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1 | INTRODUCTION

Abstract

In a decision-making process, relying on only one objective can often lead to
oversimplified decisions that ignore important considerations. Incorporating
multiple, and likely competing, objectives is critical for balancing trade-offs
on different aspects of performance. When multiple objectives are considered,
it is often hard to make a precise decision on how to weight the different objec-
tives when combining their performance for ranking and selecting designs. We
show that there are situations when selecting a design with near-optimality for
a broad range of weight combinations of the criteria is a better test selection
strategy compared with choosing a design that is strictly optimal under very
restricted conditions. We propose a new design selection strategy that identifies
several top-ranked solutions across broad weight combinations using layered
Pareto fronts and then selects the final design that offers the best robustness
to different user priorities. This method involves identifying multiple leading
solutions based on the primary objectives and comparing the alternatives using
secondary objectives to make the final decision. We focus on the selection of
screening designs because they are widely used both in industrial research,
development, and operational testing. The method is illustrated with an exam-
ple of selecting a single design from a catalog of designs of a fixed size.
However, the method can be adapted to more general designed experiment
selection problems that involve searching through a large design space.
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of designs

is to determine which factors have the largest impacts
on the response(s), with first-order effects and two-factor

When selecting a designed experiment to screen the
impact of potential factors on one or more responses of
interest, the objectives of the test or study need to be
carefully considered and matched with criteria used to
evaluate the appropriateness of the design. Screening
experiments are generally used early in a testing regime
that employs a sequential experimentation strategy to
explore a moderate to large number of factors. The goal

interaction effects being of primary interest. Quadratic
effects, which capture curvature in the response surface,
may also be of some interest. In operational testing envi-
ronments, which often involve many factors including
design factors, environmental and nuisance factors, and
factors that are difficult to change, cost-effective and
tailored designed experiments are a necessity. Resources
are often at a premium in these experiments because of
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the high-cost nature of these tests. It is important to have
a design selection strategy that maximizes the informa-
tion learned in the experiment while satisfying several
different competing priorities given the experimental
resources, which include the number of runs, time,
equipment, and operators available.

In this paper, we illustrate a multiple criteria assess-
ment strategy for evaluating and prioritizing designs from
a design catalog. This strategy will ensure that the best
design (that which matches the specific priorities of the
test) can be selected. We first describe several useful cat-
egories of objectives to evaluate designed experiments.
We then define quantitative criteria to assess what consti-
tutes a best design based on how well each design fulfills
the requirements for that objective. When considering
multiple criteria, the best choice could change depending
on how we prioritize or weight each of the criteria. A
common strategy to balance different priorities is through
a desirability or utility function.' Desirability functions
(DFs) combine quantitative metrics of the different objec-
tives into a single expression using weights to reflect the
priority of each metric. A user-specified weight combina-
tion on the criteria specifies how each criterion is priori-
tized relative to the others. Therefore, we discuss the
trade-offs between an optimal, local optimal, and near-
optimal design. We define an optimal design as the
design that is optimal for a single criterion. A local opti-
mal design is one that is optimal for a particular weight
combination of the multiple criteria combined into a
DF. A near-optimal design is one that, while not neces-
sarily strictly optimal, is among the leading (top-ranked)
choices across a broader range of weight combinations
(as opposed to a particular combination) for the chosen
criteria. The optimal and local optimal designs have been
extensively studied in the literature. This paper proposes
a new near-optimal design strategy to explicitly evaluate
the impacts of weighting choices on the design selection
and the trade-off between design superiority within more
narrowly restricted weight regions with a focus on
designs with near-optimality across broader user priori-
ties. Different people using the results from experiments
often have divergent views of the importance of the differ-
ent objectives of the test. For example, leadership in the
Department of Defense, a program manager, and a pro-
gram's chief tester may not all agree on the priorities in
an operational test. We show that there are situations
when selecting a design with near-optimality for a broad
range of weight combinations of the various criteria is a
better test selection strategy compared with choosing a
design that is strictly optimal under very restricted condi-
tions. This strategy offers more balance across divergent
views rather than emphasizing the optimality for a narrow
view. Overall, in many situations it can be beneficial to not

focus too narrowly on either a single criterion or on a spe-
cific weight combination of a small set of criteria, as these
approaches may not lead to a design robust
to unanticipated results when the experiment is
actually implemented.

Pareto fronts (PFs)® have been used to identify a top
design based on two, three, or four criteria for a variety
of design scenarios.> Ideal candidates were specified as
those that were best for a range of weights representative
of general test priorities. This strategy works well for
experiments when consensus can be reached about com-
mon goals but is difficult when divergent objectives can-
not be consolidated to an agreed-upon region of weights
for the objectives. In these cases, looking more broadly
at near-optimality, here defined as those choices that
rank in the Top N positions (as opposed to the best, ie,
highest-ranked choice) for a broad range of weight
combinations, should be considered. Note we focus on
the design selection of a fixed design size, ie, the total
number of runs. We use N to denote the number of top
designs to evaluate using the proposed method to choose
the final design. The Top N strategy for multiple objective
decision-making was first introduced by Burke et al® to
select multiple leading solutions by considering their
robustness to different weight combinations. The method
identifies the Top N layers of PFs, which form multiple
groups of ranked solutions with the top layer containing
solutions strictly better than the second layer on all objec-
tives and so on. Burke et al®° demonstrated the Top N
layers of PFs must include the Top N solutions for any
possible weight combinations and hence offer an objec-
tive set of solutions before evaluating the weight impact
and robustness. Burke et al® illustrate how the Top N
strategy (described in Section 2.2) can be effectively used
to identify multiple top contenders when the goal is to
choose several results, such as the most critical stockpiles
to receive additional funding. This approach can also
work well in the context of designed experiments even
though only a single experiment will ultimately be run.
In this case, looking at the top choices across a variety
of prioritizations of the design criteria can give insights
into the robustness of multiple-purpose designs that are
able to perform well across all the objectives of the test.
Graphical methods are used to visualize the alternative
design choices and facilitate discussions between stake-
holders so they can reach consensus about which design
best balances the priorities. Since stakeholders involved
in the decision-making process may have diverse quanti-
tative and statistical skills, graphical methods are accessi-
ble and allow equal participation during discussions. In
addition, since some characteristics of good designs are
difficult to compress into single-number summaries, the
strategy of highlighting a small set of leading candidates
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to examine more closely with qualitative or high-
dimensional summaries is advantageous. This matches
the strategy described by the Define-Measure-Reduce-
Combine-Select (DMRCS) process’ and positions the
experimenter to better understand leading alternatives,
while keeping the decision-making process manageable.

The method described is general in that the criteria
considered, how they are combined into a quantitative
summary through a DF, and how close to optimal the
experimenter wishes to stay can all be chosen separately
and are based on the given test. This paper illustrates
the method for the catalog of designs introduced in
Schoen et al® and further studied in Jones et al® for a
two-level five-factor 24-run screening experiment, consid-
ering cases with a wide variety of objectives. The catego-
ries of criteria considered are (a) good estimation of
model parameters for models of various complexity, (b)
good prediction capabilities throughout the design space,
(c) power to achieve statistical significance when testing
factor effects, (d) correlation between terms in the model,
(e) bias for estimation of terms in the model and/or natu-
ral variability, and (f) performance of the designs if some
factors are not active and projections to lower dimen-
sional design spaces are considered. Numerical summa-
ries of the different criteria for each of these categories
are provided for all designs in the catalog. We explore
designs that rank in the top three across ranges of weights
when simultaneously considering three design criteria.
The method is general enough to be applied to seeking
any Top N designs based on considering any set of chosen
criteria. However, the authors recommend a careful
examination when choosing the set of criteria because
considering too many criteria simultaneously will lead
to too many possible choices to consider and often medi-
ocre solutions. The particular choices of which criteria
and how narrowly to consider near-optimality can easily
be adjusted based on the priorities of the experimenters.

The top three designs for an assortment of sets of
criteria are given, and discussion is provided for several
cases where the choice between “best (top one choice)
for a smaller set of criteria weights” is contrasted with
“nearly-optimal (among the Top N choices) for a larger
set of criteria weights.” We hope that providing both the
raw summaries for the collection of designs as well as
top choices for some common groups of objectives will
allow the experimenter to choose a design that most
appropriately matches their priorities in a particular
study. Computing tools for replicating the investigations
summarized in this paper for other scenarios and collec-
tions of designs are also provided. Section 2 provides
details about the criteria that were considered as well as
some background on PFs, layered PFs, and the DMRCS
decision-making process, which are the key elements in

the proposed design selection process. Section 3 illus-
trates the method for the catalog of designs for five-factor
24-run screening experiments. Section 4 describes the
JMP and R tools available for implementing the described
methodology for the general design selection when
considering multiple criteria simultaneously. Section 5
provides discussion and conclusions for applying the
methodology to other scenarios.

2 | BACKGROUND

In this section, we provide details of the considered set of
criteria to evaluate screening designs, as well as some
background on formal approaches for quantitatively
examining multiple criteria across a variety of different
priorities.

2.1 | Criteria

For general design evaluation and selection, we recom-
mend exploring a large number of design criteria that
cover different aspects of design performance as well as
different possibilities of model complexity, including
terms for main effects, two-factor interactions, quadratics,
and even third-order terms. Note for our particular exam-
ple involving only screening experiments with two levels
for each design factor, there is no capability for estimat-
ing quadratic or higher order terms. Since the general
methodology and the developed computational tools are
suitable for broader applications than the screening
experiments discussed in this paper, we keep our discus-
sion about the method and the tools at a general level
for now, and then focus on a particular subset of criteria
for the case study on screening experiments. Even though
the collection described is not an exhaustive list of all
possible design criteria that might be of interest to all
experimenters, it does offer a broad spectrum of common
criteria applicable to many screening design applications,
particularly in the science of test and developmental or
operational testing environments.

We use the catalog of 63 non-isomorphic five-factor
24-run designs from Schoen et al® as an illustrative exam-
ple. We organize our criteria into six categories based on
the different emphases of the evaluated criteria on vari-
ous aspects of design performance, which include model
parameter estimation precision, prediction variance,
power, correlation, bias, and projection. To facilitate dis-
cussion of the details of the metrics, we first introduce
basic notation for the definitions. Since we explore design
performance for models with different numbers of terms
and complexity, we first define the model matrices
consisting of different groups of model terms.
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We denote model matrices consisting of only the main
effects (X;) and two-factor interactions (X,). Note X, also
includes the intercept. Let p; and p, denote the number
of terms included in the model matrices X; and X,
respectively. For the designs with five factors, we have
p1 = 6 and p, = 10. We also define X;, = [X;,X;] as the
model matrix for the first-order plus two-factor interac-
tions model. We use p, = p; + p, to denote the total num-
ber of parameters in X;,. The design size is denoted by n,
which equals 24 for all of the designs in the catalog for
the illustrative example. On the basis of a comparison of
the sample size n = 24 with p; = 6 and p, = 10, we can
see that it should theoretically be possible for the screening
designs in our catalog to estimate all of the main effects and
two-factor interactions. However, since the designs are all
at 2-levels, it is not possible to estimate quadratic or higher
order terms. Considering this larger design size compared
with the 237 '16-run design offers extra degrees of freedom
for evaluating the error variance.

The first category of design criteria focuses on the pre-
cision of estimated model parameters. This objective is
typically considered one of the primary considerations
when choosing a screening design. It is important to be
able to identify which terms in the model are most influ-
ential on the response and to have minimal uncertainty
associated with the estimated effects. If this is part of
sequential experimentation, then choices are often made
about which factors to explore further and which to
remove. We consider D-optimality and A-optimality
criteria'® ® %% for the main effects only model (denoted
by M) and for the first-order plus two-factor interactions
model (M;). The D-criterion measures the overall preci-
sion of all model parameters based on the total volume
of the confidence region for all model terms, while the
A-criterion only measures the sum of the variances of
individual coefficient estimates. Instead of using the orig-
inal scales for these metrics, we calculate the D- and A-
efficiency, which measure the relative performance of a
particular design relative to the best performance on the
chosen criterion for designs of the same size. We use D;
and D, to denote the D-efficiencies for models M; and
M,, respectively, and A, and A, for the A-efficiencies for
the same models. The criteria values are calculated by:

Dy = |X,%, " and D, = [X,X;|"™

’ -1 , -1
X, X X, X
Alzpl/tr{< 1n 1> }andAzpo/tr{ (%12) }

Larger D- and A-efficiencies indicate good precision for
estimation.

The second aspect of design performance concerns
the prediction variance. While typically a secondary
characteristic in screening experiments, this aspect of
the design can be important if the model will be
used to predict the outcomes of new observations. We
consider the I- and G-optimality criteria’® ® 471473 for
both M; and M,. Both criteria are based on evaluating
the scaled prediction variance (SPV). For example, SPV =

nx; (X, X 1)_1x1 for model M,, where x; is the location in
the input space specified in model form. The G-criterion
focuses on the worst-case scenario by considering
the largest SPV throughout the design space, while the
I-criterion measures the average performance. Since it is
generally not known a priori where new observations
might be needed or where optimal operating conditions
may exist, the G-criterion can be thought of as seeking
to keep the worst-case scenario manageable. The I-
criterion uses a more typical summary for characterizing
distributions by looking at the center of the distribution.

For the G-criterion, we calculate the relative perfor-
mance measured by the G-efficiency for models M; and
M, which are given by:

G, = b1 ——and
MaxxleR{nx/1 (X,X1) xl}

Do

G, = : , — .
MaXxueR{”xu(XlzXlZ) le}

The I-criterion values for M; and M, are calculated
respectively as:

s, (6,%,) e,

I =
' dexl

nd

erLx;Z (X/12X12) _lxlzdxlz

I, =
’ Jadxro

)

where the design region of interest R is assumed to be a
hypercube such that R = [—1,1]°. Note that computing
the I-criterion and G-efficiency is not easily obtained in
closed form for most designs and hence requires a large
sample of design points across the design space to evaluate
their SPVs. We used a combination of a fixed set of gridded
points and a stratified random sample to cover both the
corners and edges as well as the interior of the design
space. Larger G-efficiency and smaller I-criterion values
indicate good prediction variance. In addition to the sin-
gle-number numerical criteria summarized over the
design space, we also consider more informative graphical
summaries, such as the fraction of design space (FDS)
plot’'. FDS plots display the entire distribution of SPV
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throughout the design space. This plot allows the user to
see any quantile of SPV, how SPV is distributed throughout
the design region, and the values of average or worst-case
performance used in the optimality summaries. The G-
efficiency and I-value are useful to streamline the design
selection process from a large set of candidate designs
while the graphical summary can be used for a more
detailed comparison between the most competitive designs
to choose the final winner for a particular scenario.

The third category of design criteria considers the
average power for detecting different groups of design
effects. This criterion summarizes the average power over
each of the main effects, two-factor interaction terms, and
over the collection of both main and interaction effects.
Power measures the probability of detecting a design effect
given that there is an effect. Power is dependent on the size
of the effect with generally higher power for detecting a
larger effect. In many design situations, the experimenters
may have intuition about what size of effects are thought
to be important. Tailoring the power summaries to match
these expectations can help with a priori understanding of
how effective the design will be. We explore different sce-
narios with different sizes of design effects measured by
the signal-to-noise ratio (SNR), the ratio of the effect size
to detect (6) and the experimental error (o).

The power for the jth design effect of size § with an

SNR r = é is calculated as
o

52
-1

20° (X,12X12)j,j

Power; =P F (1, n — Py, NCp = > Flnpa

We use Power}, = Z‘Z’IPower;/ (p; —1) to denote the

average power over the main effects at an SNR r. Simi-
larly, the average power for the two-factor interactions
and all of the main plus interaction effects are denoted
by Power]. and Powery,, respectively. Since it is generally
not known a priori which effects in a screening experiment
are active, the average power allows for a quick summary of
what is expected from the design across a given category of
terms. In the summary of results for the example in Section
3, we explore different effect sizes with r € {1, 2, 3}. Larger
average power indicates a better chance to correctly identify
important design effects for the interested group.

Another important aspect considers the aliasing
structure of the design matrix, which is measured by the
absolute correlation matrix:

|Cor| = |DeoyCoVD¢oy|,

where Cov = XX is the covariance matrix of the model
coefficients, Deoy = diag{1/,/Cov;;}, and| - |takes the
absolute value of each entry of a matrix. In general, it is

possible to explore the average correlation within each
group of effects including main effects, two-factor interac-
tions, pure quadratics, and third-order effects for a gen-
eral model involving relevant terms. Only the main
effects and two-factor interactions are relevant for the
two-level screening designs in our example. We look at
the average correlation between different groups (here
main effects and two-factor interactions) and also the
average correlation across different groups. Smaller aver-
age correlations are generally preferred as this indicates
that the relevant design effects are less confounded with
other model terms, and the postexperiment analysis is
more likely to be able to separate out the estimates of
individual effects. The average correlations give conve-
nient compact quantitative summaries over groups of
effects. However, more information can be shown in the
color maps of correlation, which display the absolute cor-
relation between all pairs of individual model terms. In
our design selection approach, we use the numerical
summaries (the average correlations) to streamline the
selection process for a large number of designs and then
use the more descriptive correlation maps to further
examine the leading candidates to guide selection of the
final design.

Considering that in many experiments we are unsure
about the exact form of our specified model, we may want
some protection against potential bias of the model esti-
mates in case the model we chose to fit was incorrect.
The following criteria quantify the potential biases on
the estimated model coefficients as well as experimental
error variance if the specified model is in fact missing
some important terms. We first consider this in the con-
text of examining the impact of active two-factor interac-
tions on the estimates of the main effects. The criterion
tr(AA"), alias matrix A = (X;Xl)_lX'IXZ, measures the
bias on the estimated main effects when at least one
two-factor interaction is active'® ® 37®, The bias on the
estimated experimental error variance'® ®® 3’4 in this case
is quantified by tr(RIR), where R = X;A — X,. Since the
values of the coefficients for omitted terms in the model
are almost always unknown, smaller values indicate
smaller potential bias on the quantities of interest by a
certain form of model misspecification.

The last important aspect to consider for design selec-
tion is the projection properties to lower numbers of fac-
tors. For screening experiments, it is common that only a
subset of the design factors initially explored are actually
active. In addition to wanting good design performance
for the full dimension space (eg, all five factors in our
example), we also want good performance when it is
projected down to a lower dimension with only a subset
of active factors. When there is large uncertainty in the
number of active factors, it is recommended to seek a
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balanced performance across multiple possibilities rather
than optimizing based on a single guessed scenario. In
our example, we consider the design performance
projected down to all subsets of four or three design fac-
tors. To obtain the summary of performance in lower
dimensions, we average over results from all potential
projected models (five models for four factors and 10
models for three factors depending on which factors are
assumed to be active) for all criteria chosen from the
above-mentioned criteria (23 for the full five-factor case)
across all categories of potential objectives. In the end,
each design in the catalog is evaluated based on a total
of 69 criteria (23 in the full dimension and 46 for projec-
tions) on various aspects of design performance.

2.2 | Pareto fronts, Top N choices, and ties

Since there are multiple competing objectives for many
experiments, it is important to have a strategy for objec-
tively removing noncontenders from consideration while
not overlooking a promising option. One approach to
multiobjective optimization is Pareto optimization: a
technique used to optimize multiple criteria simulta-
neously while incorporating the experimenter's priorities
for the study. A PF identifies a collection of competitive
solutions that can be examined before making a final
choice. The PF is formed by nondominated solutions,"?
those solutions that are not outperformed by any other
solution based on all the criteria. In other words, for a
solution on the PF, there is no other solution that is at
least as good on all criteria and strictly better on at least
one criterion. Since the selection of the PF does not rely
on the specification of weights, scaling, or DFs for com-
bining the criteria, it offers an objective set of superior
solutions for further exploration. The method is divided
into two phases of analysis: (a) an objective phase where
potential rational solutions are identified and
noncontending choices, which will never emerge as ideal,
are eliminated and (b) a subjective stage where the
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remaining solutions are evaluated for different prioritiza-
tions of the criteria. A final decision is made by evaluat-
ing the results from phase two of the analysis through
the use of several graphical tools>*". Anderson-Cook
and Lu’ propose a five-step process DMRCS for deci-
sion-making with competing objectives. PF optimization
is an ideal method used in the Reduce step of this process.

Figure 1 shows a representation of a PF for a scenario
with two criteria, both optimized by minimizing. Ideally,
we would like a solution at the utopia point, the point
that has the best possible values for all criteria simulta-
neously (represented by the triangle in Figure 1). How-
ever, this ideal solution rarely exists in practice since
there are generally trade-offs in the criteria. The solutions
connected by the line in Figure 1 make up the PF: the set
of nondominated points in the criterion region, with the
remaining points dominated by at least one PF solution.

Constructing the PF is straightforward from an enu-
merated list of solutions, with several software packages
having an implementation of this automatically. If the
PF needs to be constructed within a search algorithm of
candidate solutions, the Pareto aggregating point
exchange (PAPE) algorithm®'? and its enhancements'>**
for design selection have been used.

The first phase of the PF optimization algorithm elim-
inates noncontending solutions, simplifying the problem
and making the final decision more manageable. This
phase is independent of any differences in measurement
scales of the criteria because the algorithm simply iden-
tifies the dominant solutions based on their evaluated
criteria values. An advantage of PF optimization is that
it separates the objective and subjective phases and
allows decision-makers to bring their own priorities only
into the subjective phase. Decision-makers then examine
the optimal solutions for different prioritizations (or
weightings) of the criteria only after the initial set of solu-
tions have been objectively reduced. Because of this flex-
ibility, the method can accommodate several competing
sets of priorities, particularly when multiple decision-

better
A Utopia Point —
-10
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 FIGURE 1 Graphical representation of
Criterion 1 a Pareto front for two criteria
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makers are involved. The subjective phase also lets the
user evaluate the sensitivity of a particular solution based
on different prioritizations on the criteria.

The algorithm can be adapted to accommodate any
number of criteria. However, we note that the computa-
tion time increases exponentially as the number of
criteria increases. It is therefore recommended that prac-
titioners be selective on the number of criteria used for
optimization. In our example, we restrict our exploration
of leading designs to simultaneously consider only three
criteria at a time. Including too many criteria not only
reduces the computational efficiency but also can result
in mediocre solutions due to large trade-offs associated
when considering too many criteria.

Pareto optimization helps identify an optimal solution
based on user priorities and balancing multiple objec-
tives. In this paper, the goal is not to identify just an opti-
mal solution but also to consider near-optimal solutions
that are robust compared with the other designs across
a wider range of weight combinations of the criteria. A
design that is optimal for one criterion could have poor
performance for another criterion. For example, a D-
optimal design offers the most precise estimation of the
specified model but may provide little protection if the
specified model is far from the true model. Another
design may offer compromised performance on both
criteria but better robustness when a decision needs to
accommodate different opinions on how much each crite-
rion should be valued in the design selection process. To
accommodate the desire to consider near-optimal solu-
tions in the design selection, we have adapted the PF
approach? to include the Top N solutions, not just those
which are strictly best. Layered PFs® allow all designs that
could rank in the Top N choices to be identified as they
consider potential solutions that lie just behind the PF
as potential candidates. Considering optimal and near-
optimal designs provides a larger pool of potential solu-
tions to evaluate. Designs under consideration may not
be strictly optimal; however, they may have good perfor-
mance robust to the choice of the weight combinations
on the criteria considered. This is particularly beneficial
when multiple decision-makers, with differing opinions,
are part of the design selection process. A larger pool of
potential solutions also allows subsequent exploration of
qualitative or higher dimensional summaries (such as
the FDS and correlation plots) to be included in discus-
sions. The inclusion of all Top N layered PFs ensures that
any potential near-optimal solution will be considered
and that their ranking for any combination of weightings
are included when robustness is evaluated.

The Top N Pareto Front Search (TopN-PFS) algorithm
has been programmed in the JMP Scripting Language (V.
13) and is available as an add-in in JMP®. This

functionality is also built in an R package named multiple
criteria design selection (MCDS) for implementing the
methodology proposed in this paper and is discussed
more in Section 4. This algorithm can be used to identify
the Top N solutions in an enumerated list. The PF must
necessarily contain all solutions that are best for any
weight combination of an L,norm form of a DF* By
extension, a Top N solution for these forms of DFs will
be in the Top N layers of the PF. For example, the second
best solution for a given weight choice of a DF must lie
on either the first or second PF layer. Hence, reducing
the candidate solution set to just consider the Top N
layers of the PF will provide an objective set of superior
solutions that must contain the Top N solutions without
relying on any subjective choices on user priorities.

In the first phase of the TopN-PFS in the JMP add-in,
the PF layers are built by finding groups of nondominated
points. In particular, the points on the traditional PF are
labeled as belonging to layer 1 and then set aside. The
next PF layer is built by examining the remaining points.
The nondominated points on the PF for this reduced set
are labeled as belonging to layer 2 and again set aside.
This process continues until the Top N layers have been
identified. The R MCDS package uses a method employed
in the nondominated sorting genetic algorithm (NSGA-
D" for ranking a population of solutions based on
layers of PFs. Although the two algorithms use slightly
different mechanisms, they serve the same purposes for
finding the Top N layers of PFs from which to select the
Top N solutions. This phase of the algorithm corresponds
to the Reduce step in the DMRCS process’.

In the second subjective stage, DFs' are used to rank
the points from phase 1 for different combinations of
weights on the criteria. The different weights allow users
to compare changes in the solutions when changing the
prioritization of the different criteria. However, the
criteria, which measure different aspects of the potential
choices, are likely measured on different scales. To allow
for a fairer comparison of each criterion, values Xx;,
denoting the j™ value in the dataset for criterion i, are
scaled to values z; such that

Xij — worst;
best; — worst;
worst; — Xij
worst; — best;

, if criterion i is maximized,
Zj =
, if criterion i is minimized,

where worst; and best; are defined as the worst and best
values for the i™ criterion, respectively. These scaled
values are called “desirability scores.” Using these scaling
schemes, a value of 0 corresponds to the worst value and
a value of 1 corresponds to the best value, regardless of
the original scaling or if the goal was to minimize,
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maximize, or hit a target (which is turned into a problem
for minimizing the distance to the target). How best; and
worst; are defined depends on the judgment of the deci-
sion-maker or on the properties of the particular data
set under consideration. In the JMP add-in that was
developed in Burke et al®, four options are available:

(1) The best and worst values are calculated from the
data only in the layered PFs.

(2) The best and worst values are calculated from the
entire dataset.

(3) The best value is calculated from the data in the
layered PFs and the user provides the worst values
for each criterion.

(4) The user provides the best and worst values for each
criterion.

In the case of scaling options 1 or 2, for example, if crite-
rion i is maximized, the worst value would be the mini-
mum in the applicable dataset, while the best value
would be the maximum. If criterion i is minimized in
these scaling scenarios, the reverse is true. In Section 3,
we focus on the first two options for identifying the top
choices of designs, which are also the choices available
in the R package. However, since the original values for
all of the criteria are included in tables, implementing
alternate scaling is straightforward in the JMP add-in.

The third or fourth options for scaling may be appro-
priate when user-specified reference values are available
or if the ranges of the criteria are vastly different. For
example, if the range of criterion 1 covers excellent values
to very poor values while the range for criterion 2 covers
good to fair values, the user may want to supply values
for best; and worst; to balance these ranges. The choice
of scaling can have a substantial impact on the final
designs recommended from the TopN-PFS approach.
Hence, careful thought should be given to ensure that
the choice of scaling matches the decision-maker’s inten-
tions. A sensitivity study should be conducted to under-
stand the impact of the different scaling options.

With the original data transformed to desirability
scores z;; (values between 0 and 1), we can fairly combine
these values and compare them across different weighting
schemes on the criteria. Two common DFs (the additive
and multiplicative DFs) are considered for k criteria:

Add DF; = i wizy,
Multi DF; = [T}z,

where the weights w; > 0 satisfy Zlewi =1, and g; is the
desirability score of the jth solution for the ith criterion.

The choice of DF depends on the priorities of the user.
The multiplicative DF penalizes low criterion values
more than the additive DF. For example, if one choice
performs very poorly for one of the criteria, it is very dif-
ficult for other criterion scores to compensate for this per-
formance. The additive DF, on the other hand, is more
forgiving of low criterion scores since a very high value
for one criterion can override a low value for another cri-
terion. The choice of DF can impact which solutions are
highlighted as best with this algorithm. The effect of the
form of the DF was considered in a simulation study'®.

DF scores are calculated for each solution identified
in phase 1 of the algorithm and across different combina-
tions of weights on the criteria that match the user's pri-
orities. For each weight combination, the DF scores are
ranked from highest to lowest to identify the Top N solu-
tions. This stage of the algorithm corresponds to the
Combine step in the DMRCS process. Graphical summa-
ries for comparing and selecting solutions are illustrated
for the examples shown in Section 3.

One interesting consideration, particularly in the
design of experiments (DOE) application, is how to handle
ties. Without careful handling of ties, it would be easy to
lose track of potentially desirable solutions. Two types of
ties can occur in the TopN-PFS algorithm. The first type
occurs in the first phase and occurs when two or more
solutions have exactly the same values for all criteria. No
matter how we scale the data, these solutions always have
the same values of the criteria. Since we wish to include
any potential solution that performs well for the criteria,
we include all tied solutions. Therefore, to handle ties we
choose a representative solution while building each layer
in the PF. After that layer of the PF has been constructed,
all tied solutions in that layer are added to that layer.

The second type of tie occurs in the second phase of the
TopN-PFS algorithm when we calculate DF scores for all
solutions. More than one solution may have the same DF
score for a particular weight combination of the criteria
even though all the criteria values are not identical. There-
fore, new ties might be introduced at this stage for a given
weight combination. If two or more solutions have the
same DF score and are in the Top N, these tied solutions
are given the same ranking. More than N solutions could
be identified for any weight combination from either
source of ties. Once at least N solutions have been identi-
fied, no additional solutions are included in the ranking.

3 | FIVE-FACTOR 24-RUN
EXAMPLE

To illustrate the method for selecting near-optimal solu-
tions, we use one of the catalogs of two-level screening



BURKE ET AL.

WILEY——°

designs for five factors in 24 runs, enumerated in Schoen
et al® and further described in Jones et al.” The catalog
has 63 nonisomorphic designs, and we refer to the
designs with the numbering from the original catalog.
These designs are strength-2 orthogonal arrays (OAs) that
can be used as alternatives to traditional screening
designs, such as a full factorial or fractional factorial
design. Strength-2 OAs are designs such that any combi-
nation of two columns in the design matrix have all pos-
sible combinations of factor levels occur an equal number
of times. For example, for factors X1 and X2, the factor
level combinations (1,1), (1, —1), (-1, 1), and (-1, —1)
occur the same number of times in the design. Strength-
2 OAs can fit a main effects model (M;) with minimum
variance'®, but unlike factorial designs, they may not
always be able to estimate a main effects and two-factor
interactions model. If the OA can fit this model, it may
not be with minimum variance, and the model terms
may be aliased. As discussed previously, model M, for
five factors has 16 terms. An advantage of using the 24-
run OA for five factors compared with the 237! fractional
factorial design is that the OA has sufficient degrees of
freedom to evaluate all model terms as well as the error
variance. Jones et al’ investigated the properties of
strength-2 OAs for four to six factors. They restricted their
criteria for evaluation to D- and A-efficiency.

To begin the exploration of the designs in the cata-
log, R code was used to calculate summaries across the
categories described in Section 2. Of the 63 designs, only
36 were able to estimate the full main effects with two-
factor interactions model (M,), and hence we restrict our
reporting to those designs, listed in Table 1 with each
design numbered as it was in Schoen et al.® Note that
for some of the criteria, such as AC; in Table 1, there
are several designs tied for the best available value. This
is not uncommon in DOE applications, and appropriate
handling of ties is essential. The strategy of eliminating
clear noncontenders from further consideration matches
with the strategy described in the Reduce step of
DMRCS’ to eliminate choices that are not suitable solu-
tions. The best value across all designs for each of the
criteria is highlighted in bold. Note that Design 4 is best
for a large number of the criteria, including highest D-,
A-, and G-efficiencies and lowest I-criterion value. It is
also best for several of the power summaries and the
average absolute correlation among two-factor interac-
tions. If the goal was strictly to consider the best estima-
tion of model parameters or prediction throughout the
design space for the five-factor scenario, a strong argu-
ment could be made that Design 4 is an ideal choice.

In the Appendix, we include results similar to those in
Table 1 for the case when a reduced model involving only
four (Table Al) or three (Table A2) factors are active.

These results average across the five or 10 subsets, respec-
tively, as one or two factors are removed. Table 2 summa-
rizes the range of values observed across the 36
contending designs for each of five, four, and three fac-
tors active. In general, as the number of factors (and
terms) in the model is reduced, the attainable values
improve for all criteria. Design 4 continues to be one of
the most attractive designs in terms of its performance
on the D-, A-, G-efficiencies, and many of the power and
correlation summaries. However, Design 1 is more
attractive if reduced models with only four active factors
are considered. In this case, Design 1 ties with Design 4
for almost of the criteria for which it is optimal except the
average power for two-factor interactions and the average
correlation between interactions. In addition, Design 1 is
optimal for other criteria including the I-criterion, average
power for main effects, and the average correlation between
main effects and two-factor interactions. Besides Designs 1
and 4, Designs 2 and 3 are also quite competitive for several
criteria. When reduced models with only three active
factors are considered, Design 1 appears to dominate
for almost all criteria except tr(R'R). Note the final
design selection should be based on considering the
criteria that are most relevant to the particular experi-
ment. For example, if subject matter expertise suggests
all design factors are likely to be useful, then the deci-
sion should be made based on the design criteria of
interest summarized over the full dimension of the
five-factor input space.

Recall that each screening experiment has distinct
objectives, and which criteria the experimenter focuses
on should be matched to the testing goals. An experi-
menter might naively suggest that since all of the criteria
described in Section 2 are potentially relevant to a good
screening experiment, all of the criteria should be
included when constructing a high-dimensional PF.
JMP software® allows a PF to be constructed based on
as many criteria as desired. For this example, all 36 of
the contending designs are included on the PF when
including all the criteria, which clearly does not help with
highlighting best designs on which to focus for making
the decision of which experiment to run. This illustrates
the importance of choosing the relevant criteria for a par-
ticular testing scenario to ensure that the most important
priorities of the experiment are well satisfied by the cho-
sen design. Selecting a large number of criteria leads to
both mediocrity in performance of some of the criteria
and a very large number of contending designs remaining
under consideration.

Hence for the remainder of the discussion, we restrict
ourselves to scenarios where the experimenter has care-
fully selected three criteria on which to focus. Both the
R code and the TopN-PFS JMP add-in focus on solutions
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BURKE ET AL.
TABLE 1 Selected criteria values for the Schoen et al® catalog of five-factor designs with 24 runs
D-efficiency A-efficiency I G-efficiency pwr?, pwr2 pwr?,; ACr ACyx1 ACyr tr(AA)?* tr(RRP*
0.719 0.171  0.457 0.857 0.664 0.729 0.111 0 0.048 0.00 240
0.842 0.162 0.571 0.792 0.792 0.792 0.022 0.04 0.029 0.67 224
0.792 0.164  0.400 0.827  0.736  0.766 0.067  0.02 0.038 0.33 232
0.884 0.156 0.792 0.810 0.810 0.810 0.022 0.04 0.029  0.67 224
0.563 0.211  0.299 0.770  0.587  0.648 0.067  0.04 0.048 0.67 224
0.736 0.177  0.461 0.785 0.711 0.736 0.067 0.04 0.048 0.67 224
0.792 0.172  0.400 0.756  0.771  0.766 0.022 0.06 0.038 1.00 216
0.486 0.241  0.169 0.704  0.528 0.587 0.067 0.06 0.057 1.00 216
0.653 0.197 0.294 0.729  0.664 0.686 0.067  0.06 0.057 1.00 216
0.595 0.215 0.287 0.675 0.631 0.646 0.067 0.08 0.067 L33 208
0.443 0.271  0.242 0.600  0.492 0.528 0.111  0.08 0.086 1.33 208
0.604 0.213  0.337 0.682  0.642 0.655 0.067  0.08 0.067 1.33 208
0.215 0.529  0.080 0.341  0.280 0.301 0.111 0.1 0.095 1.67 200
0.792 0.173  0.400 0.751 0.774 0.766 0.022 0.06 0.038 1.00 216
0.359 0.343  0.097 0.503  0.462 0.476 0.067 0.1 0.076 1.67 200
0.387 0.302 0.180 0.588 0.491 0.523 0.067 0.08 0.067 1.33 208
0.736 0.185 0.461 0.711  0.748 0.736 0.022 0.08 0.048 1.33 208
0.595 0.217 0.287 0.667 0.635 0.646 0.067 0.08 0.067 1.33 208
0.595 0.229  0.287 0.595 0.671 0.646 0.022 0.12 0.067 2.00 192
0.604 0.226  0.337 0.603  0.682 0.655 0.022 0.12 0.067 2.00 192
0.359 0.343  0.097 0.488 0.470 0.476 0.067 0.1 0.076 1.67 200
0.653 0.209 0.294 0.642  0.707 0.686 0.022 0.1 0.057 1.67 200
0.359 0.349  0.097 0476 0476 0.476 0.067 0.1 0.076 1.67 200
0.359 0.375 0.097 0.397 0.516 0.476 0.022 0.14 0.076 2.33 184
0.412 0.307 0.216 0.496  0.496 0.496 0.067 0.12 0.086 2.00 192
0.719 0.189 0.457 0.703 0.741 0.729 0.022 0.08 0.048 1.33 208
0.443 0.304 0.242 0466  0.560 0.528 0.022 0.16 0.086 2.67 176
0.443 0.288  0.242 0.526  0.530 0.528 0.067 0.12 0.086 2.00 192
0.215 0.574  0.080 0.292  0.305 0.301 0.067 0.14 0.095 2.33 184
0.486 0.259 0.169 0.608 0.576 0.587 0.067 0.06 0.057 1.67 200
0.563 0.240  0.299 0.593  0.675 0.648 0.022 0.08 0.048 2.00 192
0.387 0.324  0.180 0.508 0.530 0.523 0.067 0.08 0.067 2.00 192
0.387 0.349  0.180 0473  0.548 0.523 0.022 0.12 0.067 2.67 176
0.563 0.243  0.299 0.580 0.682 0.648 0.022 0.08 0.048 2.00 192
0.486 0.279  0.169 0.513  0.624 0.587 0.022 0.1 0.057 2.33 184
0.486 0.282  0.169 0.496  0.632 0.587 0.022 0.1 0.057 2.33 184

52

0.766

The best criteria values are highlighted in boldface.

Abbreviations: ACy, « 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

effects or two-factor interactions; ACy, average correlation over pairs of two-factor interactions; pwrlzw, average power of main effects atr = — = 2; perZWT, aver-
o

age power of main effects and two-factor interactions; pwr., average power of two-factor interactions.

with this constraint and allow two or three criteria to pri-
oritize. With the inclusion of Tables 1, Al, and A2, it is
possible to use performance on other secondary criteria

when making the final decision. In addition to selecting
which criteria to focus on, there are additional decisions
about how to map the raw criterion values to the
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TABLE 2 The table summarizes the best and worst criteria values for selected criteria

Five-factor design

Projection to four-factor designs

Projection to three-factor designs

Criteria Best Worst Best
D-efficiency 0.939 0.646 0.968
A-efficiency 0.884 0.215 0.936
I 0.156 0.574 0.240
G-efficiency 0.792 0.080 0.786
pwriy 0.857 0.292 0.892
pwrz 0.810 0.280 0.870
PWry 0.810 0.301 0.870
ACy 0.022 0.111 0.013
ACv x 1 0 0.16 0
ACh 0.029 0.095 0.022
tr(AA) 0 2.67 0
tr(R'R) 176 240 118

Worst Best Worst
0.872 1 0.958
0.737 1 0.921
0.311 0.346 0.375
0.388 1 0.76
0.749 0.904 0.867
0.783 0.904 0.867
0.770 0.904 0.867
0.067 0 0
0.133 0 0.089
0.076 0 0.053
1.07 0 0.27

144 66 72

Abbreviations: ACy, x 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwr,zw, average power of main effects atr = — = 2; pwrfv,T, aver-
c

age power of main effects and two-factor interactions; pwr, average power of two-factor interactions.

desirability scale and which functional form of the DF to
use. Also, considering that three criteria were chosen as
those of primary interest to focus on during the design
selection process, each criterion should not be given too
small amount of weight when evaluating their contribu-
tion to the total performance. Therefore, we constrain
ourselves to weigh each criterion for at least 20% of the
total weight, which leads to a maximum of 60% weight
contribution for each criterion. In other words, we con-
sider a focused weight region®' in a central triangular
region with w; € [0.2,0.6] in the weight space. While
many choices must be made to implement the method
and different weight regions may be agreed upon by dif-
ferent decision-makers, we find that discussions among
the decision-makers lead to making informed decisions
for each choice. Focusing on the weight region that
covers different priorities from different decision-makers
is an effective way to reach consensus and get more
buy-in for the final decision.

Next we describe some scenarios that consider various
groups of criteria and illustrate how different designs can
emerge as potentially desirable solutions. In selecting
three criteria to examine with the near-optimality
approach, we select aspects of the design which balance
some of the diverse goals of a good experiment'® ® 379,
Table 3 shows 15 scenarios of three criteria evaluated,
where regardless of the method of scaling and DF
employed, we end up with the same conclusion and iden-
tify the same top design. These are chosen from a large
number of sets of three criteria where it was relatively

common to obtain a consistent result when looking at
optimality (strictly best) or near-optimality (close to best).
First, we describe the details of the information summa-
rized in Table 3. The second through fourth columns
define which three criteria are being considered. The next
three columns focus on optimality and identify the best
three designs for maximizing the fraction of weight com-
binations where that design is strictly best. The final three
columns focus on near-optimality by identifying which
three designs have the largest fraction of weight combina-
tions for the chosen three criteria for which the design is
ranked in the top three choices.

To make this more concrete, consider the additive DF
with scaling based on all the designs listed in Table 1. Case
1 prioritizes D-optimality for the five-factor (D), four-factor
(DP*), and three-factor (DP?) scenarios. Design 4 is ranked
in the top three designs for all weight combinations
(100%) for w,D + w,DP* + w,DP? or (D)™ (DP*)"™ (DP*)"™
and is strictly best for 52.4% of the weight combinations
of (wy, w,, w3). Tied for first place based on near-optimality
(fraction of time in top three) is Design 3, but this design is
never top ranked for any weight combination. This high-
lights the value in examining those solutions on N PF
layers rather than just the first PF layer. The third best
design based on near-optimality is Design 1 which is in
the top three for 61.9% of the weight combinations and is
strictly best for 47.6% of them. This indicates that strict
design superiority is often associated with a narrower opti-
mal weight region and hence less robustness to different
user priorities. On the other hand, allowing consideration
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TABLE 3 Sample scenarios when top three and top only methods select the same top design
Optimization criteria Optimality only Near optimality (top three)
Rank =1 Rank = 2 Rank = 3 Rank =1 Rank = 2 Rank = 3

Case 1 2 3 (opt.%) (opt.%) (opt.%) (opt.%) (opt.%) (opt.%)

1 D DP* DP? 4 (52.4) 1 (47.6) NA 4 (100) 3 (100) 1 (61.9)
2 A AP* AP? 4 (52.4) 1 (47.6) NA 4 (100) 3 (100) 1 (68.4)
3 pwrs, pwrp pwrP? 1 (100) NA NA 1 (100) 4 (100) 3 (100)
4 pwrZT pwrZT’p4 pwr2T~P3 4 (96.1) 1(3.9) NA 4 (100) 3 (100) 2(93.9)
5 ACyr ACEE ACES 2(59.3) 4(59.3) 1 (40.6) 2 (100) 3 (100) 4(58.9)
6 tr(AA) tr(AAP* tr(AA P> 1 (100) NA NA 1 (100) 3 (100) 2 (100)
7 tr(R'R) tr(R RP* tr(R Ry> 35 (100) NA NA 35 (100) 49 (100) 28 (100)
8 D I AChi s 4 (59.7) 1 (40.3) NA 4 (100) 3 (100) 1 (57.6)
9 D I tr(AA") 4 (59.7) 1 (40.3) NA 4 (100) 3 (100) 1 (57.6)
10 D I tr(R'R) 4 (64.9) 24 (19.1) 35 (12.6) 4 (67.5) 8 (64.1) 2 (42.4)
11 pwr, ACpsr tr(AA") 4 (87.9) 1(12.1) NA 4 (100) 3 (100) 2 (84)

12 PWIp ACyr tr(R'R) 4 (67.1) 47 (26.4) 50 (26.4) 4 (76.2) 2 (66.2) 8 (55.4)
13 pwr, ACyr DpP 4 (100) NA NA 4 (100) 3 (100) 2 (100)
14 pWI, ACyr DP3 4 (90.5) 1(9.5) NA 4 (100) 3 (100) 2 (87)

15 A G tr(AA"P? 4 (99.6) 1(0.4) NA 4 (100) 2(97.8) 1 (90)

All the sample scenarios select the same top designs by both methods for four desirability functions (DF) and scaling combinations we have evaluated. The
optimal weighting areas reported in the table were calculated using the additive DF with scaling based on all data. The superscripts p3 and p4 indicate the
criteria based on the projected designs with three and four design factors, respectively.

Abbreviations: ACy, « 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

. . . . . . . S
effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwr%,,, average power of main effects atr = — = 2; pwrjzw, aver-
o

age power of main effects and two-factor interactions; pwr, average power of two-factor interactions.

of near-optimality can offer more robustness and broad
acceptance to the final decision. From the design selection
perspective, the decision is dependent on whether the opti-
mal weight region has comfortably covered all of the
weight combinations of interest. If the 47.6% optimal
weight combinations have included all sensible weight
regions for the experiment, then Design 4 should be
selected as the superior design. However, if a broader
weight region needs to be considered for the experiment,
then Design 1 can be a good choice, which offers nearly
as good performance (among leading solutions) for
broader weight regions of interest.

Knowing the fraction of weight combinations for
which a design is optimal or near-optimal does not pro-
vide complete information. Understanding the set of pri-
oritizations for which a design is best can help the
experimenter understand if the design matches their
objectives. Consider case 8 where the priorities of the
experiment are to maximize D-efficiency, minimize the
average SPV or I-criterion'’, and minimize the average
absolute correlation between the main effects and two-
factor interactions for five factors. From Table 3, we see
that for the additive DF with scaling based on all of the

designs listed in Table 1, Design 4 is optimal for 59.7%
of the weight combinations, while Design 1 is optimal
for 40.3% of weights. Design 4 is in the top three designs
for near-optimality for 100% of the weight combinations,
while Design 1 is only ranked in the top three for 57.6%
of the weight combinations. Design 3, on the other hand
is again in the top three for 100% of the weight combina-
tions. Figure 2 introduces a new graphical summary, the
design rank plot (DRP), which highlights the ranking of
each design throughout all of the weight combinations,
with white color for top rank, light gray for second rank,
darker gray for third rank, and darkest gray for ranking
below the top three. In Figure 2A, we see that Design 4
is best with a large white region when D-efficiency (bot-
tom left) and the I-criterion (bottom right) are weighted
most heavily but is ranked third when the average abso-
lute correlation of the main effects with two-factor inter-
actions are weighted more strongly (top). In Figure 2B,
we see that the region for which Design 4 is ranked third
is the set of weight combinations for which Design 1 is
best. The ranking of Design 1 slips out of the top three
for weight combinations where D and I criteria are valued
most. Based on this plot, we can identify which design is
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FIGURE 2 The design rank plot (DRP) for the top two designs selected for case 8 in Table 3 based on the D- & I-efficiencies for the first-
order plus two-factor interaction model and the average correlation between the main and interaction effects. A, The top choice, Design 4

from the catalog, is optimal based on the additive desirability functions (DF) for 59.7% of the total weights and among the top three designs

for all possible weights. B, The 2nd choice, Design 1, is optimal for 40% of the total weights but is among the top three designs for only 57.6%

of the possible weights

better for the regions that are of maximal interest to the
experimenter. This plot complements the synthesized
efficiency plot.> The synthesized efficiency plot focuses
on actual performance relative to the best available
design for a given set of weights as opposed to rankings.
Figure 3 shows the synthesized efficiency plot for case 8
where the criteria considered are D-efficiency, average
SPV, and average absolute correlation between the main
effects and two-factor interactions. In this plot, there are
20 shades of gray between white and black. Regions
shaded white have efficiency that is at least 95% as good
as the best available design (and must include those
regions for which the design is best). The lightest shade
of gray corresponds to a design that is between 90% and
95% efficient, with the next darker shade covering 85%

D2_PJ3

to 90%, and so forth. Both Designs 4 and 1 are at least
85% efficient relative to the best available design across
all weight combinations. The two figures provide detailed
information about both the rank of the design as well as
their relative performance. Overall, Design 4 is desired
if precise estimation is of more interest for considering
all five design factors while Design 1 is preferred if only
three design factors are likely to be active.

If we examine the top designs specified in Table 3, we
see that for a large number of cases, Design 4 is ranked as
best. However, there are some other designs that emerge
as possible choices depending on which criteria have been
identified by the experimenters. In case 3, where maxi-
mum power for the main effects is of interest for the five-
factor (D), four-factor (DP*), and three-factor (DP?)
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FIGURE 3 The synthesized efficiency plot (SEP) for comparing Designs 4 and 1 based on the D-efficiencies for the full dimension of five

factors and projections down to four and three factors
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scenarios, Design 1 is strictly best, with Designs 4 and 3
being near-optimal for 100% of the case but never ranked
first. Case 5 identifies Design 2 as best if the priorities are
to minimize the absolute correlation between the main
effects and the two-way interactions. Design 35 is best if
highest priority is placed on minimizing tr(R'R), which
would lead to minimal bias on the estimate of natural
variability if the main effect model was fit and there were
active two-factor interactions. Seeing how different designs
perform across different options highlights that there
is generally no global winner, and the final choice
should be made by selecting the best choice for the
experiment's priorities.

Next, we consider cases where the choice of the best
design differs depending on the form of the DF and the
scaling and whether we focus on near-optimality or strict
optimality. This is in contrast to the results shown in
Table 3 where the same designs are identified no matter
which scaling method or DF were used. Some interesting
cases are summarized in Table 4. The structure of the
table differs slightly from that in Table 3 with the addi-
tion of two columns that describe what form of the DF
and what scaling method was used. For entries in this
table, more difficult trade-offs between designs may be
needed to determine which design is best for a particular
scenario. Consider case 1 from Table 4 where the focus is
on maximizing power for all terms in the main effects
with two-factor interaction model for five-, four-, and
three-factor models. If we focus on optimality only, the
design which is ranked first for the largest range of
weight combinations is Design 1 with 63.2% of the region.

Design 4 is second with 36.8% of the region. However, if
we consider near-optimality, then Design 4 is ranked in
the top three for 100% of the weight combinations, com-
pared with 78.4% of the region for Design 1. In addition,
the experimenter should examine for which weight com-
binations the designs are ranked best, second, or third.
Figure 4 shows the regions where each design ranks in
various places. Design 1 is best primarily when more
emphasis is placed on scenarios where only three or four
factors are active. Design 4 is best when the full five-
factor model is considered but remains ranked in the
top three for all weight combinations.

Figure 5 looks at the synthesized efficiency plot for
Designs 1 and 4 to see how much lost efficiency exists
for the designs across all of the weight combinations.
Since only white and the lightest shade of gray are pres-
ent in the plots, both Designs 1 and 4 are at least 90% effi-
cient relative to the best available design at any weight
combination of the criteria. Since the designs seem to be
quite similar in performance for the primary criteria for
this case, it can be helpful to look at Table 1 (and possibly
Al and A2) for information about other secondary
criteria that might also be of interest. As mentioned in
Section 2, some of the criteria were reduced to single
number summaries for ease of comparison, but since this
choice between Designs 1 and 4 involves more complex
trade-offs, it can also be helpful to look at some graphical
summaries to help reveal more details. If prediction
throughout the design space is of interest, the FDS plot
shown in Figure 6A can help provide additional details
about SPV values. On the basis of this summary, Design

TABLE 4 Sample scenarios when top three and top only methods select different top designs

Optimization criteria Optimality only Near-optimality (top three)
Rank =1 Rank=2 Rank=3 Rank=1 Rank=2 Rank=3
Case DF Scale 1 2 3 (opt.%) (opt.%) (opt.%) (opt.%) (opt.%) (opt.%)
1 Add All pwri Pwriff‘ pwrﬁ; 1(63.2) 4 (36.8) NA 4 (100) 3 (100) 1(78.4)
2 Add Al pwr?,  ACur  tr(AA) 1 (64.5) 4(355) NA 4 (100) 3 (100) 1 (71.0)
3 Add Al pwrd  ACyr  t(RR) 4(429) 50 (38.1) 52 (14.7) 50 (61) 4(541)  52(45.9)
4 Add Al pwry,  ACyr AP 1(63.2) 4(36.8) NA 4 (100) 3 (100) 1 (70)
5 Add Al pwry,  ACyry  DP? 1(61.9) 4(381) NA 4 (100) 3 (100) 1 (68.4)
6 Add Al pwr},  ACyr I 1(52.4) 4(47.6)  NA 4 (100) 3 (100) 1 (60.6)
7 Add Al pwry,  ACyr  G” 1 (64.5) 4(355) NA 4 (100) 3 (100) 1(71)
8 Multi ~ All D I tr(R'R) 19 (42.9) 24 (37.2) 26 (10.4)  26(57.6) 19 (54.6) 24 (49.4)
9 Multi  All A G tr(RRY>  4(701) 19 (16) 24 (13.9) 19 (97) 4(771)  34(65.8)
10 Add  PF I P 3 1 (75.8) 4 (24.2) NA 4 (100) 3 (100) 1 (97)

The superscripts p3 and p4 indicate the criteria based on the projected designs with three and four design factors, respectively.

Abbreviations: ACy, x 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main
effects or two-factor interactions; ACy, average correlation over pairs of two-factor interactions; DF, desirability functions; pwrjz\,,, average power of main effects

3 . . . . .
at r = — = 2; pwri,;, average power of main effects and two-factor interactions; pwr3., average power of two-factor interactions.
o
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FIGURE 4 The design rank plot (DRP) for comparing Design 1 selected by considering only top design vs. Design 4 selected by considering

top three designs for case 1 in Table 4 based on the following three criteria: pwry,r (the average power for all main effects and two-factor
interactions for the five-factor model), pwr‘jf,‘T (average over five models projected down to four design factors), and pwr‘j}T (average over 10

models projected down to 3 design factors)
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FIGURE 5 The synthesized efficiency plot (SEP) for comparing Design 1 selected by considering only top design vs. Design 4 selected by

considering top three designs for case 1 in Table 4 based on the following three criteria: pwrr, pwrﬁT, and pwrb;,

4 is superior (lower and flatter) throughout the region
than Design 1. Similarly, if one of the secondary criteria
of interest is the absolute correlation between terms in
the model, the correlation color maps provide more detail
than the averages reported in Table 1. In examining the
two designs, we see that Design 1 has zero correlations
between the main effects and all two-factor interactions
while having more nonzero correlations between pairs
of interactions. Design 4 has fewer overall nonzero corre-
lations, but this includes some between main effects and
two-factor interactions. Again, we see that choosing
between the two designs involve trade-offs with no uni-
versal winner. The experimenter will need to carefully
consider what to prioritize between competing objectives.

Consider case 9 in Table 4, a specialized case to illus-
trate a different pair of top designs. In this scenario,
assume that a multiplicative DF with scaling based on
all of the designs in Table 1 is of interest. The selected
three primary criteria are A-efficiency, G-efficiency, and

tr(R'R) for models based on three-factor models. For this
scenario, the top design based on optimality is Design 4,
which is top ranked for 70.1% of the weight combina-
tions. However, if we are focused on near-optimality,
then Design 19 is ranked in the top three for 97% of the
weight combinations. Figure 7 shows the DRP for these
two designs and highlights that Design 4 is best for
weight combinations where A- and G-efficiencies are
weighted more highly. Design 19 is top ranked for only
16% of weight combinations in a region where tr(RR) is
weighted about 40%-45%. When we examine the synthe-
sized efficiency plots for these two designs in Figure 8,
we see that the range of efficiencies across the different
weight combinations varies considerably more than in
previous cases. Here the worst efficiency can be quite
small relative to the best available design, and so the
trade-offs between the alternatives are more severe.
Figure 9 shows the mixture plot from the TopN-PFS
add-in with the ranking of the top designs for different
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FIGURE 6 Other graphical summaries to support further design comparison among the selected top designs (Designs 1 & 4) based on
using the criteria pwry;r, pwr‘,(,‘,lT, and pwr‘,f;T [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 The design rank plot (DRP) for comparing Design 4 selected by considering only top design vs. Design 19 selected by

considering top three designs based on the following three criteria (case
tr(R'R) for 10 designs projected down to three factors)

weight combinations when the A-efficiency weight is
fixed at 0.5. Results are shown for cases when the weights
for the other two criteria are varied across the range of

9 in Table 4): A-efficency, G-efficiency, and tr(R R)** (the average

options from 0 to 0.5. For example, when the weights
are (W4, Wg, Wy(pr ) = (0.5,0.3,0.2), the top three
designs are Design 4 (black), Design 2 (medium gray),
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FIGURE 8 The synthesized efficiency plot (SEP) for comparing Design 4 selected by considering only top design vs. Design 19 selected by
considering top three designs based on the following three criteria: A-efficency, G-efficiency, and tr(R' RY* (the average tr(R R) for 10 designs

projected down to three factors)
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=
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FIGURE 9 The mixture plot from the
JMP add-in for showing the top three

designs with the weight of A, fixed at 50%, ]
and the weights for other criteria varying
between 0 and 50%. Darker to lighter gray

shades indicate high to low ranks Where(wt A2 = 0.5)

and Design 19 (lighter gray). This provides a complement
to the information in Figures 7 and 8 for the two specific
designs compared.

If we introduce secondary criteria to consider,
Figure 10 shows the FDS and correlation color maps for
the two designs. Again, Design 4 has superior performance
with lower SPV values throughout the design region. The
color map also shows Design 4 has fewer nonzero correla-
tions between terms in the model and fewer between main
and two-factor interaction terms. Although this case has
rather specialized criteria that have been considered, it is
helpful to examine how the described process for examin-
ing top designs for both optimality and near-optimality
can lead to better understanding of their performance
when different facets of the decision are considered.

With the R code provided, any set of three criteria
selected of primary importance for the experimenter can
be evaluated with quantification of the fraction where the
designs are ranked first or in the Top N. In addition, the
design rank and the synthesized efficiency plots enhance
that information with more detail about which weight
combinations are associated with higher performance for
which criteria. The complete summary table with all 69
criteria values as well as the other supporting graphical
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153 Optimal Level

NS
ubisag

26
34

T

wt G2

(Wt trRR1_PJ3 = 1 - wt G2 - wt A2)

summaries such as the FDS plot and correlation map add
additional information to help break ties and choose
between the most competitive designs.

In addition to the 24-run designs presented in detail
here, there are other catalogs of relevant designs pre-
sented in Schoen et al (2010).°. In Table B1, we supply
some matching criteria values for a subset of the designs
from the catalog for five factors and 28 runs. Best values
for each column are shown in bold. Again designs for
which the D- and A-efficiency values were extremely poor
have been removed for brevity. When similar sets of three
criteria are selected for this catalog, there is greater con-
sistency of results between the optimality and near-
optimality rankings. This is perhaps explained by the
larger design size relative to number of terms in the model
to be estimated. As there is less pressure on the designs
with more generous sample sizes, the trade-offs between
designs become less extreme.

4 | RAND JMP TOOLS

This section describes the available R package for calcu-
lating all the criterion values for the catalog described
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FIGURE 10 Other graphical summaries to support further design comparison among the selected top designs (Designs 4 & 19) based on
the three criteria A- and G-efficiencies and tr(R R)*® [Colour figure can be viewed at wileyonlinelibrary.com]

and examining groups of criteria to identify the Top N
ranked choices for any weight combination of any of
the available criteria. In addition, it summarizes the
functionality of the TopN-PFS JMP add-in.

4.1 | R package MCDS

The R package MCDS, available from the authors by
request, contains functions for performing two main
tasks. The first is design evaluation based on the large
set of diverse design criteria discussed in Section 2 while
the second task is design selection and comparison. This
second task is performed based on user-selected subsets
of three criteria using both the optimality (finding only
the best choice) and near-optimality (considering those
choices ranked in the Top N) approaches. The main
design evaluation function calculates 34 design criteria
for each candidate design in a user-provided list of
design matrices with five factors. The criteria include
all 23 criteria used for the 24-run design illustrated in
Section 3 and additional 12 criteria that are generally of
interest to designs with three or higher levels for

each factor and considering second- or third-order
models. Two additional design evaluation functions
can evaluate the list of designs based on the average
performance of smaller designs considering all subsets
of fewer active factors (particularly for three or four
active factors). A summary table (similar to Table 1) with
up to 102 calculated design criteria values is automati-
cally generated.

For the second task, the package considers three
criteria as the primary quantitative criteria for design
selection. This restriction is based on the consideration
that including too many design criteria often results in
too many choices remaining in the Reduce stage of
DMRCS. This typically results in a list of choices that is
hard to manage and selects designs with mediocre perfor-
mance. The package offers the flexibility for the users to
explore different combinations of the three chosen design
criteria for understanding trade-offs and comparing solu-
tions. After applying the optimality- and near-optimality—
based design selection approaches, the package creates
summary tables (similar to Tables 3 & 4) to show the
top 3 choices with the corresponding weight regions to
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TABLE 5 The table summarizes the selected best and worst criteria values for the 28-run designs

Five-factor design

Projection to four-factor designs

Projection to three-factor designs

Criteria Best Worst Best
D-efficiency 0.941 0.640 0.971
A-efficiency 0.883 0.185 0.942
I 0.156 0.668 0.243
G-efficiency 0.759 0.041 0.747
pwriy 0.895 0.299 0.927
pwrz 0.895 0.316 0.927
PWry 0.895 0.323 0.927
ACy 0.048 0.086 0.029
ACy x T 0.086 0.171 0.071
ACh 0.061 0.110 0.048
tr(AA) 0.61 3.06 0.25
tr(R'R) 194 263 134

Worst Best Worst
0.859 0.991 0.954
0.711 0.982 0.910
0.317 0.351 0.378
0.362 0.875 0.742
0.813 0.942 0.913
0.834 0.942 0.913
0.831 0.942 0.913
0.051 0 0
0.143 0.048 0.095
0.086 0.029 0.057
1.22 0.06 0.31

161 75 82

Abbreviations: ACy, x 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwr,zw, average power of main effects atr = — = 2; pwrfv,T, aver-
c

age power of main effects and two-factor interactions; pwr, average power of two-factor interactions.

indicate robustness of performance using the two
methods for all specified combinations of criteria.

The package also has four functions to generate four
graphical summaries (design rank plot, synthesized
efficiency plot, fraction of design space plot, and the
correlation color map) to facilitate descriptive design
comparisons between the identified top choices. The
package also allows exploration of smaller weight regions
as specified by lower bounds for individual criteria within
the entire weight space when more focused user priori-
ties®! are desired. The details of all of the designs consid-
ered in the 24-run example illustrated in Section 3 with a
list of different combinations of interested design criteria
are also included in the package to illustrate the use of
the main functions.

4.2 | JMP add-in, TopN-PFS

The JMP add-in implements the TopN-PFS algorithm
described in Section 2. The add-in has a user-interface
that allows the experimenter to customize the results
based on the priorities of a given test. Given a table
with enumerated criteria for each solution, the add-in
identifies the solutions in the Top N layered PFs in
addition to several graphical summaries to help guide
the experimenters to a decision. The user first specifies
which columns in the data table contain the criteria of
interest in addition to an ID column. The user can
then enter in required specifications for their scenario.

These include the number of PF layers to extract, how
to scale the criteria, the DF, and which graphical summa-
ries to display.

All results are shown in a new window that iden-
tifies on which PF layer each solution lies in both a
table and in a pairwise scatterplot matrix. Other graphi-
cal displays include the mixture plot, proportion plot,
parallel plot, and synthesized efficiency plot. The mix-
ture plot uses gray-scale coloring to show the Top N
solutions across all evaluated weight combinations. The
proportion plot is a stacked bar chart that indicates
how frequently each solution is a Top N solution across
all weight combinations of the criteria. The parallel plot
allows the user to visually examine the trade-offs of one
solution over another in terms of the scaled criteria
values. Finally, the synthesized efficiency plot, similar
to the mixture plot, shows the robustness of each solu-
tion across the weight combinations. Across each weight
combination, scaled DF scores to the best solution at
that weight combination are graphed for each solution.
Dark blue boxes in this plot indicate the DF score for
that solution is very similar to the optimal solution at
that weight combination. Light blue boxes indicate poor
performance relative to the optimal solution at that
weight combination.

The TopN-PFS add-in is available on the JMP user
community page (https://community.jmp.com/t5/JMP-
Add-Ins/Top-N-Pareto-Front-Search-for-Structured-Deci-
sion-Making/ta-p/36527). A user-guide is included on this
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page. In addition, the add-in itself includes a help file in
the opening dialog box that includes an example demon-
strating the capabilities of the add-in.

5 | CONCLUSIONS

In this paper we have described an approach to consider
near-optimal performance with improved robustness to
broad user priorities as a complement to strictly optimal
performance for more restricted prioritization of a set of
design criteria suitable for a particular experiment. A first
most important consideration in the process of selecting a
design for a testing scenario is to think carefully about the
priorities of the study and how to measure these aspects
with quantitative measures. Section 2 outlines a number
of different criteria that may be suitable for different
experiments. Often for screening experiments, good esti-
mation of the model parameters using D- or A-optimality
is a primary consideration. However, this objective can be
complemented with other characteristics of the design
that provide protection against things going wrong or
flexibility if the model is different from the one that was
originally anticipated. Choosing the right set of objectives
over which to optimize is a key to obtaining the best
design for the experiment.

Once the criteria have been selected, then a PF
approach can be wused to objectively eliminate
noncontending choices from further consideration. This
helps keep the decision space manageable while focusing
on the most promising contenders. The novel approach
proposed in this paper is to value near-optimality with
improved robustness to different user priorities as a com-
plement to more localized strictly optimal performance.
Since different people and organizations using the results
from operational tests (or in other applications) often have
divergent views of the importance of the different objec-
tives of the test, selecting a method that allows for these
different priorities to be considered and evaluated is bene-
ficial. We show that there are situations where selecting a
design with near-optimality for more robust combinations
of the different criteria compared with selecting a local
optimal design under more restricted conditions can be a
good strategy to balance these divergent views when
selecting the designed experiment to implement.

The method of considering how frequently designs
are ranked first for different weights of a desirability
function demonstrates one level of robustness. We
extend this with identifying the top designs that are
ranked in the Top N choices for the greatest fraction of
weights of interest for the desirability function form cho-
sen to demonstrate robustness based on considering
near-optimality. We illustrate the method for a catalog

of five-factor 24-run designs and show that different
choices of sets of criteria to use for selecting the design
make an important difference in the preferred design.
Clearly there is no universal winner, and what is impor-
tant for the experiment goals should be reflected in the
choice of final design. Tables of criteria values for
diverse objectives are provided as well as some summa-
ries of the leading designs for selecting subsets of the
criteria. A table of criteria values for a catalog of five-fac-
tor 28-run designs® is also provided to allow a practi-
tioner considering this design scenario to conduct their
own selection process (Table 5).

Note that the availability of an existing catalog of
designs to explore does offer advantages of having deeper
understanding of the possible choices across the design
space of interest and a simplified design construction pro-
cess (select from the list instead of search through a large
design space). However, the proposed method of using
the layered Pareto front approach to evaluate near-
optimal designs for improving the robustness of selected
designs to different user priorities can be adapted for
the more general practice where designs are constructed
from scratch for evaluation and selection. This requires
development of a search algorithm for identifying the
layered Pareto fronts based on the multiple criteria.
Existing algorithms for searching the regular PFs such
as the PAPE algorithm? and its variations'*, genetic algo-
rithms', and NSGA-II algorithms'®'” can be adapted
with the similar design selection process outlined in
Section 2.2 built in the search algorithm for seeking the
layered PFs.

With the great flexibility offered by the proposed
method to explore broader choices of design criteria and
user priorities, it requires the experimenters to (a) be suf-
ficiently DOE-informed, (b) understand what are the
important characteristics to consider for design selection
(see page 370 of Myers et al'® for a useful list of design
properties), (c) understand which characteristics are most
relevant or important to their particular experiment, and
(d) understand which criteria are useful for measuring
those characteristics. We recommend all DOE decision-
makers to make this important investment prior to using
any design optimization and selection tools to avoid mak-
ing naive or undesirable decisions. The proposed method
is advantageous on offering tools and procedures to
explore different possibilities and uncovering the hidden
trade-offs that are critical to select the best design for
their particular experimental goals and supporting more
informed and justifiable decisions.

Finally, a reviewer suggested that there may be other
approaches than looking at ranks to combine the informa-
tion about each design's performance. Perhaps a weighted
sum or average of the raw metrics might be used.
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APPENDIX

TABLE Al Selected projection criteria values for Jones et al® catalog of five-factor designs with 24 runs averaged over five designs
projected down to four design factors

Design  DP* AP* P (e pwrt  pwrP pwrRt ACK ACh ., ACY, @A)t w(@®RP
1 0.968 0.936 0.240 0.786 0.892 0.855 0.870 0.067 0.000 0.022 0.00 144
2 0.968 0.936 0.244 0.786 0.870 0.870 0.870 0.013 0.033 0.022 0.27 138
3 0.968 0.936 0.242 0.786 0.881 0.862 0.870 0.040 0.017 0.022 0.13 141
4 0.968 0.936 0.244 0.786 0.870 0.870 0.870 0.013 0.033 0.022 0.27 138
6 0.935 0.868 0.260 0.691 0.864 0.814 0.834 0.040 0.033 0.031 0.27 138
7 0.954 0.905 0.250 0.707 0.866 0.849 0.856 0.040 0.033 0.031 0.27 138
8 0.954 0.905 0.253 0.707 0.854 0.857 0.856 0.013 0.050 0.031 0.40 134
9 0.920 0.837 0.268 0.613 0.849 0.801 0.820 0.040 0.050 0.040 0.40 134
10 0.939 0.874 0.259 0.629 0.850 0.836 0.842 0.040 0.050 0.040 0.40 134
11 0.924 0.843 0.267 0.550 0.834 0.823 0.827 0.040 0.067 0.049 0.53 131
12 0.909 0.811 0.273 0.471 0.830 0.802 0.813 0.067 0.067 0.058 0.53 131
13 0.924 0.843 0.267 0.550 0.834 0.823 0.827 0.040 0.067 0.049 0.53 131
15 0.894 0.780 0.281 0.393 0.815 0.789 0.799 0.067 0.083 0.067 0.67 128
16 0.954 0.905 0.253 0.707 0.852 0.858 0.856 0.013 0.050 0.031 0.40 134
17 0.909 0.811 0.276 0.471 0.817 0.811 0.813 0.040 0.083 0.058 0.67 128
18 0.905 0.805 0.277 0.534 0.831 0.789 0.806 0.040 0.067 0.049 0.53 131
19 0.939 0.874 0.261 0.629 0.837 0.845 0.842 0.013 0.067 0.040 0.53 131
21 0.924 0.843 0.267 0.550 0.832 0.824 0.827 0.040 0.067 0.049 0.53 131
22 0.909 0.811 0.279 0.471 0.801 0.821 0.813 0.013 0.100 0.058 0.80 125
24 0.909 0.811 0.279 0.471 0.799 0.823 0.813 0.013 0.100 0.058 0.80 125
25 0.909 0.811 0.276 0.471 0.817 0.811 0.813 0.040 0.083 0.058 0.67 128
26 0.924 0.843 0.270 0.550 0.819 0.833 0.827 0.013 0.083 0.049 0.67 128
27 0.909 0.811 0.276 0.471 0.815 0.812 0.813 0.040 0.083 0.058 0.67 128
28 0.894 0.780 0.287 0.393 0.784 0.809 0.799 0.013 0.117 0.067 0.93 122
31 0.894 0.780 0.284 0.393 0.799 0.799 0.799 0.040 0.100 0.067 0.80 125
34 0.938 0.876 0.264 0.702 0.833 0.841 0.838 0.013 0.067 0.040 0.53 131
35 0.878 0.752 0.299 0.388 0.763 0.794 0.781 0.013 0.133 0.076 1.07 118
36 0.893 0.783 0.287 0.466 0.796 0.795 0.795 0.040 0.100 0.067 0.80 125
40 0.878 0.752 0.296 0.388 0.778 0.783 0.781 0.040 0.117 0.076 0.93 122
43 0.902 0.800 0.290 0.597 0.799 0.798 0.798 0.040 0.050 0.040 0.67 128
47 0.902 0.800 0.293 0.597 0.785 0.807 0.798 0.013 0.067 0.040 0.80 125
48 0.887 0.768 0.299 0.519 0.781 0.787 0.784 0.040 0.067 0.049 0.80 125
49 0.872 0.737 0.311 0.440 0.749 0.785 0.770 0.013 0.100 0.058 1.07 118
50 0.902 0.800 0.294 0.597 0.782 0.810 0.798 0.013 0.067 0.040 0.80 125
51 0.887 0.768 0.303 0.519 0.766 0.796 0.784 0.013 0.083 0.049 0.93 122
52 0.887 0.768 0.303 0.519 0.764 0.798 0.784 0.013 0.083 0.049 0.93 122

The best criteria values are highlighted in boldface. The superscript p4 indicates the criteria based on the projected designs with four design factors.
Abbreviations: ACy, x 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main
effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwrlzw, average power of main effects atr = 5 =2; PW”zzvns aver-

age power of main effects and two-factor interactions; pwr, average power of two-factor interactions.
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TABLE A2 Selected projection criteria values for Jones et al® catalog of five-factor designs with 24 runs averaged over 10 designs projected

down to three-design factors

Design

O 0 N O A W N =

v v AR R R R WOW W WNNN NN NN R B R R HE R Rl
= O OV 00 N W o O wn ks 0N TR NDH O 0NN YWD E O

52

Dp3

1.000
0.990
0.995
0.990
0.990
0.990
0.985
0.985
0.985
0.980
0.980
0.980
0.975
0.985
0.975
0.980
0.980
0.980
0.970
0.970
0.975
0.975
0.975
0.966
0.970
0.980
0.961
0.970
0.966
0.973
0.968
0.968
0.958
0.968
0.963
0.963

AP3

1.000
0.981
0.990
0.981
0.981
0.981
0.971
0.971
0.971
0.961
0.961
0.961
0.952
0.971
0.952
0.961
0.961
0.961
0.942
0.942
0.952
0.952
0.952
0.932
0.942
0.961
0.923
0.942
0.932
0.950
0.940
0.940
0.921
0.940
0.930
0.930

P

0.346
0.352
0.349
0.352
0.352
0.352
0.355
0.355
0.355
0.357
0.357
0.357
0.360
0.355
0.360
0.357
0.357
0.357
0.363
0.363
0.360
0.360
0.360
0.366
0.363
0.357
0.368
0.363
0.366
0.367
0.370
0.370
0.375
0.370
0.372
0.372

GP3

1.000
0.940
0.970
0.940
0.940
0.940
0.910
0.910
0.910
0.880
0.880
0.880
0.850
0.910
0.850
0.880
0.880
0.880
0.820
0.820
0.850
0.850
0.850
0.790
0.820
0.880
0.760
0.820
0.790
0.907
0.877
0.877
0.817
0.877
0.847
0.847

pwryf?
0.904
0.897
0.900
0.897
0.897
0.897
0.893
0.893
0.893
0.889
0.889
0.889
0.886
0.893
0.886
0.889
0.889
0.889
0.882
0.882
0.886
0.886
0.886
0.879
0.882
0.889
0.875
0.882
0.879
0.878
0.874
0.874
0.867
0.874
0.871
0.871

pwriP?
0.904
0.897
0.900
0.897
0.897
0.897
0.893
0.893
0.893
0.889
0.889
0.889
0.886
0.893
0.886
0.889
0.889
0.889
0.882
0.882
0.886
0.886
0.886
0.879
0.882
0.889
0.875
0.882
0.879
0.878
0.874
0.874
0.867
0.874
0.871
0.871

2.p3
PWryr

0.904
0.897
0.900
0.897
0.897
0.897
0.893
0.893
0.893
0.889
0.889
0.889
0.886
0.893
0.886
0.889
0.889
0.889
0.882
0.882
0.886
0.886
0.886
0.879
0.882
0.889
0.875
0.882
0.879
0.878
0.874
0.874
0.867
0.874
0.871
0.871

ACP?
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

ACﬁXT
0.000
0.022
0.011
0.022
0.022
0.022
0.033
0.033
0.033
0.044
0.044
0.044
0.056
0.033
0.056
0.044
0.044
0.044
0.067
0.067
0.056
0.056
0.056
0.078
0.067
0.044
0.089
0.067
0.078
0.033
0.044
0.044
0.067
0.044
0.056
0.056

ACY,
0.000
0.013
0.007
0.013
0.013
0.013
0.020
0.020
0.020
0.027
0.027
0.027
0.033
0.020
0.033
0.027
0.027
0.027
0.040
0.040
0.033
0.033
0.033
0.047
0.040
0.027
0.053
0.040
0.047
0.020
0.027
0.027
0.040
0.027
0.033
0.033

tr(4A")?3
0.00
0.07
0.03
0.07
0.07
0.07
0.10
0.10
0.10
0.13
0.13
0.13
0.17
0.10
0.17
0.13
0.13
0.13
0.20
0.20
0.17
0.17
0.17
0.23
0.20
0.13
0.27
0.20
0.23
0.17
0.20
0.20
0.27
0.20
0.23
0.23

tr(R R)P?
72
70
71
70
70
70
70
70
70
69
69
69
68
70
68
69
69
69
67
67
68
68
68
66
67
69
66
67
66
68
67
67
66
67
66
66

The best criteria values are highlighted in boldface. The superscript p3 indicates the criteria based on the projected designs with three design factors.

Abbreviations: ACy x 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

. . . . . . . S
effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwr%,,, average power of main effects atr = — = 2; pwrlzw, aver-
c

age power of main effects and two-factor interactions; pwr., average power of two-factor interactions.
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TABLE B1 Selected criteria values for Jones et al’ catalog of five-factor designs with 28 runs

Design D-efficiency A-efficiency I

1

O 0 N O B R W

A A B B W W W W W W W WNN NN NN NN DN DD E R R E =
W N EF O N R WD EF O O 0NN R WD HE O VO NN YRR W N = O

0.941
0.896
0.937
0.850
0.897
0.853
0.935
0.896
0.893
0.941
0.852
0.941
0.791
0.794
0.788
0.896
0.853
0.858
0.827
0.858
0.897
0.893
0.860
0.860
0.752
0.807
0.896
0.852
0.852
0.897
0.858
0.896
0.856
0.853
0.821
0.856
0.798
0.706
0.752
0.797
0.798

0.883
0.779
0.872
0.669
0.782
0.686
0.867
0.770
0.760
0.881
0.678
0.881
0.542
0.551
0.531
0.770
0.676
0.702
0.664
0.702
0.782
0.760
0.716
0.716
0.475
0.573
0.779
0.668
0.668
0.782
0.702
0.770
0.679
0.676
0.629
0.679
0.512
0.372
0.475
0.555
0.512

0.156
0.170
0.158
0.188
0.169
0.184
0.159
0.171
0.173
0.156
0.186
0.156
0.216
0.213
0.219
0.178
0.194
0.187
0.200
0.195
0.175
0.180
0.185
0.191
0.247
0.218
0.176
0.196
0.204
0.175
0.189
0.179
0.201
0.202
0.209
0.193
0.240
0.313
0.246
0.223
0.250

G-efficiency pwri,

0.759
0.451
0.492
0.289
0.398
0.338
0.577
0.270
0.362
0.634
0.324
0.634
0.292
0.263
0.239
0.270
0.283
0.319
0.456
0.319
0.398
0.362
0.448
0.448
0.234
0.256
0.451
0.323
0.323
0.398
0.319
0.270
0.279
0.283
0.302
0.279
0.159
0.168
0.234
0.202
0.159

0.895
0.884
0.891
0.873
0.884
0.877
0.889
0.882
0.876
0.894
0.873
0.894
0.866
0.871
0.864
0.833
0.817
0.833
0.791
0.783
0.840
0.827
0.836
0.791
0.788
0.793
0.837
0.813
0.763
0.837
0.826
0.827
0.762
0.760
0.768
0.819
0.755
0.668
0.792
0.792
0.698

pwry
0.895
0.837
0.891
0.758
0.839
0.770
0.889
0.831
0.827
0.894
0.764
0.894
0.664
0.669
0.653
0.856
0.789
0.804
0.791
0.829
0.861
0.852
0.813
0.836
0.622
0.702
0.860
0.788
0.813
0.862
0.808
0.859
0.819
0.817
0.768
0.791
0.656
0.546
0.620
0.692
0.684

pwripy
0.895
0.852
0.891
0.796
0.854
0.806
0.889
0.848
0.844
0.894
0.801
0.894
0.732
0.736
0.723
0.848
0.798
0.814
0.791
0.814
0.854
0.844
0.821
0.821
0.677
0.733
0.852
0.796
0.796
0.854
0.814
0.848
0.800
0.798
0.768
0.800
0.689
0.586
0.677
0.725
0.689

ACr

0.048
0.067
0.048
0.086
0.067
0.086
0.048
0.067
0.067
0.048
0.086
0.048
0.086
0.086
0.086
0.048
0.067
0.067
0.067
0.048
0.048
0.048
0.067
0.048
0.086
0.086
0.048
0.067
0.048
0.048
0.067
0.048
0.048
0.048
0.067
0.067
0.086
0.086
0.086
0.086
0.067

ACM X T ACMT

0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.103
0.103
0.103
0.120
0.120
0.103
0.103
0.103
0.120
0.103
0.103
0.103
0.103
0.120
0.103
0.103
0.103
0.120
0.120
0.120
0.103
0.103
0.120
0.103
0.103
0.120

0.061
0.069
0.061
0.078
0.069
0.078
0.061
0.069
0.069
0.061
0.078
0.061
0.078
0.078
0.078
0.069
0.078
0.078
0.086
0.078
0.069
0.069
0.078
0.078
0.086
0.086
0.069
0.078
0.078
0.069
0.078
0.069
0.078
0.078
0.086
0.078
0.086
0.094
0.086
0.086
0.086

WILEY——2

tr(AA) tr(R'R)

0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
1.10
1.10
1.10
1.59
1.59
1.10
1.10
1.10
1.59
1.10
1.10
1.10
1.10
1.59
1.10
1.10
1.10
1.59
1.59
1.59
1.10
1.10
1.59
1.10
1.10
1.59

263
263
263
263
263
263
263
263
263
263
263
263
263
263
263
249
249
249
235
235
249
249
249
235
249
249
249
249
235
249
249
249
235
235
235
249
249
235
249
249
235

(Continues)
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Design D-efficiency A-efficiency I

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

0.850
0.853
0.754
0.805
0.806
0.853
0.753
0.750
0.722
0.798
0.807
0.852
0.753
0.752
0.772
0.750
0.753
0.738
0.853
0.806
0.806
0.853
0.754
0.657
0.738
0.666
0.850
0.805
0.798
0.850
0.798
0.656
0.805
0.656
0.797
0.752
0.852
0.754
0.754
0.657

0.669
0.686
0.470
0.581
0.581
0.686
0.443
0.464
0.286
0.550
0.573
0.678
0.443
0.432
0.460
0.464
0.443
0.394
0.686
0.581
0.581
0.686
0.470
0.185
0.394
0.254
0.669
0.581
0.512
0.669
0.512
0.242
0.581
0.242
0.555
0.432
0.678
0.470
0.470
0.185

0.195
0.192
0.263
0.215
0.215
0.191
0.279
0.263
0.413
0.225
0.226
0.193
0.279
0.285
0.260
0.264
0.291
0.309
0.199
0.225
0.235
0.200
0.265
0.647
0.343
0.468
0.204
0.226
0.253
0.205
0.265
0.497
0.234
0.552
0.246
0.298
0.201
0.287
0.277
0.668

G-efficiency pwr,

0.289
0.338
0.220
0.279
0.283
0.338
0.171
0.166
0.073
0.244
0.256
0.324
0.171
0.179
0.144
0.166
0.171
0.181
0.338
0.283
0.283
0.338
0.220
0.041
0.181
0.079
0.289
0.279
0.159
0.289
0.159
0.096
0.279
0.096
0.202
0.179
0.324
0.220
0.220
0.041

0.817
0.822
0.700
0.804
0.801
0.826
0.680
0.706
0.532
0.784
0.738
0.820
0.674
0.662
0.742
0.703
0.629
0.640
0.770
0.736
0.686
0.769
0.685
0.337
0.577
0.445
0.761
0.734
0.682
0.754
0.618
0.417
0.685
0.308
0.658
0.606
0.764
0.587
0.631
0.299

pwry
0.786
0.797
0.630
0.709
0.711
0.795
0.619
0.618
0.481
0.689
0.730
0.791
0.622
0.606
0.608
0.620
0.645
0.609
0.824
0.744
0.769
0.824
0.637
0.316
0.640
0.410
0.813
0.744
0.692
0.817
0.724
0.389
0.769
0.444
0.759
0.633
0.819
0.686
0.664
0.335

pwriyr
0.796
0.806
0.653
0.741
0.741
0.806
0.640
0.647
0.498
0.721
0.733
0.801
0.640
0.624
0.653
0.647
0.640
0.619
0.806
0.741
0.741
0.806
0.653
0.323
0.619
0.421
0.796
0.741
0.689
0.796
0.689
0.398
0.741
0.398
0.725
0.624
0.801
0.653
0.653
0.323

ACr

0.067
0.067
0.086
0.086
0.086
0.067
0.086
0.086
0.086
0.086
0.067
0.067
0.086
0.086
0.086
0.086
0.067
0.086
0.048
0.067
0.048
0.048
0.086
0.086
0.048
0.086
0.048
0.067
0.067
0.048
0.048
0.086
0.048
0.048
0.048
0.067
0.048
0.048
0.067
0.067

ACym x T ACumr

0.103
0.103
0.120
0.103
0.103
0.103
0.120
0.120
0.120
0.103
0.120
0.103
0.120
0.120
0.103
0.120
0.137
0.120
0.120
0.120
0.137
0.120
0.120
0.137
0.154
0.137
0.120
0.120
0.120
0.120
0.137
0.137
0.137
0.171
0.137
0.137
0.120
0.154
0.137
0.154

0.078
0.078
0.094
0.086
0.086
0.078
0.094
0.094
0.094
0.086
0.086
0.078
0.094
0.094
0.086
0.094
0.094
0.094
0.078
0.086
0.086
0.078
0.094
0.102
0.094
0.102
0.078
0.086
0.086
0.078
0.086
0.102
0.086
0.102
0.086
0.094
0.078
0.094
0.094
0.102

tr(AA) tr(R'R)

1.10
1.10
1.59
1.10
1.10
1.10
1.59
1.59
1.59
1.10
1.59
1.10
1.59
1.59
1.10
1.59
2.08
1.59
1.59
1.59
2.08
1.59
1.59
2.08
2.57
2.08
1.59
1.59
1.59
1.59
2.08
2.08
2.08
3.06
2.08
2.08
1.59
2.57
2.08
2.57

249
249
235
249
249
249
235
235
235
249
235
249
235
235
249
235
222
235
235
235
222
235
235
222
208
222
235
235
235
235
222
222
222
194
222
222
235
208
222
208

(Continues)
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TABLE B1 (Continued)

Design D-efficiency A-efficiency I G-efficiency pwr?, pwr2 pwr’,;, ACr ACyxr1 ACyr tr(AA’) tr(RR)
84 0.657 0.185 0.651 0.041 0.333 0.318 0.323 0.086 0.137 0.102  2.08 222
85 0.752 0.432 0.299 0.179 0.605 0.634 0.624 0.067 0.137 0.094 2.08 222
87 0.807 0.573 0.236 0.256 0.678 0.760 0.733 0.048 0.137 0.086  2.08 222
88 0.753 0.443 0.293 0.171 0.615 0.652 0.640 0.067 0.137 0.094 2.08 222
89 0.711 0.232 0.533 0.052 0.379 0.400 0.393 0.067 0.137 0.094 2.08 222
90 0.807 0.573 0.229 0.256 0.724  0.737 0.733 0.067 0.120 0.086 1.59 235
91 0.711 0.232 0.518 0.052 0.422 0.379 0.393 0.086 0.120 0.094 1.59 235
93 0.753 0.443 0.293 0.171 0.620 0.649 0.640 0.067 0.137 0.094  2.08 222
97 0.722 0.286 0.434 0.073 0.500 0.497 0.498 0.067 0.137 0.094 2.08 222
98 0.798 0.550 0.236 0.244 0.714 0.724 0.721 0.067 0.120 0.086 1.59 235
99 0.666 0.254 0.481 0.079 0.436 0.414 0421 0.086 0.137 0.102  2.08 222
100 0.798 0.550 0.247 0.244 0.663 0.749 0.721 0.048 0.137 0.086  2.08 222
101 0.666 0.254 0.503 0.079 0.383 0.440 0.421 0.067 0.154 0.102  2.57 208
102 0.722 0.286 0.448 0.073 0.462 0.516 0.498 0.067 0.137 0.094 2.08 222
104 0.750 0.464 0.291 0.166 0.575 0.683 0.647 0.048 0.154 0.094 2.57 208
105 0.750 0.464 0.285 0.166 0.597 0.673 0.647 0.067 0.137 0.094 2.08 222
106 0.772 0.460 0.295 0.144 0.564 0.697 0.653 0.048 0.137 0.086  2.08 222
109 0.640 0.314 0.395 0.147 0471 0471 0471 0.086 0.154 0.110 2.57 208
110 0.791 0.542 0.251 0.292 0.664 0.765 0.732 0.048 0.120 0.078 2.08 222
112 0.794 0.551 0.247 0.263 0.669 0.770 0.736 0.048 0.120 0.078 2.08 222
116 0.752 0.475 0.286 0.234 0.606 0.713 0.677 0.048 0.137 0.086  2.57 208
118 0.706 0.372 0.350 0.168 0.546 0.607 0.586 0.067 0.137 0.094  2.57 208
120 0.752 0.475 0.276  0.234 0.635 0.698 0.677 0.067 0.120 0.086  2.08 222
123 0.788 0.531 0.256  0.239 0.653 0.758 0.723 0.048 0.120 0.078 2.08 222

The best criteria values are highlighted in boldface.

Abbreviations: ACy, « 1, average correlation over pairs of main effect and two-factor interaction; ACy,r, average correlation over pair of effects from either main

effects or two-factor interactions; ACr, average correlation over pairs of two-factor interactions; pwrﬁ,,, average power of main effects atr = — = 2; pwrfw, aver-
o

age power of main effects and two-factor interactions; pwr, average power of two-factor interactions.



