the design space,
so compromise and balancing of trade-offs is required to find the best input factor combination for the process.

To find a set of locations to examine further, the 3 response surfaces were initially calculated with the mean model (using
the point estimates of model parameters) at a grid of locations in the input space. The fineness of the grid was determined
by the experimenters based on the precision with which they could set the time and temperature in the experiment. The
filled circles in Figure 6B show the locations in the input space for which response values lie on the PF. Already, before any
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prioritization of the 3 responses has been introduced, some regions of the input space (including only open circles) seem
less desirable for the optimization. However, before eliminating these regions from further consideration, it is helpful
to acknowledge that the uncertainty in estimation of the response surfaces has not yet been considered. In the work of
Chapman et al,** 1 approach for incorporating this uncertainty is to look at a worst-case assessment of the responses from
the 95% prediction intervals (P.I.). Hence, when the goal is to maximize yield, the lower bound of the 95% P.I. is used to
represent the worst-case scenario. When minimizing molecular weight, the upper bound of the P.I. is used, and when we
want to hit a target value for viscosity, we select the bound of the 2-sided P.I. furthest from the target. A plot similar to
Figure 6B can then be constructed using the worst-case values, and then choices about preferred locations in the input
space be based on both “expected” and “worst-case” results.

A simulation-based approach that considers the uncertainty more directly is described in the work of Chapman et al,*
which uses draws from the estimated distribution of the model parameters to characterize the set of all possible response
surfaces consistent with the observed data. For each simulation draw, the corresponding Pareto set from Figure 6B is
found, and then some graphical summaries from these values are constructed. Figure 7A uses the results from the simu-
lation to examine the robustness of the PF, with larger circles indicating locations appearing more frequently on the front.
From this plot, we see that the general shape of the Pareto set remains similar, although a lot of the regions in the input
space appear on a PF for at least one simulated set of responses. This should be a reminder to the experimenter that, even
though the results from the mean model can be a good indication of general patterns, the uncertainty can change the
results considerably.

In the work of the aforementioned author,* a multiplicative desirability function was used to combine the scaled
responses (based on the best and worst values derived from a 95% prediction interval for the responses) into a single sum-
mary. Figure 7B summarizes some results from this subjective phase of the discussion, with both the proportion of times
that a design location is selected as best for at least one weight combination for the desirability function (size of square)
and the average proportion of desirability function weights for which it is best (shade of gray). The ideal design location
would exhibit some robustness with being frequently identified as best and across a diverse set of prioritizations (desir-
ability function weights) of the responses. Figure 7C shows response values for some of the most promising solutions
with uncertainty bands. The grid point locations listed along the x-axis of the plot correspond to the locations shown in
Figure 6B, with larger squares in darker gray. The uncertainty bands were constructed from the 5th and 95th percentiles
of values from the simulations at the chosen design location. From this plot, it is possible to see that there are a num-
ber of locations for which very similar performance for some of the responses is anticipated. Recall that the goal of the
figures in the initial phases of discussion is not to highlight a single solution but rather to identify a manageable num-
ber of promising solutions. Using the process described in the work of the aforementioned author,* the original 630 grid
point locations in the input space have been trimmed to the most promising 21 locations. The graphics in Figures 6 and 7
provide quantitative summaries about their relative strengths and weaknesses across the 3 responses.

Often the decision-making team can agree on some ranges of weights for the different responses. In the case of the
chemical process experiment, the team decided to prioritize the responses nearly equally. Figure 8A shows the results
for the interested set of weights. The set of dots in the triangle shows which weights were investigated, while the colored
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FIGURE 8 A, Mixture plot for showing the average frequency as optimal across the interested weight region for top ranked locations;
B, fraction of weight space plot for the lowest synthesized efficiency and its uncertainty for the top solutions [Colour figure can be viewed at
wileyonlinelibrary.com]
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barplot shows how often different locations are selected as best for different subsets of the chosen weight combinations.
This more detailed investigation into performance for a narrow question of interest can help decision makers to pick
leading candidates and judge relative performance. Figure 8B shows a version of the FWS plots introduced in Figure 5, but
this time, adapted to describe only the subset of preferred desirability function weights and with associated uncertainty.
When comparing some of the different locations, the barplot provides more details about how the uncertainty in the
response surfaces impacts where best locations are located.

The overall process summarized here and given in more detail in the work of the aforementioned author* provide a
roadmap to making a structured decision that incorporates the uncertainty in the estimated responses. Including uncer-
tainty achieves 2 important goals. (i) It shows how changes in the response surfaces ripples through to impact the PF
and the preferred choices, and (2) it adds realism to what can be expected when a chosen solution is implemented at the
conclusion of the experiment.

Some of the plots shown in Figures 6 and 7 will not scale well as the number of responses or the dimension of the
input space increases. Some strategies and alternative graphics are suggested in the work of Lu et al*® to help adapt to
more complicated scenarios in higher dimensions. Figure 9 shows a desirability-weight-input-volume (DWIV) plot for
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4 responses in a 3-dimensional input space problem based off the estimated mean models for each response. The plot
is comprised of 4 components, which are joined with a common x-axis for the indices of the locations. The first panel
(D represents the desirability) shows trade-offs between all of the responses. The second panel (W represents the weights)
summarizes robustness of the choices for different desirability function weight combinations (the line segments in differ-
ent colors indicate the ranges of weights for which a location is optimal for each response). The third panel (I representes
the inputs) matches x-axis label to the input factor values of a location in the design space, and the last panel (V repre-
sents the volume of weights) summarizes the volume of the weight combinations for which a location is best and hence
indicates the robustness of the solutions across different weight combinations. While initially a bit overwhelming, this
plot allows different patterns to be extracted from the vast grid of candidate input locations. The key is to look at both
the bigger patterns across the width of the plot but then to dig into the details of a particular point and understand what
information is available for that choice.

A key strategy for using this plot effectively is to use it dynamically to allow different patterns of interested features
to be extracted for understanding the trade-offs between responses and how they are connected with the input factor
values. The current version of the plot has sorted the x-axis based on the desirability for one of the responses, PICO
abrasion index (PICO) from worst to best. From this plot, we can extract that the top locations (right of plot) are best
for large ranges of weights where PICO is emphasized (from W), that the locations in the input space have all 3 input
values between 0.5 and 1.0 (from I), and the top solution for PICO is best for one of the larger proportions of weight
combinations (from V). If interest lies in emphasizing a different response, then creating a new version of the plot sorted
on the desirability for this response would provide easy access to those insights. Similarly sorting on different x-values
could reveal patterns in changes in response across the input space. Variations of the DWIV plot can also be adapted to
look at subsets of desirability function weights, similar in spirit to Figure 8. The flexibility to explore different versions of
the plot dynamically can help to mitigate some of the curse of dimensionality when visualizing is more challenging.

One thing that has been sacrificed with the DWIV plot is the ability to directly investigate the role of uncertainty. This
increases the complexity of the problem substantially, and we suggest a sequential approach of doing some preliminary
triage of best locations based on the mean model and perhaps a worst case summary and then investigating this smaller
set of locations with uncertainty included in the discussion.

We now summarize some of the key points illustrated from this scenario.

G1. Use a process to find common ground. Here, there are many aspects to consider, and following a structured process
can help keep the team focused on a common activity and stage of discussion while allowing structured choices to
be made throughout.

D2. Build the decision space to include diverse alternatives. In this example, the grid of locations covered the entire
design space. By looking broadly initially, it is possible to see if some locations initially not considered important by
the mean model might be contenders when uncertainty is included in the decision-making process and vice versa.

R1. Reduce the number of choices on which to do a detailed comparison to a manageable number. The use of the PF
allows for a fraction of the choices to be eliminated objectively. Using a desirability function to further streamline
the choices based on core priorities that the group can agree upon can also help reduce the number of choices to
consider in detail.

C3. Think globally and locally. One of the principles that Tufte® encouraged is to reveal data at several levels of detail.
Several of the plots included in this section allow for bigger pattern in the data to be seen but then also the detailed
comparisons between alternative solutions. Early in the process, the goal is often to identify regions to consider.
Later in the process, the goal is to find and be able to justify a particular choice.

C4. Consider dynamic graphics when dimensionality of problem suggests it. The DWIV plotin Figure 8 is a good example
of using 1 plot (albeit a relatively complicated one) in many forms to explore and to encourage articulation of team
member priorities. Some team members may be more willing to say “let's see what this plot looks like if we prioritize
Response X" than they are to say “I think we should prioritize Response X more.” However, through the exploration,
team members can gain an improved sense of how similar or different their choices are for different priorities.

S1. Create or use a graphical summary that appropriately captures the needed level of detail. In the sequence of graphics
shown in this section, many of the graphics were tailored to match a particular goal or query. Having a collection
of available graphs from which to choose can help guide discussion and improve the chances for a consensus with
a stepwise decision-making sequence. Some of the graphics include some complexity, so during team discussion, it
is important to take a few moments when a new graph is introduced to make sure that everyone understands what
information is contained in the plot and how to extract it.
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S2. Include graphics to formalize conclusions. As the decision-making process draws to a conclusion, it is important
to create graphical summaries that allow comparisons between some of the leading contenders. These help to con-
solidate the team's decision with quantified measure of relative performance. In addition, when the team needs to
convince others outside the decision-making process of the merits of the decision, these summaries can be valuable.

6 | PICKING THE TOP N CHOICES

Finally, we consider an example where the goal of the decision-making team was not to select a single best choice but
rather a set of top N choices. We envision 2 common scenarios where this approach might be relevant. (i) Given multiple
quantitative criteria, identify the top N solutions to accomplish a task; or 2) make a decision that is evaluated based on
several primary quantitative criteria and secondary qualitative priorities. An example of the first scenario is described as
a case study in the work of Burke et al,”” while the second scenario might involve choosing a new job. There are a number
of quantitative metrics on which to compare the jobs, but there are also some intangible or difficult to quantify measures,
which could be used as final tiebreakers, after the leading contenders have been identified.

We now revisit the example described in the work of the aforementioned author,” which involved a team of Department
of Defense program managers all vying for additional funds for some of their munition stockpiles. The budget allowed
for 4 stockpiles to receive these funds. After historical approaches of lobbying for the resources had led to discontentment
with the quality of decisions made, an adaptation of the DMRCS process® was considered. The team developed a collec-
tion of criteria that were considered important to determining which stockpiles were most deserving of receiving these
additional funds for surveillance and improvements. After discussing the merits of the different criteria in the Define
stage of DMRCS, 3 categories were identified as of primary importance. Historically, the estimated reliability curves were
the primary focus, and so it was included as a category. A second category was labelled urgency and considered the avail-
able supply of units relative to the projected demands. Finally, the last category consequence considered the impact on the
fighting force if an adequate supply of the units was not available.

From these 3 categories, detailed measurable and consistent metrics were developed by subject matter experts (Measure
in DMRCS) and data collected across all 42 of the stockpiles under consideration. During the Reduce stage, a layered PF*
was constructed that identified top contenders that might potentially be in the top 4 choices from among all the stockpiles.
This set of fronts eliminated 16 of the stockpiles as not on the top 4 layers of the PF. In the Combine stage, an additive
desirability function was selected to combine desirability scores for reliability, urgency, and consequence. Since the panel
of experts had scored each of these criteria on a scale of 0 to 10, the team decided to use the natural range of each metric
and map the most critical value of 10 to a desirability score of 1, and the least critical value 0 to a core of 0. The team then
explored which stockpiles emerged as somewhere in the top 4 most critical across the breadth of possible weightings.

Figure 10 shows a slice of the mixture plot with the top choices for some different weights, ie, w;. In this figure,
Consequence (which is considered the most important among all three categories) is fixed at a weight of 0.4, and
the weights for the remaining criteria are varied from 0 to 0.6 (since all 3 weights must sum to 1). From this plot,
the top 4 choices can be identified and ranked. For example, for a weighting of (Wgel, Wurg, Weons) = (0.25,0.35,0.4),
which is located as the sixth set of points from the left, we can see that stockpile A3 is most critical (darkest
shade) followed by B4, A4, and D4 (lightest shade of gray). A copy of the JMP Add-in to identify contending
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FIGURE 10 Mixture plot for the top 4 choices across different possible weight combinations given a fixed weight for consequence at 0.4
for the stockpile prioritization management example
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FIGURE 11 Proportion plot summary for top 4 choices across all possible weight combinations for the stockpile prioritization
management example

solutions on the top N lays of PFs and create these plots is available at https://community.jmp.com/t5/JMP-Add-Ins/
Top-N-Pareto- Front-Search-for-Structured- Decision-Making/ta-p/36527. By examining different weightings of the crite-
ria, it is possible to see how the different stockpiles rank for the priorities of different team members. This facilitated good
discussion on the team and allowed members to see how compromise was needed when their emphasis did not agree.
It also changed the conversation from individual program managers lobbying for what they wanted to a quantitative
discussion of the relative merits of the different choices.

Figure 11 shows the proportion of weights that different stockpiles were ranked in the top 4 choices and how often
they were in each position. In the Select stage, the decision-making team needed to identify the 4 stockpiles that were
to receive the additional funds. The top 3 choices were quite clear with A3, B4, and A4 being in the top 4 for almost all
sets of weights. It is interesting to note that had just a single PF been used, A4 would not have been identified since it
was not on the top layer of PF and was never ranked as most critical for any weight choices. However, it clearly belongs
in consideration since it is almost always ranked in the top 4 for a broad spectrum of priorities. The final stockpile to be
selected was a difficult choice, but the team was able to use a variety of graphics to understand the choices and make a
consensus decision. One of the plots that they used was an adaption of Figure 11 but with a more focused subregion of
weights, ie, Wgy > 20%, Wyrg> 10%, and weons > 30% on which the team had agreed. From this plot, D4 was selected as the
fourth stockpile to receive the funds.

Some of the key points illustrated from this scenario include the following.

G1. Use a process to find common ground. In this case, the DMRCS process built consensus by investing early in the
process on finding criteria and metrics on which the team could agree. They also include experts to create trustwor-
thy scores for each stockpile. Finally, selecting a subregion of weights on which to focus helped to consolidate the
decision.

D1. Define and use an appropriate summary that directly connects to the decision. In this case, 3 categories of crite-
ria were chosen, and metrics that were measurable and comparable across the stockpiles were used. These initial
discussions helped define the right scope of the problem and also helped to build consensus about what the
decision-making task was all about.

D2. Build the decision space to include diverse alternatives. All of the stockpiles were initially considered, which was
helpful to formally eliminate them when they did not appear on the layered PF or ranked in the top 4 for any weight
combination. This encourages the team to feel that all stockpiles were duly included and helped to find common
areas of agreement as some choices were eliminated.


https://community.jmp.com/t5/JMP-Add-Ins/Top-N-Pareto-Front-Search-for-Structured-Decision-Making/ta-p/36527
https://community.jmp.com/t5/JMP-Add-Ins/Top-N-Pareto-Front-Search-for-Structured-Decision-Making/ta-p/36527

ANDERSON-COOK AND LU WIL EY_Iﬂ

C1. Allow common visualization and discussion about results, instead of keeping subjective elements of the decision
unshared. For the example, the mixture and proportion plots in Figures 10 and 11 allowed the team to identify key
stockpiles to focus on and judge the impact of their subjective choices. This turned what had been previously a
negotiation into a data-driven quantitative comparison and discussion.

S2. Include graphics to formalize conclusions. When the team concluded their decision-making process, the team mem-
bers had summary plots to share with others not involved in the process. These provided compelling evidence of
how the data-driven evaluation process was conducted and how the decisions were reached.

7 | CONCLUSIONS AND DISCUSSION

Statistical thinking® and statistical engineering®3° emphasize how good process and including data with its associated
uncertainty are important for solid business and industry practice. Carefully designed graphics based on metrics impor-
tant to the practitioner can be extremely helpful for serving these purposes. Much of statistical engineering has focused on
problem solving for product and process improvement, but there are other aspects of problem solving for which strategies,
tactics, and tools are needed. Introducing data-driven quantitative summaries into discussions and the decision-making
process and presenting them in efficient and informative graphics to aid understanding and discussion is key to good
outcomes.

Most decisions have a data component and a subjective component. What do we know? Moreover, how should we
balance the trade-offs when optimal for all facets of the decision are not simultaneously achievable? When making deci-
sions as an individual, we have developed personalized methods for assessing alternatives, balancing our priorities, and
often use informal or qualitative summaries of the choices. To make team decision making work and avoid unsatisfactory
decisions driven by personalities instead of data and facts, there needs to be added structure to the process that is built
around strategies and tools that promote discussion and build fundamental consensus about the goals of the decision. To
effectively explore alternatives, there need to be ways to allow comparison between options, encourage sharing of indi-
vidual priorities, and summaries that provide insight about how robust choices are to these different prioritizations. Good
graphical summaries can provide an effective platform to extract information and support understanding, a mechanism
to balance the contributions of different facets of a decision, and a forum for discussion and reaching consensus.

In this paper, we outlined 15 principles that we think can improve the focus of discussion and decision making, which
are summarized in Table 1. At first glance, many of the principles may not seem directly graphics focused. However, they
are actually closely relevant to how we build and use the graphical summaries to support improving decision making. It
is our hope that providing more detailed examples of how the principles apply in practice will help them to become more
concrete. We recommend using this list as the guiding principles for designing graphical tools to facilitate discussion and
informed decision making.
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