Off-Policy Q-learning Technique for Intrusion
Response in Network Security

Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract—With the increasing dependency on our computer
devices, we face the necessity of adequate, efficient and effective
mechanisms, for protecting our network. There are two main
problems that Intrusion Detection Systems (IDS) attempt to solve.
1) To detect the attack, by analyzing the incoming traffic and inspect
the network (intrusion detection). 2) To produce a prompt response
when the attack occurs (intrusion prevention). It is critical creating an
Intrusion detection model that will detect a breach in the system on
time and also challenging making it provide an automatic and with
an acceptable delay response at every single stage of the monitoring
process. We cannot afford to adopt security measures with a high
exploiting computational power, and we are not able to accept a
mechanism that will react with a delay. In this paper, we will
propose an intrusion response mechanism that is based on artificial
intelligence, and more precisely, reinforcement learning techniques
(RLT). The RLT will help us to create a decision agent, who will
control the process of interacting with the undetermined environment.
The goal is to find an optimal policy, which will represent the
intrusion response, therefore, to solve the Reinforcement learning
problem, using a Q-learning approach. Our agent will produce an
optimal immediate response, in the process of evaluating the network
traffic.This Q-learning approach will establish the balance between
exploration and exploitation and provide a unique, self-learning and
strategic artificial intelligence response mechanism for IDS.

Keywords—Intrusion prevention, network security, optimal policy,
Q-learning.

I. INTRODUCTION

OWADAYS, the significant development of our computer
Nsystems transformed our daily life entirely, and made
our existence reliant on them. According to Cisco Visual
Networking Index 2017 [16], there are expected 3.5 computer
devices per capita worldwide in 2021 and almost 106
Terabytes per second of global Internet traffic. With the rapid
progress of the Internet, our computer structures are exposed
to an increased number of threats. Although the research and
technological innovations in Cyber security are progressing
rapidly, it is nearly impossible to have a completely secure
system. The IDS observe the network traffic, analyze it and
identifies possible anomalies or unauthorized access to the
network behavior. Some of the IDS also respond to the
intrusion, which is a necessary measure in protecting our
computer network. There are several limitations and problems
of the existing methods that we will address in this paper
and attempt to solve with the proposed off-policy Q-learning
intrusion response model. On the one hand, exploitation and

Z. S. Stefanova is with the Department of Mathematics and
Statistics, University of South Florida, Tampa, Fl 33620 USA (e-mail:
stefanova@mail.usf.edu).

K. M. Ramachandran is with the Department of Mathematics and Statistics,
University of South Florida, Tampa, Fl 33620 USA (e-mail: ram@usf.edu).

misuse of resources happen, because the IDS is designed to
observe the network all of the time; consequently, resources
are utilized even if there is no attack occurring. On the other
hand, although the flowing traffic is examined continuously,
once the attack is detected, there is a significant amount of
time needed for the IDS to respond. The network traffic often
travels a certain distance in the form of packets; moreover,
the intruder can alternate or even terminate it before reaching
the IDS. Another problem is related to the reliability of the
protecting system or to what extent we can trust the IDS.
The administrators should regularly update their protection
mechanisms; otherwise, once the intruder recognizes specific
weaknesses and limitations, he will send even more attacks,
therefore challenging the detection system.

II. RELATED WORK

Many of the IDS research publications can be summarized
as machine learning classification problems, which are solved
with supervised or semi-supervised learning models [15].
Although some authors attempted to implement unsupervised
learning, they achieved low accuracy [12]. RL has been
widely employed in computer network disciplines for research
purposes, however, the utilization in the intrusion detection or
intrusion preventions area has not been substantially explored.
Scientists perceive considerably intriguing the domain of
routing protocols, validation processes, admission control and
quality of service mechanisms. This attentiveness may be due
to the fact that RL is reasonable for control situations, where
a response from the environment exists. In all the occurrences
mentioned above, we detect feedback, which is represented as
areward. Xu et al. [17] implemented reinforcement learning in
an association with Hidden Markov Models (HMM) to identify
breaches by learning the state transition probabilities. The
authors claimed that HMM could offer a suitable estimation of
the state transitions on IDS. A linear function approximation
and a temporal difference algorithm were applied to update
the value function. The results that they obtained, using the
same training and testing sets, were superlative compared to
other machine learning methods. Two years later, Xu and Luo
[18] modeled the network behavior with a temporal-difference
approach. In this work, they achieved even higher detection
accuracy, compared to a prior implementation using HMM
methods. To approximate the value function and to perform
feature selection, they used a sparse kernel least-squares
temporal-difference algorithm (LS-TD) [19]. Xu and Luo
provided empirical results on host-based intrusion detection to
prove the quality of the proposed method; they used system

calls traces from the send mail application. As illustrated
by the researchers, the kernel-based LS-TD algorithm is a
non-linear function that estimates a high-dimensional feature
space. Miller and Inoue [13] used a model called Perceptual
Intrusion Detection System with Reinforcement (SPIDeR)
which consists of heterogeneous agents. A single agent can
employ a self-organizing map to detect malicious activities,
and there is a blackboard mechanism for the aggregation of
results generated from all agents. Once a signal is detected
within the system, it is distributed to all agents for a collective
group analysis. They send votes to the central blackboard
system, which computes weights, and it rewards the agents
depending on their performance. Cannady, in two of his
works [5] and [6], applied neural networks approach to
obtain a feasible solution. However, this methodology was
incapable of adapting to streaming data. The data were
necessary to be taken off-line and retrained with a new
set of representative data. Cannady applied a Cerebellar
Model Articulation Controller Neural Network, to resolve this
problem, which has the ability for an online-learning. He
suggested a three-layer feed-forward mechanism, intended to
generate a series of input-output mappings. In this research,
the single IDS-agent learns how to detect flood-based Denial
of Service attack based on Internet Control Message Protocol
(ICMP) and user datagram protocol (UDP). The system
initially learns how to identify ICMP breaches and using
prior experience and reoccurring training it learns how to
recognize new attacks based on the UDP protocol. One
approach employed to find intrusions on host-based IDS is
based on analyzing sequences of system calls. The states are
defined by a short sequence of system calls in a single trace.

III. NETWORK ENVIRONMENT REPRESENTED AS
REINFORCEMENT LEARNING PROCESS

A. Reinforcement Learning

Let us assume that there is one decision maker in the
IDS and he regularly interacts with his environment. Based
on the actions that he undertakes, he can modify his states
and subsequently his performance is evaluated by feedback
(reward). The aim is to select a set of actions which will
optimize his long-term reward.

Fig. 1 Reinforcement Learning Process

To understand how RL operates, we need to introduce the
principle of Markov property and to familiarize ourselves
with the concept of a Markov Decision Process (MDP). Let
us define S as a countable set of states or the state space

S {S1,...5¢}, where S; = s; is a random variable with a
range of Sy € (0, ..t], this set will be Markov if and only if:

P(Si41 = 5141|St = s¢) = P(Si41 = S¢41/S¢t = 5¢...,.50 = s0)

Thus, the current state captures all information from the
history, and once the current state is known, it may be
considered as a sufficient statistic to decide for the future.
The MDP is characterized by the tuple (S, A, R, T',~), where:

— S is a countable set of states S : {Sp, S1,...S¢} in terms
of the network set of states as S : {sy, s4}. Where s4 is
the state of being under attack and sy is the state when
the network is normal. The number of states will depend
on the number of attacks that we are experiencing, or
whether the network is normal or under attack;

— A is a set of actions, called the action space A
{A1,Ay,... A, }, where A, = a, and A, € (0,n]
or in our case we have A : {a,,aq,}, where a, is the
action when the agent protects the network and ag, is
the action when the agent ” do nothing” or doesn’t protect
the network.

— R defines the immediate reward that the agent can receive
at each state, it is described as the reward for taking
action A,, at state .S; , therefore f: S x A — R

R = E[R11|S; = 54, An = ay]

— T is a state transition probability matrix. It specifies the
probability of transition from state ¢ to state j, on taking
action A, = a, where i € (0,¢] and j € (0,¢ + 1]

T = P[S, 11 = 8j |5t = si, An = ay]

T T,

T = , where the number of

Tn T
transition matrices will depend on the number of actions.
Each transition matrix will represent the transition from
state sy to s, for taking action a,, or ag4,. Therefore for
our set up, there will be two transition matrices TgﬁlsA
and T¢? g .

— v € [0,1] is a discount factor [14], which assists us
in determining the present value of a future expected
immediate rewards. It is used for emphasizing the
significance of the present in comparison to the future
rewards.

Let us define the total return G that the decision agent
(in our case the entity, protecting the computer network) will
obtain as a function of the sum of all immediate rewards at
time ¢, discounted back to the present moment.

Gi=R{ + YR+ VR 5. .. =Y "Ry (D
k=0

Mathematically it’s convenient to use discounted reward
decision process because it avoids the infinite returns in cyclic
Markov processes and gives the opportunity for the decision
agent to think about the long-term future.

The state value function v(s) of MDP will be defined as the
aggregate value of the expected total return in (1) beginning

from state s.
v4(s) = E[G}|S; = s4]

The value function may be decomposed into two parts:
immediate reward and discounted successor state yv®(s¢41).
This way we can obtain the Bellman equation:

v(s) = B[R +7[v*(s141)]S: = $]

or this equation can be represented as:

v (s:) = R+ Y Tiju(s)))

s; €S

B. Policy and Policy Selection

Almost all reinforcement learning problems can be
formalized as MDP. The agent maps the set of the states onto
the probability space of taking each possible action. We can
define this mapping process as a policy for the agent, which is
a probability distribution formed out of possible actions, given
the current states [14].

7(als) =
The policy describes the behavior of the agent and it’s
like his model. MDP policy depends on the current state
and not on the past information, i.e. it’s stationary and not
dependent on time. Given an MDP (S, A, T, R,~) and m(als),
the state sequence is a Markov process (S,™), the state and
reward sequence Si, Ro, S5 ... is a Markov Reward Process
(S, T™ R™,~). In the MDP besides the state value function,
we can also define an action-value function:

Ex[G[Se = 5, Ar = d

P(A; = a|S, =) 3)

Qﬂ'(sa a) =

A policy is greedy with regards to a value function, as well
as it is optimal according to that value function. The optimal
state-value function v(s) will be the maximum value of the
function across all policies:

v(s)

It specifies the best possible performance in the MDP. The
solution of the MDP is the optimal value function. The optimal
action-value function ¢(s, a) will be the maximum value of the
function across all policies:

= maxv(s)
™

q(s,a) = max ¢ (s,a)
T

The optimal policy is the best policies over all policies and
it is defined as follows: 7 > 7 if v.(s) > v_(s) for Vs, and
also:

1 ,ifargmaxq®(s,a)
acA 4)
0 ,otherwise

m*(als) =

There is always a deterministic optimal policy for any MDP
and if we know ¢(s, a), we can always find the optimal policy.
Optimal Bellman Equation for the value function is:

v(sl)—maxRLL —I—WZT“ *(s5) 5)
s;€8

We can also create an optimal Bellman Equation for the
action-value function:
- R+ LT

s;€ES

q*(84,a) maxq (sj,a;) (6)

The Bellman Optimality Equation doesn’t have any closed
solution form. In general, the following methods are usually
used: Value iteration, Policy iteration, Q-learning, and Sarsa.
In this paper, we will use Q-learning technique. The
action-value function estimates the expected utility of taking
action a in state s. It is the best expected sum of future
rewards.

Reinforcement learning can be employed to discover
an optimal action-selection policy [14] for a finite MDP.
Moreover, it learns an action-value function that finally
provides the expected value of following an optimal policy and
taking a specific action in a given state. A history of an agent
is a sequence of <state, action, reward>.The optimal policy
can be obtained by preferring the action that provides at each
state a maximum value. This learning method is also capable to
evaluate the expected value, calculated by all possible actions,
without any environment model.

C. Exploration vs. Exploitation

On the one hand, the agent unavoidably should explore
further opportunities and therefore deviate from the usual
behavior. This divergence is called exploration or taking
non-policy action. On the other hand, he should follow the
procedures for estimating the value functions. Whenever he
decides to obey, or follow the policy, we call the process
exploitation or taking policy action. There is a trade-off
between both terms, and it is challenging and necessary to
find a suitable balance, so the agent to be allowed to decide
appropriately.

The e-greedy action selection provides a simple heuristic
approach in justifying between exploitation and exploration.
The concept is that the agent can take an arbitrary action a
from a uniform distribution with probability ¢, 0 < ¢ < 1,
and subsequently to select with probability 1 — ¢ the current
best (greedy) action (Fig. 2). It is a standard practice to
decrease the value of epsilon over time as soon as the decision
agent becomes confident and needs less exploration. Low rate
implies a strong bias towards exploitation over exploration.

: : p v

Fig. 2 e-greedy action selection

Random
action

Greedy
action

= +1—-¢ ,ifa*=argmaxq(s,a)
acA

, otherwise

7 (als) =
™

The idea is to ensure continuous exploration. All actions m
are considered with non-zero probability.

D. Q-Learning Algorithm

The advantage of Q-learning is the notion that it is a
model-free procedure and an off-policy learning concept.
Moreover, the agent contemplates his succeeding move, based
on the expected utility of selecting each action in a particular
state. Subsequently, he updates towards a bootstrap estimate
of the actual return. At every stage, the succeeding state is
observed, and the maximum possible rewards, available for
all actions in that state are determined. Consequently, using
this information, the decision agent updates the action-value
function of the corresponding action in the current state. A
learning rate - o, (0 < o < 1), which is associated with that
change will assist us to formulate an updating rule.

Let us consider an off-policy learning of action-values
q(s,a) and next action is chosen based on a behavior policy
ap ~ p(-|s;), there is also an successor action a; ~ 7(-|s;).
Then the updated ¢(s, a) will be given by:

q(s5,ai) < q(si, a:) + o[RS +7q(s5, a5) — q(si, ai)]

If we allow the both behavior and target policies to
improve, the target policy 7 is greedy w.r.t. g¢(s,a) and
n(sj) = argmawa;q(s;,a;). However the behavior policy
u is e-greedy w.r.t. q(s,a). Therefore the Q-learning control
equation is:

q(sj,a) < q(si, ai)+al RS +ymaxq(s;, a;) —q(si, ai)] (7)

Q-learning control converges to the optimal action-value
function ¢(s,a) — ¢*(s,a). Proof is provided by Watkins
and Dayan [11] and additionally by Tsitsiklis [8]. An
interesting problem is also it’s convergence properties. A
convergence result is provided by Melo et al. [2] who
proved convergence under some restrictions on the sample
distribution. Maei et al. [3] introduced a greedy gradient
Q-learning approach that removes the previous conditions and
proved convergence regardless of the sampling distribution.
The described algorithm can be summarized in the subsequent
lines.

Algorithm 1 Q-learning approach

— Initialize ¢g(s,a), for each s € S, a € A(s), randomly and
g(terminal — state) =0
Repeat for each episode:
— Initialize s; € S
Repeat for each episode:
* Chose a from s, using e-greedy policy derived from Q.
* Take action a;
- observe Rg!
- observe the new state s;
* q(si,a:) = q(si,0:) + Q[RS] +ymaxa; g (sj,a5) —
q(si7 al)]
* move to next state s; <— s;
— until s is terminal
— end for

It is interesting to mention that there is a connection between
the learning rate that we select o and the convergence rate.
Even and Mansour [1] proved that for a polynomial learning
rate of the type 1/t¥ at time t, the convergence rate is

polynomial in 1/(1 —-), where v is the discount factor.
However for a linear learning rate of the type 1/¢ at time ¢, the
convergence rate has an exponential dependence on 1/(1 — 7).

IV. RESULTS
A. Data Description

The Transmission Control Protocol (TCP) packets in a
network allow establishing a connection, where data streams
are exchanged between two IP address sources at a specified
time and following determined rules [20]. The data set
employed in this paper is ISCX NSL-KDD Data Set [4],
which is a revised version of KDD CUP 99, DARPA [9],
administered by MIT Lincoln Labs. Lincoln Labs generated
a typical United States Air Force network in an experimental
setup for nine weeks so that they can extract raw TCP data.
They administered a local-area network imitating a real Air
Force environment and simulated various types of attacks.
The significance of the DARPA and KDD dataset is notable;
however, many authors questioned the extent to which the data
reflect the reality [10]. In our paper, we will use the ISCX
NSL-KDD dataset, provided by The Information Security
Centre of Excellence (ISCX) within the Faculty of Computer
Science, University of New Brunswick, Canada. There are
42 variables and one of them represents the condition of the
network, labeled as either normal or as one of the 24 different
variations of attacks.

B. Problem Setup

In order to start the analysis, we first need to consider
how we will set up the problem, so we can define it as a
reinforcement learning problem and then to attempt solving it,
using Q-learning approach. The environment of the agent is
completely unknown and non-stationary, therefore it is useful
to use a model-free procedure. The Q-learning approach will
allow us to calculate the Q-values, without estimating the
transition probability, just by setting a reward matrix, based
on the actions and states set up of MDP. The main purpose of
our paper is to find an optimal policy for the administrator at
any given step of his decision-making problem. As we have
mentioned above, the MDP is characterized by the following
components (S, A, R, T,~). We already provided information
about the possible states and actions. The immediate reward
that the agent will receive at each state is defined by R :
S x A — R, or this is what he will obtain for taking action
a in state s. In our case, we will outline the reward based on
the initial behavior policy:

SN SA

o 2 1"

a
R:] P
1 -1 Adn

If the network is under attack s, then the agent has two
options of actions to select from: either to “protect” a, or
to ”do nothing” a4,. On the one hand, if the current state is
for example “attack” and the agent decides to “protect”, then
the reward that he will be rewarded with is 2, however, if

he selects to ”do nothing”, then he will be penalized with a
value of —1. On the other hand, if the state is “normal” and
the agent decides to “protect”, he will receive 0 reward and
if he selects to ”do nothing”, he will get 1. This matrix is
selected in a way that the agent to be interested in protecting
the network only if there is an attack occurring. There are
transition probability functions associated with the alteration
from one state to another. For the Q-learning technique, we
don’t need to possess knowledge on them; however, we can
provide an estimate, using the data set, so that we can test
our results in subsection D. An approach that we will apply
in this paper is a bootstrap estimation. We will bootstrap the
data sequences following the conditional distributions of states
estimated from the original one and apply first maximum
likelihood estimation (MLE) on bootstrapped data sequences.
Then we will take the average of the estimates across all
samples, row normalized. We use 500 samples for the purpose
of the estimation. MLE for MDP is described in details in [7].
We can also calculate the 95% confidence intervals and to
report an error rate, based on the data set. The formula used
in the calculations is the following:

Adn

MLE nsy s . Tss
Tgm = =4 with SE — ot
SnSa Zi—l o SNSa /TS S A

Another second method is using Laplace smoothing approach,
which is very similar to the MLE, but uses an arbitrary positive
stabilizing parameter e:
Tgi;:‘SA: ’V‘nSN —
Yo (nsy,te)
Both methods give similar results for the transition
probability matrices:

ap 1 0 SN Gan b3 .47 SN
SxSa |1 0 |sy SWSaT o 1 | ss
0026 .0028 | sn
SEswsat| 0 sa

The discount factor v € [0,1] will depend on whether we
would like to create our agent narrow-minded, who is more
concerned about the present, or we would like to create him
more strategic oriented, who will first consider the future and
then he will make decisions about the present. In our analysis,
we will set v = .9, but we will provide a sensitivity analysis
for three different levels of the v = .1,y = .5 and v = .9,
Fig. 4. We can represent the decision path that the agent will
follow in Fig. 3.

Before starting the analysis, we need to check whether the
MDP will hold for this specific problem and we will do that
in R. The goal is to find an optimal policy if we start with the
initial behavior policy 7 : S — A, or that is m(als): if there is
an attack s 4, the agent will select to protect the network a,.
We do not possess any information about the environment.
The only thing that we need is to set the reward matrix in
a way that the agent is more likely to choose to protect the
network if there is an attack occurring, but not necessarily, only
if by deciding to defend the network, the Q-value function is
maximized.

P Aan
A
< Sy, Qan > R=1

X

R=0 < SN, Ap >

a a a
P (] QAayi dn
TSNSN TstA TstN TstA
¥ < ¥ 3
llp Aan
4 4

R=2<sy,a, > < Sy, Qgn >R=-1
TaP Tap

Adn
SASN SASA T,

SASN
¥ « ¥ <

Fig. 3 Example for a Decision Path of the Agent

Adn
TSA SA

C. Calculation of the Q-Value and Optimal Policy Selection,
Using Q-Learning

The action-value function gives the expected utility of
taking a given action in a given state and following an
optimal policy thereafter. Q is a [S, A] matrix, in our case
it’s calculated with 100,000 number of iterations. We will
use the provided algorithm with a decaying learning rate of
a =1/y/n+ 2, where n is the number of transitions.

SN SA
ar 15.35415 17.08029 SN
® 7116.34766 13.71229 SA

The Value function is an S length vector, with the same
number of iterations, we obtain:

[17.08029 1 SN

s -

16.34766 SA

The policy is also an S length vector. Each element of it
is a value that corresponds to an action which maximizes the
value function. The agent follows a specific policy © when
selecting actions in a given state as we defined in (3). Once
the action-value function is determined, the optimal policy can
be recreated by choosing the action with the most substantial
value in each state. We obtained the following result:

(msy ﬁ]

That implies that the policy, in this case, will be the
following: if there is a state 2 or if there is an “attack”, the
agent should choose action 1, which we assigned earlier as
”to protect”. The agent observes the current state, selects an
action randomly, notes the resulting reward, then the new state
occurs.

The sensitivity analysis of the different levels of v, as well
as the levels of iterations of the model can be observed in Fig.
4.

Discrepancy means for

;¥ =5,y =9

o
n o
S 8
® o
z |
=
(=) o
-~ o™~
e o 4
() [e=]
S e
w
o _
(]
£ 2
3 8 7
S r=]
(o}
3 |
(&)
s o
8 8

g T T T T T T

0 200 400 600 800 1000
lterations

Fig. 4 Discrepancy Means

D. Evaluation of the Model

We can use the estimated transition probabilities, to
determine how effective is our Q-learning agent performing.
For that purpose, we need to find a solution to (5) and to
solve the MDP with the knowledge that we possess for the
environment. In that situation, we will be able to evaluate our
model, by comparing the value V (s) that we calculated with
the Q-learning approach and the value that we will obtain by
solving the MDP, knowing the transition probabilities in (5).

The aim is to create a Root Mean Square Error (RMSE), so
we can test the effectiveness of the Q-learning approach. There
are several methods to solve (5), that is Linear Programming
(LP), Policy Iteration (PI) and Value Iteration (VI). All these
solutions require knowledge of the environment, represented
by the estimated transition probabilities. As shown in Table I,
we can observe the RMSE errors, using the results for V (s)
from Q-learning. The RMSE is calculated as:

1 2
RMSE = N\/Z [V(s) —V*(s)]

where:
17.08029 SN
1 116.34766 | sa
TABLE I

RMSE FOR Q-LEARNING
Method V*(s)forsy V*(s)forsa RMSE
LP 17.02741 16.32467 0.02883
PI 17.02741 16.32467 0.02883
VI 16.89542 16.19268 0.12062

All models calculate the optimal policy as:

2

() |

Which is that if there is an “attack” occurring, the decision
agent should protect the network.

V. CONCLUSION AND FUTURE WORK

Q-learning, as a model-free control approach, is remarkably
promising, especially when employed in challenging decision
processes, where the traditional optimization techniques and
supervised learning methods are not applicable. An essential
advantage is the fact that the decision agent does not need any
information about the environment and it is able to perform the
analysis without any model or knowledge on the distribution.
Q-learning has an auspicious future in the intrusion detection-
and prevention- domains, it is a useful tool that needs to be
further developed and explored. Despite the research work
that has been published on the convergence properties, there
are still few challenges that need to be analyzed. The useful
utilization of Q-learning is helpful not only because of the
effective results obtained with the model but also because of
its potential combination with other models, that could benefit
and improve with the assistance of Q-learning.

REFERENCES

[1] E. Even-Dar and Y. Mansour, Learning Rates for Q-Learning, Lecture
Notes in Computer Science Computational Learning Theory, pp. 589-604,
2001.

[2] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, An analysis of
reinforcement learning with function approximation, Proceedings of the
25th international conference on Machine learning - ICML ’08, 2008.

[3] H. Maei, C. Szepesvari, S. Bhatnagar, D. Silver, D. Precup, and R. Sutton,
Convergent temporal-difference learning with arbitrary smooth function
approximation, NIPS-22, pp. 1204-1212.

[4] ISCX NSL - KDD Data Set, University of New Brunswick est.1785.
(Online). Available: http://www.unb.ca/cic/datasets/index.html.

[5] J. Cannady, Applying CMAC-based online learning to intrusion detection,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IICNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol. 5, pp. 405-410, Jul. 2000.

[6] J. Cannady, Next Generation Intrusion Detection: Autonomous
Reinforcement Learning of Network Attacks, In Proceedings of
the 23rd National Information Systems Secuity Conference, pp. 1-12,
2000.

[7] J. Fu and U. Topcu, Probably Approximately Correct MDP Learning and
Control With Temporal Logic Constraints, Robotics: Science and Systems
X, 2014.

[8] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning,
Machine Learning, vol. 16, no. 3, pp. 185-202, 1994.

[9] KDD Cup 1999 Data. (Online).
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis
of the KDD CUP 99 data set, 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, 2009.

[11] P. Dayan and C. Watkins, Q-learning, Machine Learning, vol. 8, no. 3-4,
pp. 279-292, 1992.

[12] P. Laskov, K. Rieck, P. Dussel, and C. Schafer, Learning Intrusion
Detection: Supervised or Unsupervised?, Proceedings of the 13th ICIAP
Conference, pp. 50-57, 2005.

[13] P. Miller and A. Inoue, Collaborative intrusion detection system, 22nd
International Conference of the North American Fuzzy Information
Processing Society, NAFIPS 2003, pp. 519-524.

[14] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
s.L.: MIT Press, 1998.

[15] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection, ACM
Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

[16] VNI Global Fixed and Mobile Internet
Forecasts, Cisco, 13-Feb-2018. (Online).
http://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/index.html.

[17] X. Xu and T. Xie, A Reinforcement Learning Approach for Host-Based
Intrusion Detection Using Sequences of System Calls, Lecture Notes
in Computer Science Advances in Intelligent Computing, pp. 995-1003,
2005.

Available:

Traffic
Available:

[18] X. Xu and Y. Luo, A Kernel-Based Reinforcement Learning Approach
to Dynamic Behavior Modeling of Intrusion Detection, Lecture Notes in
Computer Science, Proceedings of ISNN, pp. 455-464, 2007.

[19] X. Xu, T. Xie, D. Hu, and X. Lu, Kernel least-squares temporal
difference learning, International Journal of Information Technology, vol.
11, no. 9, pp. 54-63, 2005.

[20] Z. Stefanova and K. Ramachandran, Network attribute selection,
classification and accuracy (NASCA) procedure for intrusion detection
systems, 2017 IEEE International Symposium on Technologies for
Homeland Security (HST), 2017.

Zheni Stefanova Zheni S Stefanova is a PhD candidate in the Mathematics
and Statistics Department at the University of South Florida (USF). Her
research interest is in cyber security and precisely statistical machine learning
techniques, applied to data mining in network security and software reliability
problems with an advisor Professor Kandethody Ramachandran. She is a
founder of the American Statistical Association Student Chapter at USF, two
times recipient of Tharp Endowed Award 2015 and 2017 and MV Johns Jr.
Scholarship 2016.

Kandethody Ramachandran Kandethody M Ramachandran is a Professor
of Mathematics and Statistics at the University of South Florida (USF). His
research interests are concentrated in the areas of applied probability and
statistics. His research publications span a variety of areas such as control
of heavy traffic queues, stochastic delay systems, machine learning methods
applied to game theory, finance, cyber security, and other areas, software
reliability problems, applications of statistical methods to microarray data
analysis, and streaming data analysis. He is also, co-author of three books.
He is the founding director of the Interdisciplinary Data Sciences Consortium
(https://idscbigdata.com/). He is also extensively involved in activities to
improve statistics and mathematics education. He is a recipient of the Teaching
Incentive Program award at the University of South Florida. He is also the
PI of 2 million dollar grant from NSF, and a co-PI of 1.4 million grant from
HHMI to improve STEM education at USF.

