© The British Computer Society 2018. All rights reserved.
For permissions, please email: journals.permissions @oup.com
doi:10.1093 /comjnl /bxy017

A Comparative Study of Dual-Tree
Algorithms for Computing Spatial
Distance Histograms

CHENGCHENG Mou'", SHAOPING CHEN?" AND Y1-CHENG Tu'*

lDepan‘ment of Computer Science and Engineering and Interdisciplinary Data Sciences Consortium,
University of South Florida, 4202 E. Fowler Ave., ENB 118, Tampa, FL 33620, USA
’Department of Mathematics, Wuhan University of Technology, 122 Luosi Road, Wuhan, Hubei 430070,
PR China
*Corresponding author: tuy@mail.usf.edu
"These authors contributed equally to this work.

The 2-body correlation function (2-BCF) is a group of statistical measurements that found applications
in many scientific domains. One type of 2-BCF named the Spatial Distance Histogram (SDH) is of vital
importance in describing the physical features of natural systems. While a naive way of computing
SDH requires quadratical time, efficient algorithms based on resolving nodes in spatial trees have been
developed. A key decision in the design of such algorithms is to choose a proper underlying data struc-
ture: our previous work utilizes quad-tree (oct-tree for 3D data) and, in this paper, we study a kd-tree-
based solution. Although it is easy to see that both implementations have the same time complexity
ON %), where d is the number of dimensions of the dataset, a thorough comparison of their actual
running time under different scenarios is conducted. In particular, we present an analytical model to
rigorously quantify the running time of dual-tree algorithms. Our analysis suggests that the kd-tree-
based implementation outperforms the quad-/oct-tree solution under a wide range of data sizes and
query parameters. Specifically, such performance advantage is shown as a speedup up to 1.23x over
the quad-tree algorithm for 2D data, and 1.39x over the oct-tree for 3D data, respectively. Results of
extensive experiments run on synthetic and real datasets confirm our findings.

Keywords: scientific databases; query processing; spatial distance histogram; performance; quad-tree;
oct-tree; kd-tree

Received 15 December 2016, revised 23 December 2017; editorial decision 1 February 2018
Handling editor: Suchi Bhandarkar

1. INTRODUCTION example is the computation of 2-body correlation functions
(2-BCFs), which are statistical measurements that involve every
pair of data points in the entire dataset. One type of 2-BCF called
the Spatial Distance Histogram (SDH) is of vital importance in

many computational sciences and thus the focus of this paper.

Recently, computational science fields have witnessed the momen-
tum of data-intensive applications that severely challenge the
design of database management system (DBMSs). Much efforts
have been made in building systems and tools to meet the data
management needs of such applications [1-3]. Generally, data-
intensive scientific applications necessitate considerable stor-

age space and 1/0O bandwidth, due to the large volume of data 1. Problem statement

[4-6]. For instance, molecular simulations (MS) evaluate the
movement patterns and interaction forces among molecular
structures, each of which consists of millions of atoms. Other
than the large volume of data, there is also the challenge of
processing scientific queries that are often analytical in nature
and bear high computational complexity [7, 8]. One remarkable

The SDH problem can be formally stated as follows.

Given the coordinates of N points in a (2D or 3D) Cartesian
coordinates system, draw a histogram that depicts the distribu-
tion of the point-to-point distances among the N points.

Generally, an SDH comes with a parameter /, which is the
total number of buckets. Because the dataset is generated from a

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conf conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

2 C. Mou et al.

simulation system with a fixed dimension, the maximum dis-
tance (L.«) between any two points in the system is a constant.
In this study, we deal with the standard SDH, whose buckets are
of the same width. The width of buckets p = L.x/I, also
named histogram resolution, is usually used as the parameter of
the query. Specifically, with a given histogram resolution p,
SDH asks for the number of point-to-point distances that fall into
ranges [0, p), [p, 2p), [2p, 3p),....,[(I — 1)p, Ip). Obviously,
for the same dataset, more computation is needed for an SDH
with smaller p value.

1.2. Objective

In a dataset with N particles, SDH requires O (N?) computation
time to carry out all point-to-point distance computations. Our
previous work proposed more efficient algorithms [9]. Instead of
computing every point-to-point distance, the main idea of such
algorithms is to analyze the distances between two groups of
points, as described in Section 3.1. These groups are represented
by nodes in a space-partitioning tree structure, called density map
(DM), as discussed in Section 3.2. The reduction of running time
is achieved by the fact that the brute-force distance computations
are substituted by recursively calling the Resolution Function that
takes two tree nodes as inputs (for which the algorithms are
named dual-tree algorithms). The main objective of this paper is
to provide analytical and empirical evaluations of different data
structures for implementing the DM. So far our work only used a
quad-tree (oct-tree for 3D data) for such purposes [9], and it is
natural to look into other spatial data structures for the same pur-
pose. In this paper, we study and evaluate an implementation
based on a region kd-tree whose details will be introduced in
Section 3.2. Although algorithms based on both trees have the
same time complexity O (N ') where d is the number of dimen-
sions of dataset [10], a comparison of their actual execution time
under different scenarios is thoroughly studied. Our main tech-
nique is to transform the analysis of the number of particle counts
into a problem of quantifying the area of interesting geometric
regions. Our analysis leads to rigorous results for differentiating
the running time of these two dual-tree algorithms (quad-tree-
based and kd-tree-based) under different cases. Our analysis sug-
gests that the use of kd-tree brings significant performance
advantage to the dual-tree algorithm under a wide range of data
sizes and query parameters. In particular, the kd-tree yields a
speedup up to 1.23x over the quad-tree in processing 2D data,
and a speedup up to 1.39x over the oct-tree in processing 3D
data. Results of extensive experiments confirm such findings.

1.3. Paper organization

The remainder of this paper is organized as such: in Section 2,
we review the works related to SDH problem and discuss the
contributions of this work. In Section 3, we sketch the dual-tree
algorithm. We introduce our modeling approach and present the
main analytical results in Section 4. Based on the main results,

we study and compare the performance of the two dual-tree
algorithms in Section 5. We present extended analytical results
about 3D data in Section 6. We report experimental results in
Section 7, and conclude this paper in Section 8.

2. RELATED WORK AND OUR CONTRIBUTIONS
2.1. Motivating applications of SDH

The SDH is a fundamental tool in understanding the physical
features of systems consisting of many particles. For that reason,
SDH is routinely computed in analyzing data generated from a
very important type of computer simulation—particle simula-
tions. Such simulations treat individual components (e.g. atoms,
stars, etc.) of large systems (e.g. molecules, galaxies, etc.) as
classical entities that interact with each other following
Newton’s Law. These techniques are applicable in modeling of
complex chemical and biological system that are beyond the
scope of theoretical models, under such scenarios the simulation
is called molecular simulations (MS). MS has been widely uti-
lized in material sciences [11], astrophysics [12], biomedical
sciences and biophysics [13]. In a molecular system, the SDH is
the discrete form of a continuous statistical distribution named
radial distribution function (RDF), which describes how the
atom density varies as a function of distance from a referenced
point. RDF is an essential component in computing a series of
critical quantities describing a system, such as internal pressure
and energy [12, 14, 15].

Computation of SDH also finds its application in other
domains. In computer vision and pattern recognition, the con-
cept of Color Correlogram, which is a Table indexed by color
pairs, where a k-entry for <i, j> specifies the probability of a
pixel of color j at a distance k from a pixel of color i in the
image, has been proposed. It is regarded as a robust feature for
effective scene identification under changes in viewing angle,
background scene, partial occlusion and camera zoom [16, 17].
A single image generated from modern camera might contain
millions of pixels. Therefore, it takes considerable amount of
time to compute the color correlogram of these images.

In the data mining field, a feature vector represents an
object. The multi-dimensional feature vector could be reduced
to low-dimensional feature vector by using linear reduction
techniques, such as Principal Components Analysis (PCA),
Karhunen-Love Transform (KLT), the Discrete Fourier (DFT)
and Cosine Transform (DCT). Then SDH of low-dimensional
feature vector in Cartesian Coordinate System could therefore
statistically conduct similarity search or classification of the
specific objects [18, 19].

The significance of this work is not limited to SDH or the
2-BCF themselves: similar techniques presented in this paper
can provide insights in computing the more general n-body
correlation function (n-BCF) where n > 2 [20]. The n-BCFs
are of interest in many forms: n-point function, n-tuple prob-
lem, nearest-neighbor classification, non-parametric outlier

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conf conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 3

detection/denoising and kernel density /classify /regression [21]
are examples of statistical measurements related to n-BCF, and
their applications are found in various scientific fields [22-24].

2.2. Algorithms for efficient SDH computation

In our previous work [9], we proposed the use of quad/oct-tree
to split the domain space into equally sized cells for SDH pro-
cessing. In [25], we presented a comprehensive analysis of
quad/oct-tree-based dual-tree algorithm based on a geometry
modeling approach; based on the results of our rigorous math-
ematical proof, we showed the theoretical running time of our
algorithms: O(N%) where d is the number of dimension of
dataset. A solution for similar problems was proposed in [21], in
which a data-driven spatial tree is used: each level of the tree is
generated by partitioning the region into two subregions with an
equal number of data points along one dimension. Our region
kd-tree method, on the other hand, partitions a region by cutting
at the middle point of the 1D segment represented by a node. In
other words, under an uniform spatial distribution of data, their
proposed data structure is equivalent to the region kd-tree we
study in this paper. Our main contribution, however, lies in the
quantitative analysis of the performance of the kd-tree-based
solution in comparison with the original quad/oct-tree approach.
In [21], a conjecture is presented with an asymptotical analysis
of tree performance but no analytical details were shown. To
the best of our knowledge, there is no rigorous analysis on
performance of dual-tree problem by using kd-tree. Our work
reported here takes advantage of the geometric modeling
method we used to analyze the quad-tree approach as shown
in [25]. On top of that, we develop new models to compare
the two data structures of interest in this paper. Our recent
work on this topic [26-28] focuses on approximate SDH pro-
cessing and parallel computing. Such work, again, only con-
siders the quad/oct-tree as the underlying data structure thus
has little overlap with this paper.

A shorter version of this paper can be found in [29], in which
we sketched our analytical model and presented the main results
on the comparative study between two data structures under 2D
data. In this paper, we extend the analysis to 3D data and com-
parison between kd-tree and oct-tree used in our previous work.
The 3D analysis, although following the geometric modeling
strategy, is significantly more complex and challenging. We also
evaluate the 3D analytical results with extensive experiments.
Furthermore, we present more complete proof of major theo-
rems in the 2D analysis that was not published in [29] due to
page limits.

3. PRELIMINARIES

In this section, we elaborate on the dual-tree algorithm for com-
puting SDH, in order to pave the way for future discussions
related to the performance evaluation of the algorithm.

In Table 1, we list the notations that are used throughout this
paper. Note that symbols defined and referenced in a local con-
text are not listed here.

3.1. Overview of the dual-tree algorithm

The main idea of the dual-tree algorithm is to work on the dis-
tances between two clusters of points instead of those between
two individual points to save time. From now on, we use 2D
data to elaborate on technical details till we explicitly extend our
discussions to 3D data in Section 6. The dual-tree algorithm
starts by building the tree structures, and cache the total number
of data points in each node. An entire level of the tree with such
counts is called a density map (DM, see Fig. 1 for example). The
main body of the algorithm is a primitive named ResolveTwoTrees
(referred to as resolution function hereafter) which takes a pair
of tree nodes as input. Given a pair of nodes on the DM, if the
both minimum and maximum distances between these two
nodes fall completely into a histogram bucket, we say that this
pair is resolvable. An important observation here is: for a pair
of resolvable nodes, we only need to add the total number of
distances between them to the corresponding bucket in the
SDH. This is also the main reason why such algorithm is more

TABLE 1. Symbols and notations.

Symbol Definition

p Width of histogram buckets

[Total number of histogram buckets

h The histogram array with indexed elements ; (0 < i < [)
N Total number of particles in data

An index symbol for any series
DM; The i th level of density map

~.

d Number of dimensions of data
0 Diagonal length of the cells
(a)
4 | 31213
15 8
3151310
114 (13]6
9 16
212125
(b)
7 5 4 131213
15 8
8 3 3151310
5 9 1 41316
9 16
4 7 2 21215

FIGURE 1. A partial DM implemented by quad-tree and kd-tree.
Each cell is marked by the total number of data points in it.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

4 C. Mou et al.

efficient than the brute-force approach. If the pair of nodes is
unresolvable, the resolution function recursively visits next
level of the tree to resolve all pairs of child nodes (cells, since
they are the same, we may alternatively use them hereafter), so
on and so forth. If a pair of nodes is still unresolvable at the
leaf level, we have to compute all the point-to-point distances
between the data points across that pair of nodes.

The pseudocode that summarizes the technical details of the
algorithm can be found in Algorithm 1. The core process of the
algorithm is the procedure ResolveTwoTrees, which tries to
resolve two cells m; and m, on the same DM. In order to check

Algorithm 1 The dual-tree algorithm for SDH.

Data: all data points, DM, and bucket width p;
Result: an array of distance counts h
initialize all elements in h to 0;
DMy < first DM with cell diagonal length § < p;
for every cell in DM, do
n < number of particles in the cell;
hl = hl + %n(n — 1),
end
for every pair of cells m; and m; in DM, do
| ResolveTwoTrees (m;,m;);
end
return h

O 0w NS U R W N =

=
(=}

11 ResolveTwoTrees (mq,ms)

12 np < number of points in m;

13 ng < number of points in my

14 if n; = 0 or no = 0 then

15 | return

16 end

17 if my and mo are resolvable into a bucket i then

18 h; < h; +nins;

19 return

20 end

21 if my and mq are on the last density map then
22 for each particle A in m; do

23 for each particle B in ma do

24 f <+ distance between A and B;
25 1 < the bucket f falls into;

26 h; < h; +1;

27 end

28 end

29 else

30 for each child node m' of m, do

31 for each child node m/, of ms do

32 | ResolveTwoTrees (m/, mb)

33 end

34 end

35 end

whether m; and m, are resolvable, we first compute the min-
imum and maximum distances between any points from m; and
m,. Note this process only requires constant running time.
When both minimum and maximum distances between the two
cells fall into a same histogram bucket i, the value (i.e. distance
counts) in bucket i will increment by n;n,, where n; and n, are
the number of points in the spatial region represented by m; and
m,, respectively. If m; and m, are not resolvable on density map
DM,;, we move to next level of Density Map DM, |, and recur-
sively call the same function to check each of the four children
in m; to each of the four children in m,. However, if two nodes
are still not resolvable on the last level DM of the tree, we have
to calculate the distances between all pairs of points from the
two cells. In addition, if we have n; = 0 or n, = 0 (i.e. empty
nodes), the procedure directly exits.

3.2. Implementations based on different trees

To implement Algorithm 1, one decision to make is what type
of data structure we use to build the DM. Our previous work [9]
uses a quad-tree: when the space is partitioned to lower-level
nodes, the tree simultaneously bisects both x- and y-dimensions
at each partition, generating four children for each internal node.
In this paper, we consider the use of kd-tree, which alternatively
bisects its x- or y-dimension at each partition, leading to a tree
degree of two (Fig. 1). In both trees, the region containing all
points in the dataset represents the root node. Given the same
dataset, the kd-tree introduces an extra level of nodes in between
any two neighboring levels of the quad-tree, as shown in Fig. 2.
The immediate question is whether the kd-tree-based algorithm
has better performance, and this paper presents an answer to this
question via a rigorous analytical approach. A special note here
is that both trees define a node by a prefixed region instead of
being driven by data distribution. The main reason for this is:

i+1

i+n

Quad-Tree

FIGURE 2. Different levels on quad-tree and kd-tree. Dash line
represents the intermediate level that only exists in kd-tree, and a
solid line corresponds to a level that exists in both trees.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 5

the resolving of two trees is a process that is only related to the
dimensions of the two trees, the data in the trees are irrelevant.

Before we start performance analysis, it is essential to pre-
sent two critical features of the dual-tree algorithm regarding
the size of the tree structures. First, the height of the tree is
determined by the data size N. Specifically, we keep partition-
ing the tree until the average number of data points in each
node is smaller than a threshold b. Thus, the height of the tree
can be expressed as

H= logk% +1 (1)

where k is the degree of the tree (i.e. 4 for quad-tree and 2 for
kd-tree). The value b is set based on the following reasoning:
the cost of computing all the point-to-point distances is 52, and
the cost of resolving two cells is a fixed value C; if we are to
further partition the nodes into a new level, there will be k2
resolution calls, therefore, it makes sense to create this new
level only if we have b2 > k2C, or b > k+/C. Otherwise, we
should not further partition the nodes and make the current
level the leaf level. The important observation here is: given the
same N, as C does not change, the kd-tree can build an extra
level on the bottom as compared to the quad-tree.

Another important feature of the algorithm is the level of the
tree where the algorithm starts calling the resolution function.
Specifically, the algorithm starts at a tree level (i.e. a DM) where
the size of the cells/nodes satisfies

a< L e s<p (2)

N7 <
where a is the side length (6 is the diagonal length) of the cells,
p is the histogram bucket width and d is the number of dimen-
sions in the data. This is because, if the above is not true, none
of the node pairs will resolve. In other words, the bucket width
p determines the starting DM. Consequently, the algorithm
may start at the identical or different levels on the quad-tree and
kd-tree, depending on the value of p. The extra levels that only
exist in the kd-tree give chances for the algorithm to start earlier
(at such extra levels) in the tree (Fig. 2).

As we shall see later (Section 5), the above two features
define four scenarios to consider in comparing the performance
of the kd-tree-based algorithm to that of the quad-tree-based
one. In these four cases, the relative performance of the algo-
rithms are different. We will discuss the scenarios in a 3D sys-
tem in Section 6.

4. MAIN ANALYTICAL RESULTS

We first present our analysis on how fast the resolution function
resolves the points when it recursively visits the tree in a depth-
first manner. This turns out to be a key step in modeling the rela-
tive performance of the two algorithms.

FIGURE 3. Theoretical boundaries of Bucket 1 and Bucket two
regions for cell A, with the bucket width p = /26.

4.1. The geometric modeling approach

To quantify the number of points resolved, we transform the
problem into a geometric modeling problem. In particular, we
develop a model to quantify how the area of the region that
can be resolved increases as more DMs (i.e. tree levels) are
visited. Consequently, any points that fall into such regions
are resolved.'

Given any cell A on the DM where the algorithm starts
(Fig. 3), we first define a theoretical region that contains all par-
ticles that can possibly resolve into the i th bucket with any par-
ticle in A. We name this region as bucket i region for cell A,
and denote it as A;. Note that A can be either a square or a rect-
angle in the kd-tree implementation. In all illustrations of this
paper, we only draw rectangular cells but our analysis will cover
both cases. Going back to Fig. 3, cell A is marked with its four
corner points Oy, O,, O3 and Oy, A is, therefore, bounded by
four arcs and four line segments connected by points G through
Cg. The arcs are of the same radius p. Here we consider the spe-
cial case of Equation (2): the diagonal length of cell A is set to

be § = Lz However, as we shall see later, the case of § < %

will not change our analytical results.

The cells that are actually resolvable into bucket i with any
subcells in A also from a region. We named such region as
coverable region and denote it as A/. Since a coverable region
contains rectangles or squares, its boundary (solid straight line
in Fig. 4) shows a zigzag pattern. An essential part of our ana-
lysis is to study the area of coverable regions over all buckets
and how the density map resolution affects it. We define the

"Note that such transformation is based on an implicit assumption that data is
uniformly distributed in the simulation space, because we adopted space-oriented
(bisecting each dimension) method. We will remove this assumption in our ana-
lysis as shown in Section 5.1.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

6 C. Mou et al.

FIGURE 4. Actual (solid straight line) and approximated (dashed curved line) coverable region for Bucket 1 under: a. m = 2, b. m = 3, c.
m =4, and d. m = 5. Outer solid black line represent the theoretical Bucket one region. All arrowed line segments are drawn from the centers

to the corresponding arcs with radius p.

ratio of ZiA,-/ to >,A; as the covering factor, which is a critical
quantity to measure how much area are ‘covered’ by the resolv-
able cells. Note that the boundary of A approaches that of A;
(solid black line in Fig. 4) when the dual-tree algorithm visits
more levels of the tree. As a result, the covering factor increases.
Of special interest to our analysis is the non-covering factor
which indicates the percentage of area that is not resolvable, i.e.

non-covering factor = 1 — covering factor (3)

Our previous work [25] has studied the resolution ratio of
dual-tree algorithm running on top of the quad-tree. A very
important feature of the non-covering factor in the quad-tree can
be summarized in the following theorem.

THEOREM 1. Let DM; be the first density map where the quad-
tree algorithm starts running, and we define the non-covering
factor o, as a function of the levels of density maps visited m.
In other words, o, is the percentage of cell pairs that are not
resolved upon visiting DM, , ,,,. We have

Jim Sl 1
p—0 Qyy 2

Basically, Theorem 1 says that half of the node pairs are
resolved when one more level of the tree is visited. From this
theorem, we can easily derive a recurrence function that leads to
the time complexity of the quad-tree-based algorithm dropping
to O(N*:"), where d is the number of dimensions of dataset
[10]. This theorem, by focusing on the non-covering factors on
two consecutive levels, essentially shows how fast the data
points could be resolved while the dual-tree algorithm visits the
quad-tree structure.

For the same dataset, the kd-tree has extra levels that are not
seen in the quad-tree, the data points could be resolved earlier in
the kd-tree by the resolution function. Intuitively, if more data
points are resolved by the resolution function call, fewer of them
are left for distance computation. That is the benefit of calling
the resolution function earlier (among the intermediate tree

nodes). On the other hand, the time we spend on calling the
resolution function on such levels is a pure cost. Just by looking,
it is not clear how much net performance gain such ‘early reso-
lution’ in the kd-tree can generate. Therefore, it is essential to
study the same quantity v, 1/, in the kd-tree.

4.2. Non-covering factor ratios in kd-tree

Rather than square cells in the quad-tree, the kd-tree introduces
rectangular cells on the intermediate levels, the algorithm, there-
fore, alternatively visits the square and rectangular cells, result-
ing in more complicated scenarios in studying the resolution
ratios on the kd-tree. Our main results on kd-tree can be seen in
the following theorem.

THEOREM 2. Let DM; be the first density map where the dual-
tree algorithm starts running on a kd-tree, and o, be the non-

covering factor upon visiting the density map that lies m levels
below DM;, we have

Q1 3

lim —— = = 4

p—0 4 ()
when i + m is even, and

lim St 2 (5)

p—0 3

when i + m is odd.

In the remainder of this section, we present a proof of
Theorem 2. However, readers can jump to Section 5, in which
we show how Theorem 2 leads to effective analysis of algorithm
performance.

4.2.1. Bucket region

As shown in Fig. 3, the bucket one region for cell A is con-
nected by G through Cg; GGy, C3C4, C5Cg and C;Cy are all
line segments; C, C5, C4Cs, C¢C7 and CgC; are all 90-degree
arcs with radius p and centered at O,, Oz, Oy and Oy,

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 7

respectively. épparently, the area of this region is 7wp? +
2pd + pé + % The bucket two region of A is similar to bucket
one region but the radii of the four arcs are 2p—this region is
connected by D; all the way around to Dg. However, if the
points are too close to A, they will only be resolved into bucket
1, because their distances to any points in A will always be
shorter than p. These points formed a region, which is con-
nected by four arcs Q1 0>, Q> O3, 0304 and Q4 Q; with radius p
and centered at opposite corners of A. The bucket two region
should not take count of such inner region. This football-shaped
inner region Q10,0304 has fourfold of the area of region
@ D (Fig. 5). To get area of Q/@ D, we first calculate the
area of sector @03

1
SQZZ@=:EPZ-ZQ403Q1

:§ﬂ{§fzmaw—zg@ﬁ

(6)

1, (m .6)
=—p° - | — — arcsin— — arcsin—
2 2 4p 2p

We then deduct the area of region AQ, O3B and AQ,05;C
§ 2
2 _ | Z
g [4]
s 2
2 _ | Z
P [J

Note that, by doing that, we subtract the quadrilateral twice,
and only once for each of two triangles. Thus, we have to put
them back by adding the area of rectangle O3 BDC only once,
then we get the area of 010,030y, is given by Equation
(A.1) in Appendix 1.

The shape of bucketi (i > 2) regions is the same as bucket
two region except the radii of the arcs become ip. Recall that the
algorithm starts from a DM where p > diagonal. For conveni-
ence of presentation, we set p = diagonal,ie. p = %‘S As we

SAQ,0:8 =

SAnQ,05¢c =

A 0|

(@) (b)

will see later, p > diagonal will not affect our analysis. We,
therefore, have the general formula g (i), is given by Equation
(A.2) in Appendix 1, to measure the area of bucket i region.

4.2.2. Coverable regions
Similar to bucket region, the coverable region consists of an out-
er region and an inner region.

The first bucket. First, let us focus on bucket 1. In Fig. 4, we
illustrate the coverable regions of four different density maps
with m value ranging from 2 to 5. The solid straight line with
zigzagged pattern indicates the coverable region of cell A,
denotes as A’. This region contains all the cells that can be
resolved into bucket 1 with any subcell in A. A key technique
here is to use a smooth boundary (shown as dashed curved line)
to approximate the area of A’. As m increases, the boundaries of
A’ approach that of A. The covering factor of bucket 1 with cell
A is then calculated as the ratio of the area of A’ to that of A.
The area of A" is given by Equation (A.3) in Appendix 1.

The second bucket and beyond. First, we have to compute the
area of the region A/ by only considering the outer boundaries.
This is the same as we did in Section 4.2.2.1 except the radii of
arcs are ip. Such area for bucket A/, Sy (i), is given by
Equation (A.4) in Appendix 1.

Second, we have to consider the inner boundaries of the
coverable region. Figure 6 shows an example with m = 1 for
buckets 2 and 3. Clearly, any cell that crossed by a segment
of the theoretical inner boundary, as shown as thick solid
line, will not be able to resolve into bucket i, because they are
only resolvable to bucket (i — 1). In addition, there are more
cells that are not resolvable to either bucket i or (i — 1).
Again, we define a smooth boundary (dashed line in Fig. 6)
to approximately separate the resolvable and non-resolvable
regions. Such boundaries are drawn as follows: for each
quadrant of cell A, we draw an arc (dashed line) with radius
(i — 1)p and centered at the corner of the subcell of A.
Consequently, any cell that crossed by this arc cannot resolve

(c) (d)

FIGURE 5. A part of the football-shaped region shown in Fig. 3.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

8 C. Mou et al.

Ql A
D " % \‘ “v
Q4 b f i c ; |
T s s A) s
F i 0
C 03 : |
\ﬁix‘ et.2 hmlnfjal'ﬂéi

FIGURE 6. Inner boundaries of the coverable region with m = 1.

into bucket i, because they are too close to A. Such boundary
also approximates the real inner boundaries (with a zigzagged
pattern), and the area of region defined by such approximated
boundaries is

- “Blicket 3 bouindaries -

(8) FIGURE 7. Inner boundaries of the coverable regions of Buckets 2
and 3 under (Q)) m =2, (b)ym =3, (c) m=4 and (d) m = 5. All
arrowed line segments are of length 2p.

7 (ip)* + dip — w[(i — 1)p — 6(i — 1)p

Figure 7 illustrates more cases with m values from 2 to 5.
For the cases of m > 2, we can use the same method as case
of m = 1 to generate the real inner boundaries and approxi-
mated inner boundaries. Again, as m increases, point C
approaches point O, and the approximated inner boundaries
approach the theoretical inner boundaries. To compute the area
of the regions formed by the approximated inner boundaries,
we first need to derive angle ZDCB that encloses the shaded
area shown in Fig. 8:

L G \
T F
/DCB = — — /JCD — /KCB 9 D
5)]

] H C

When m is odd, the subcell is a square and we have
DJ = BK. When m is even, the subcell is a rectangle and we FIGURE 8. The region bounded by four arcs in Fig. 6.
have DJ = BK /2. Consequently, we have two cases to calcu-
late ZDCB when m increases:
/ZDCB _ , [3p?

SEbc = e = — 11
0. é BDC 2 p 2 ()
™ .My . em 6 .
08 = — — arcsin—= — arcsin—, m is even
2 p p (10) The area of the polygon BFDC is
emf lé
8= g — arcsin — arcsin O 10 ,m is odd Sprpc = Sarc + Saprc — SiFnC (12)
p p
where Sagrc, Sapic and Sjpyc are defined as Equations (13),
where 0,, is a function of m: (14) and (15), respectively:
6, = r__1 p* — (0,6)* - 0,6 - l, m is even
"2 o2 2

SABHC = 1 (13)
p2 - (9m+16)2 . 0m+16 . E, m is odd

With that, we can easily get the area of the Sector BDC

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 9

[1 . ! .
SAD[C = p2 - (9,,,(5)2 . 9,,,(5 : % (14) a(m + 1) = Zi:lg (l) _ Zi:lf(l’ m+ 1) (19)
o (m) Z,l':lg (i) — Zlef (i, m)
(6)? - 8 ’ m is even Note that functions g (i) and f (i, m) are given by Equations
S _ 2 15 (A.2) and (17) already. By plugging those into Equation (19),
IFHC =) (15)

Om—1- Ot - %, m is odd

In addition, the area of the square LEFG is

we can prove that when m is even, a(m + 1)/« (m) con-
verges to 2 /3. Such proof can be found in Appendix 2.

Now let us look at a(m + 2)/a(m + 1). The m th and
(m + 2) th levels in the kd-tree correspond to two consecutive
levels in the quad-tree. By Theorem 1, we have a (m + 2) /v (m)

52 converges to 1/2. Since we have already shown «(m + 1)/
SLEFG = — (16) .
8 « (m) converges to 2 /3, we can easily get
Therefore, with the above four equations, we obtain the area lim a(m+2) _ 3 (20)

of region bounded by four arcs (shaded region in Fig. 8) as
Sshade = (Ssector — Sapic — Saguc + Sirnc — SLEFG)

For the i th bucket, we can get the general equation to calcu-
late Sghage, 1S given by Equation (A.5) in Appendix 1.

We denote the area of the coverable region A’ for bucket i
under different m values as f (i, m)

fi,m) =Sy = Sou (i) — 4 - Sshage (i — 1) — Sy (17)

The fully expanded formula for f (i, m) can be found in
Equation (A.6) of Appendix 1.

We use the non-covering factor « (m) to study the percentage
of unresolvable pairs of cell at each level

Yicile (i) = £, m)]
Ef‘:lg(i)

a(m)=1-—c(m) = (18)

To prove Theorem 2, we start by

p—0oa(m+1) 4

The above concludes the proof of Theorem 2.

Numerical results (Table 2) generated from computing
expanded equation (18) show that non-covering factor ratios
quickly converge to 2/3 and 3/4, even under large p values
(corresponding to small total number of buckets). The only
exception is the case of m = 1. The reason is: when we visit a
high level of the tree, the coarse grid causes a relatively big gap
between the approximated boundaries (zigzagged pattern) and
real boundaries (Figs 4a and 7a). When we move to lower
levels, the approximated boundary is a better estimation of the
real boundaries (Figs 4d and 7d), and this leads to smaller mod-
eling errors. As Table 2 shows, even when m = 2, the non-
covering factor ratios converge perfectly. Note this discussion is
not focused on the value of m, it is only a matter of the actual
level of tree m corresponds to. Such a fact does not diminish the
value of Theorem 2 because: (1) the case of p — 0 implies the
visited tree level is low even when m = 1, therefore, the the-
orem covers such cases; (2) even if the algorithm starts on a

TABLE 2. Values of «(m + 1)/« (m) derived from fully expanded Equation (18) as computed by MATLAB (Version 8.4). Precision is up to
the fifth digit after decimal point.

Total number of histogram buckets

Density map levels

2 4 8 16 32 64 128 256 512 1024
m=1 0.74197 0.64118 0.61973 0.61462 0.61336 0.61305 0.61297 0.61295 0.61295 0.61295
m=72 0.67732 0.6691 0.66721 0.66679 0.66669 0.66667 0.66667 0.66667 0.66667 0.66667
m=73 0.74807 0.74909 0.74968 0.7499 0.74997 0.74999 0.75 0.75 0.75 0.75
m=4 0.67521 0.6688 0.66719 0.66679 0.6667 0.66667 0.66667 0.66667 0.66667 0.66667
m=>5 0.74448 0.74809 0.74941 0.74983 0.74995 0.74999 0.75 0.75 0.75 0.75
m=06 0.67473 0.66891 0.66726 0.66682 0.66671 0.66668 0.66667 0.66667 0.66667 0.66667
m="17 0.74276 0.74762 0.74929 0.7498 0.74994 0.74998 0.75 0.75 0.75 0.75
m=38 0.67464 0.66903 0.66732 0.66685 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667
m=9 0.74193 0.74739 0.74923 0.74978 0.74994 0.74998 0.75 0.75 0.75 0.75
m =10 0.67464 0.6691 0.66736 0.66686 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667
m=11 0.74151 0.74728 0.7492 0.74977 0.74994 0.74998 0.75 0.75 0.75 0.75
m=12 0.67465 0.66915 0.66738 0.66687 0.66672 0.66668 0.66667 0.66667 0.66667 0.66667

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conf conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

10 C. Mou et al.

Start / \

Starts at 2i

End

[\

Ends at 2(i+n)

é Case 2 Case 4

Ends at 2(i+n)+1

Starts at 2i—1

Case 1 Case 3

FIGURE 9. Four cases in performance comparison listed from the
perspective of the kd-tree-based algorithm. Note that level 2i corre-
sponds to level i in the quad-tree according to Fig. 2, and an extra
line represents a level that only exists in the kd-tree.

high level with some modeling errors, the time spent on high
levels is negligible, therefore, it does not impose significant
effects on performance analysis (see Section 5).

5. PERFORMANCE COMPARISON OF TWO TREES

Theorem 1 states that half of the node pairs are resolved when
one more level of the quad-tree is visited. Theorem 2 states that
a quarter of the node pairs will be resolved when the algorithm
works on an even level (which has square cells and is also in
the corresponding quad-tree), and a third will be resolved on
the extra levels (with rectangular cell) that only show up in the
kd-tree. From these two theorems we can easily derive a recur-
rence function that leads to the time complexity of the algo-
rithm (see Section 6.1in[10] for details). Although the time
complexity of the algorithm is the same under both trees, it is
not clear how the actual running time is affected by using a kd-
tree. Intuitively, the appearance of the extra levels provides
opportunities to resolve nodes earlier such that fewer node pairs
are to be resolved in the following levels. On the other hand,
there is extra cost to resolve pairs of nodes in such extra levels.
Only when such cost is overshadowed by the saved time can
we see a performance advantage from the kd-tree. Fortunately,
with Theorem 2, we are able to quantitatively compare the
actual running time of both algorithms under different cases
(Fig. 9). Note that, in Algorithm 1, the time is only spent in two
types of operation: Type I—resolution function calls; and Type
[I—computation of distances between data points in the unre-
solved leaf nodes.

5.1. Casel

In this case, the algorithm ends at identical levels on both trees,
they have the same number of unresolvable pairs of nodes at
leaf level and thus the number of point-to-point distances to be

computed. Therefore, we only need to compare the number of
resolutions called by the algorithm.

In the quad-tree, if a pair of nodes is unresolvable at the cur-
rent level, it will generate 16 pairs of nodes at the child level. In
other words, for all the node pairs at the starting level, the algo-
rithm leaves 16ay/ pairs unresolved, where o is the non-
covering factor, and [is the total number of node pairs at the
starting level, respectively. At the next level, it leaves 162 1
pairs unresolved. Thus, the total number of calls to the reso-
lution function on quad-tree is

R = I(] + 160[0 + 162050041 + -+]6”040041...0(",1) (21)

Based on Theorem 1, we have
5 1 1 n—1
R=11 + 1605() + 16 (%)) 5 + -+ 16”0&0 E (22)

In the kd-tree, if a pair of nodes cannot be resolved at current
level, it will generate four pairs of nodes at its child level.
Similarly, we have a total number of calls to the resolution func-
tion in the kd-tree as

R =1(1+ 430+ #B3B1+ - + 4BoBr..ba1) (23)

where (; is the non-covering factor, and / is the total number
of node pairs at the starting level. With Theorem 2, we have

et anfZ)oal)

+ ~--+42”_]ﬁ0[%}n1 + 42"50[%]’11[%]] (24)

Consider any level i of the quad-tree visited by the algorithm.
Let us denote A; as the ratio of number of calls to the resolution
function of the two algorithms at that level (for kd-tree, this
includes the calls at level 2i — 1 and 2i). From Equations (22)
and (24), we have

TR eI

Since the algorithms start at identical levels of the tree in this
case, we have ag = [y, which further gives A; = 1. This
means the two algorithms make exactly the same number of
calls to the resolution function.

Another factor that impacts the total calls to the resolution
function is the existence of empty nodes, which are automatic-
ally ignored by the algorithm. Such empty nodes may appear
earlier in the kd-tree due to the existence of the rectangular
nodes, and such scenarios yield a net discount to the number of
function calls made by the kd-tree. On such a level 2i — 1 in the
kd-tree, let us define B as the number of nodes at that level, € as

161'040(%)’.71 ag

(25)

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conf conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 11

net discount to the number of function calls, and K the number
of empty nodes, we have

B35z e

If we model the spatial distribution of data points as a random
process, the expected value of K can expressed as

€ =

E[K] = B - Pr{X} (27)

where X represents the event that a cell is empty. If the data is
uniformly distributed in space, we have Pr{X} = (1 - %)
for a dataset consisting of N points. Typically, only when we
move to the lower levels of the tree (such that B — N) can we
see a non-negligible Pr{X}. However, under skewed data dis-
tribution (e.g. Zipf), Pr {X} becomes significantly high even at

higher levels of the tree, leading to a bigger discount €.

5.2. Case?2

In this case, the dual-tree algorithm starts at identical levels on
the quad-tree and kd-tree, but ends at different levels. In Case 1,
we have already shown that the kd-tree beats the quad-tree on
the number of Type I operations, so we just need to compare the
difference of Type II operations.

In this case, the leaf nodes of the quad-tree are further divided
into two child nodes (representing rectangular regions in space)
in the kd-tree. As a result, more nodes can be resolved by the
algorithm on the kd-tree, giving rise to fewer point-to-point dis-
tance computations. Suppose there are J unresolved distances
left at leaf level (i + n) of the quad-tree (which is identical to
level 2(i + n) of kd-tree). Upon calling resolution function on
the next level 2(i + n) + 1 of the kd-tree, there are %J unre-
solved distances left. Then, we have a kd-/quad-tree speedup at
this level as

Speedup = %L (28)
?I./ G+ PG

where P is the number of resolution function calls made at
level 2(i + n) + 1 of kd-tree, i and C, are the costs of dis-
tance computation and resolution function call, respectively.
Since each resolution function call invokes 16 distance com-
putation (Section 3.2), we have 16C; = C,. Consequently, the
denominator of Equation (28) becomes

%JQ + 16PG (29)

Let x be the average number of the points at the level
2(i + n) + 1 of kd-tree. Since the minimum average number
of points at leaf level is set to 4, the average number of points
at one level up will be no less than 8, thus we have 8 > x > 4.

Here each resolution function resolves x2 distances, and we
called resolution function P times. On the other hand, we have
the J/4 of distances resolved by the resolution function at the
bottom level of kd-tree. Therefore, we have the following rela-
tionship between J and P:

J 2 J
L xp=_=p 30
4 4x2 (30)

By plugging Equations (29) and (30) into Equation (28), we
have

Speedup = (31)

w

L

il
Sk

Since x € [4, 8), we get Speedup € [1, 1.2308). Therefore,
the kd-tree algorithm again has better performance, with a
speedup up to 1.23x over the quad-tree algorithm.

5.3. Case3

The algorithm starts at an odd level of kd-tree, which does not
exist in the quad-tree, and ends at the same level for both trees.
The latter is the same to Case 1; therefore, the efficiency
depends on how many times the algorithm calls the resolution
function. Although the algorithm starts earlier in the kd-tree
(level 2i — 1), the number of nodes that are unresolvable at the
next level (i.e. level 2i) is exactly the same as the starting level i
of the algorithm on the quad-tree. In other words, Equations
(22) remains the same and the only change to Equation (24) is
that the first term / becomes 1/4 + I3 where I /4 is the number
of node pairs at level 2i — 1, 3 is the non-covering factor at
level 2i — 1, and I0 is the number of function calls at level 2i.
Here 3 has an upper bound of 3/4 (Theorem 2). Therefore, as
compared to Case 1, the kd-tree beats the quad-tree by an even
bigger margin. However, the extra margin is negligible because
it only reflects the changes to the first item in Equation (24),
which is the one with the lowest order in the series. In other
words, Case three is almost the same scenario as Case 1.

54. Cased

This case combines the differences between the quad-tree and
kd-tree as discussed in Cases 2 and 3: the kd-tree starts running
at a higher (odd) level, and it ends at the extra leaf level that is
not in the quad-tree. Since we have shown that both scenarios
lead to performance advantages of the kd-tree, we conclude the
kd-tree is the winner again. Furthermore, the performance gap
between kd-tree and quad-tree can be modeled by Equations
(26) and (28).

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

12 C. Mou et al.

6. EXTENSION TO 3D DATA

In this section, we present the analysis on 3D datasets. In 3D
systems, based on the same partitioning method as in 2D, the
quad-tree (now named oct-tree) bisects its x-, y-, and z-dimen-
sion at each partition. Consequently, each internal node of an
oct-tree has eight children (instead of four as in quad-tree).
Given the same dataset, kd-tree introduces two extra levels of
nodes in between any two neighboring levels of the oct-tree, in
contrast to only one such extra level in 2D data (Fig. 9).
Following the SDH start/stop condition adopted in Section 3.2,
we have nine scenarios to consider in performance comparison
(Fig. 10).

Our previous work [25] has shown Theorem 1 is also true for
oct-tree. We could still follow the geometric modeling approach
mentioned earlier to study the performance of the kd-tree-based
algorithm for 3D data. However, the case of 3D is too complex
to yield any closed-form formulae towards an analysis as rigor-
ous as in 2D data. Fortunately, via a large number of simula-
tions, we found that the non-covering factor of kd-tree under 3D
data has the following patterns.

CONJECTURE 1. Let DM, be a level of the kd-tree built for 3D
data, and all nodes in DM,,, are cubes (i.e. an identical DM
exists in the corresponding oct-tree). Denote o, as the non-
covering factor of level m, we have

. (0% 1 5 . (e 77y} 4 . « 3
hn‘lL+ = —, th = —, lim Zm+3 —

3
P—=0 P=0 Qupy 1 p=0 Q2 4

Conjecture 1 can be viewed as a 3D version of Theorem 2. It
is easy to see that the product of the three constants in it is 1/2,
which is consistent with Theorem 1 for the oct-tree and we

Starts at 3i Starts at 3i-1 Starts at 3i-2

End

[\

Ends at 3(i+n)

é Case 2 Case 5 Case 8

Ends at 3(i+n)+1

Case 1 Case 4 Case 7

Case 3 Case 6 Case 9

Ends at 3(i+n)+2

FIGURE 10. Nine cases in running the kd-tree-based algorithm.
Note that level 3i corresponds to level i in the oct-tree.

conclude the time complexity is again the same for both trees
under 3D. We have run simulations under many different sets of
parameters and the results consistently support the conjecture.
Results of one such experiment are shown in Fig. 11. Based on
this, we will quantitatively compare the actual execution time of
both algorithms under the cases shown in Fig. 10.

6.1. Start/stop at the same level (Case 1)

The scenario is the same as what was discussed in Section 5.1
except that there are two extra levels of DM in the kd-tree
between those corresponding to any two neighboring levels in
the oct-tree. In the oct-tree, if a pair of nodes is not resolvable at
current level, it calls resolution function for 64 pairs of nodes at
the children’s level. So, after the algorithm worked on resolving
all the nodes at current level, it leaves 64/ pairs unresolved.
Consequently, after the algorithm worked on resolving all the
nodes at level i + 1, 642agy 1 pairs remain unresolved, and so
on. Thus, the total number of calls to the resolution function on
oct-tree is

R=1[1+ 64y + 64agay + -+ + 64"apay...c—1] (32)

Again, based on the Theorem 1, we have

n—1
R =1{1 + 6409 + 6420(()[%] + -+ 64"040[%] (33)

In the kd-tree, if a pair of nodes cannot be resolved at current
level, it will visit four pairs of nodes at its child level; therefore,
the total number of resolution function calls is

R' =1I[1 + 43y + 48051 + 46051532
-+ '~'+43nﬁ0/81.-~ﬂ3n—1] (34)

With Conjecture 1, we have

1.2 T T T T
3 Buckets ——
4 Buckets
5 Buckets ——
1 6 Buckets
" T~ 8 Buckets
2 T 10 Buckets —e—
©
i
34 Y.
0.6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Actual level on kd-tree visited by the algorithm

FIGURE 11. Ratio of the non-covering factors of two neighboring
levels visited by the kd-tree-based algorithm in processing a uni-
formly distributed 10-million-atom dataset. Each line represents one
run under a particular p value. In each line, the ratio of non-covering
factor converges very well to what Conjecture 1 states after the first
three levels.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 13

=i osfd]onf2)) sl
eI

Similarly, let us denote A; as the ratio of number of calls to
the resolution function of oct-tree to kd-tree at level i of the
oct-tree visited (for kd-tree, this includes the calls at level
3i — 2, 3i — 1 and 3i). From Equations (33) and (35), and
also considering cvg = B (since both algorithms start at iden-
tical DMs in each tree), we have

(35)

64 (1)
A= T (5 N
Bol3) e (2) < @ (3)(3))
_ 10 (36)
s

Therefore, the kd-tree-based algorithm makes fewer (15/16
to be specific) calls to the resolution function comparing to
the quad-tree algorithm.

In addition, the appearance of empty nodes also impacts the
total calls to the resolution function. In the 3D system, since the
kd-tree has two extra levels, more empty nodes will appear in
such intermediate levels.

6.2. Stop further (Cases 2 and 3)

This scenario is a counterpart of case 2 in 2D: we only need to
compare cases that kd-tree has one and two extra level(s) result-
ing in differences in numbers of Type II operations.

6.2.1. Case?2

In this case, the leaf nodes of oct-tree are further partitioned into
two child nodes in the kd-tree. As a result, more nodes can be
resolved, and less point-to-point distance computations are
required for the kd-tree. Suppose there are J unresolved dis-
tances left at leaf level (i + n) of the oct-tree (which is identical
to level 3(i + n) of kd-tree). Upon calling resolution function
on the next level 3 (i + n) + 1 of the kd-tree, there are >J unre-
solved distances left. Then, we have a kd-/oct-tree speedup at
this level as

JG

G (37)
EJCI + PG,

Speedup =

where P is the number of resolution function calls made at
level 3(i + n) + 1 of kd-tree, G; and C, are the costs of dis-
tance computation and resolution function call, respectively.
In a 3D system, each of resolution function call requires

8 x 8 = 64 distance computations. Then, we could substitute
the C, with 64 to the denominator in Equation (37):

%Jq + 64PC, (38)

Similarly, let x be the average number of the points at the
level 3(i + n) + 1 of kd-tree. Since our threshold b (average
number of points at leaf level) is set to be equal or greater
than 8, and the average number of points at one level in
advance will not be less than 16, we have 16 > x > 8. The
number of distances resolved by the resolution function is
x2P, and there are J/6 distances resolved by the function at
3(i + n) + 1level of kd-tree. Therefore, we have
J

J 2
6 6x2 (39)

Plugging Equations (38) and (39) into Equation (37), we
have

1
5
2+

Speedup = (40)

64
6x?

Since x € [8, 16), we get Speedup € [1, 1.1429). Thus, the
performance of kd-tree beats that of oct-tree.

6.2.2. Case 3

In this case, the leaf nodes of oct-tree are partitioned into four
child nodes in the kd-tree. Similarly, in the kd-tree, more nodes
can be resolved by the resolution function call, fewer distance
computations are required. Suppose there are J unresolved dis-
tances left at leaf level (i 4+ n) of the oct-tree. After calling the
resolution function at the next two levels 3(i + n) + 1 and
3(i + n) + 2 of the kd-tree, there are (% . %)J distances left.

Then, we have a kd-/oct-tree speedup as

(41)

Speedup = G
2 4G+ (P + PG

where P, and P, are th number of resolution function calls
made at level 3(i + n) + 1 and 3(i + n) + 2 of kd-tree, G
and C, are the costs of distance computation and resolution
function call, respectively. Similarly, we have C, = 64C,
then the denominator of Equation (41) becomes

4
g.]C] + 64C (P] + Pz) (42)

Let x; and x, be the average number of the points at the level
3(i+n)+ 1 and 3(i + n) + 2, respectively. Similarly, by
having the pre-defined threshold b = 8, we get 32 > x >
16 > x, > 8. In addition, the number of distances resolved
by the function at the last two levels of kd-tree are J/6 and
1/5 x 5J/6, respectively. This leads to

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

C. Mou et al.

14
1 5 .
—J =x(P atlevel 3(i+n) + 1
° (43)
3 X gJ:xzsz atlevel 3(i + n) + 2

By plugging Equations (42) and (43) into Equation (41), we
have

1
o 6
6x]2 ?

Speedup = (44)

2
3t [
Since x; € [16, 32) and x, € [8, 16), we have Speedup € [1.1429,
1.3913). Thus, the kd-tree outperforms oct-tree with a speedup
up to 1.39x.

6.3. Start earlier (Cases 4 and 7)

This scenario is similar to Case 3 in 2D analysis: the algorithm
starts at one or two level(s) earlier on kd-tree, and stops at identi-
cal levels in both oct-tree and kd-tree. Thus, the difference lies
on the number of resolution function calls.

6.3.1. Case4

In this case, the algorithm starts one level earlier in the kd-tree
(level 3i — 1). Similarly, Equation (33) is unchanged, and the
only change to Equation (35) is that the first term / becomes
I/4 + I3 where 1/4 is the number of node pairs at level
3i — 1, B is the non-covering factor at level 3i — 1, and I3 is
the number of function calls at level 3i. Here 3 has an upper
bound of 5/6 (Conjecture 1). Again, as such numbers are very
small, it does not change the conclusion we made in Case 1.

6.3.2. Case?7

In this case, the dual-tree algorithm starts two levels earlier on
the kd-tree (level 3i — 2). Again, Equation (33) is unchanged,
and the change to Equation (35) is that the first term becomes

(a)

141

Uniform Distribution Zipf Distribution

Baseline
4 Bucket —=—
6 Bucket
8 Bucket

121 10 Bucket

1 y —

ot 1K

7

0.8 1 08F

Ratio of function calls

0.6 1 061

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Visited levels in quad-tree Visited levels in quad-tree

1/16 + 1/43" + 13", where 1/16 is the number of node pairs
at level 3i — 2, 1/4 is the number of node pairs at level 3i — 1,
(' is the non-covering factor at level 3i — 2, 3” is the non-
covering factor at level 3i — 1, 1/43' is the number of function
calls at level 3i — 1, and 13" is the number of function calls at
level 3i. Here 3’ and 3" have upper bound of 3/4 and 5/6,
respectively. This, again, does not change the results of Case 1.

6.4. Start earlier, stop further (Cases 5, 6, 8 and 9)

In this scenario, the dual-tree algorithm starts at one or two level
(s) earlier and stops at one or two level(s) further. We can simply
combine the aforementioned cases to carry out the performance
analysis: Case five can be modeled by Equations (36) and (37);
Case six can be modeled by Equations (36) and (41); Case eight
can be modeled by Equations (36) and (37); and Case nine can
be modeled by Equations (36) and (41).

7. EXPERIMENTAL EVALUATION

We have implemented both algorithms with the C++ program-
ming language and our experiments were run on a Mac OS X
(El Capitan) server with an Intel 17-6700 K Quad-Core 4.0 GHz
processor and 16 GB of 1867 MHz DDR3 memory. We used
one real dataset, which was generated from a molecular dynam-
ics study to simulate a bilayer membrane lipid system, and two
synthetic datasets that represent different spatial distributions of
data (i.e. Uniform and Zipf with order 1.0) in our experiments.
All synthetic data were generated within a box with lateral
length 25 000. All experiments were run under a series of histo-
gram resolutions (i.e. 4-10 buckets) and different system sizes
(i.e. 100000-1 600 000 points). Note that the total number of
buckets in the histogram (or bucket width p) determines which
tree level the algorithm starts, and the data size determines
which level the algorithm stops. Therefore, we set those two

(b) Uniform Distribution Zipf Distribution
1.45 T T T 1.45 T T
c 4 Bucket ——
o 6 Bucket —=—
5] 8 Bucket
a 14 10 Bucket 147 J
£
I}
° R
(o]
S 135 1 135 S~ 7 1
c
£ 43 43 z
2
B
° 1.3 ¢ 13F
©
o

700K 800K 900K 1M 1.1M 12M 700K 800K 900K 1M 1.1M 1.2M

Number of Atoms Number of Atoms

FIGURE 12. Ratios of (a) Type I operations and (b) Type II operations made by quad-tree vs. that by the kd-tree under different histogram
bucket numbers and data distribution patterns (i.e. uniform and Zipf). (a) Ratio of resolution function calls and (b) ratio of distance

computations.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

chengcheng@rai | . usf. edu

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida,
on 18 March 2018

DUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 15
(a) 4 Buckets 8 Buckets (b) 6 Buckets 10 Buckets
T T T T 240 T T T T
Quad-Tree(Uniform) ==——w=— Quad-Tree(Uniform) ==
140 + k-d Tree(Uniform) —s— 1 300 [200 k-d Tree(Uniform) ==
s Quad-Tree(Zipf) s Quad-Tree(Zipf) 350 |
[8) k-d Tree(Zipf) [8) k-d Tree(Zipf)
% 120 F Quad-Tree(Real) % 200 Quad-Tree(Real)
=~ k-d Tree(Real) =~ k-d Tree(Real)
0] o 180 1 300}
£ £
= 100 | =
c c
K] Ee]
3 80 3
@ i @
x X
L w r
o /
. 80 . . . 1 150 . . .
400K 450K 500K 550K 600K 400K 450K 500K 550K 600K 400K 450K 500K 550K 600K 400K 450K 500K 550K 600K
Number of Atoms Number of Atoms Number of Atoms Number of Atoms
(C) 4 Buckets 8 Buckets (d) 6 Buckets 10 Buckets
550 T r T T T T 900 T T T T 1400 T T
Quad-Tree(Uniform) =——e=— Quad-Tree(Uniform) ===
500 k-d Tree(Uniform) —s=— | 1200 800 k-d Tree(Uniform) =——— |
. Quad-Tree(Zipf) - Quad-Tree(Zipf) 1200 |
O 450 + k-d Tree(Zipf) 4 [5) k-d Tree(Zipf)
2 Quad-Tree(Real) 1000 | o 700 Quad-Tree(Real)
;’ 400 + k-d Tree(Real) g ;’ k-d Tree(Real)
g g e00 _4 1000 |
= 3501 800 f [= /
S 300t § 500r 800 |
§ 250 600 - § 400
x < 600
w200 w 300 |
400 |
150 200 F 400 |-

700K 800K 900K 1M 1.1M 1.2M 700K 800K 900K 1M 1.1M 1.2M

Number of Atoms Number of Atoms

700K 800K 900K 1M 1.1M 1.2M 700K 800K 900K 1M 1.1M 1.2M

Number of Atoms Number of Atoms

FIGURE 13. Running time of the dual-tree algorithms in 2D systems under different data sizes and data distribution patterns. (a) Case 1,

(b) Case 3, (c¢) Case 2 and (d) Case 4.

numbers in different ways to create all the cases discussed in
Sections 5 and 6 .

7.1. Results for 2D data

We first evaluate our analysis related to Case 1 of 2D data.
Figure 12a shows the recorded A; values under different numbers
of tree levels visited by the algorithm (i.e. m in Theorem 2). For
the uniformly distributed data, A; is close to 1 for most the levels.
For smaller i, we observe smaller 4; values. This is due to the
modeling errors caused by the coarse grid, as discussed at the end
of Section 4. Note that such errors disappear at m = 3 in
Fig. 12a. For the Zipf data, we see /A\; values greater than 1 for lar-
ger i—this is due to the fact that empty nodes are found earlier in
kd-tree. Such results confirm our analysis shown in Section 5.1.

Related to Case 2, Fig. 12b shows the ratio of total number of
distance computations (i.e. Type II operations) made by the two
trees. Recall this is the case where the kd-tree has an extra level
on the bottom. The curves converge to 4/3 in the uniformly dis-
tributed data, meaning the kd-tree saves 1/4 of the distance
computations. For the skewed data, we see more fluctuations in
the results, and the speedup is even higher than those in uniform
data for most of the cases. This confirms the analysis shown in
Equation (30).

TABLE 3. Ranges of speedup (kd-tree over quad-tree) observed in
all cases of 2D experiments shown in Fig. 13.

Data type
Scenario
Uniform Zipt Real
Case 1 0.993-1.002 0.974-0.996 0.996-1.006
Case 2 1.052-1.204 1.159-1.230 1.084-1.219
Case 3 0.994-1.005 0.984-1.004 0.993-1.004
Case 4 1.042-1.212 1.154-1.228 1.095-1.229

Figure 13 plots the actual running time of the two algorithms
under different data sizes and data distributions. The ranges of
speedup of kd-tree over quad-tree we observed in such experi-
ments are presented in Table 3. Let us first discuss the results of
Case 2 (Fig. 13c) and Case 4 (Fig. 13d): the kd-tree outperforms
the quad-tree in all experimental runs, and the gap is significant
with the highest speedup reaching 1.23x. This indicates that the
reduced distance computations caused by the extra level on the
bottom of the kd-tree plays a significant role in boosting per-
formance, and the expected speedup of [1x, 1.2308 x] men-
tioned in Section 5.2 is an accurate estimation.

For Case 1 (Fig. 13a) and Case 3 (Fig. 13b), the performance
of the two trees is very close. We also notice that there are cases

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

chengcheng@rai | . usf. edu

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida,
on 18 March 2018

16 C. Mou et al.

(a) Uniform Distribution Zipf Distribution
1.3 1.3

- 4 Bucket ——

k) 6 Bucket —=—

] 8 Bucket

3 1257 10Bucket 171357

£

I}

o

@

e 12 1.2 E A

2

k]] L

o 1.15 1.15

©

o

600K 700K 800K 900K 1M 1.1M 600K 700K 800K 900K 1M 1.1M

Number of Atoms Number of Atoms

b) Uniform Distribution Zipf Distribution
1.6 1.6
- 4 Bucket ——
ke 6 Bucket —=—
] 8 Bucket
2 1557 10 Bucket 11957
£
I}
o
§ 1.5 15 J
8
2 &
i r\//
o L 4 L 4
o 1.45 1.45
©
o

1.2M 1.3M 1.4M 1.5M 1.6M 1.2M 1.3M 1.4M 1.5M 1.6M

Number of Atoms Number of Atoms

FIGURE 14. Ratios of Type I operations performed by oct-tree vs. that by the kd-tree under different values of m, p, and data distribution pat-

terns for a 10-million-point 3D dataset.

where the kd-tree is slightly outperformed by the quad-tree
(Table 3). This seems to be contradictory to our findings in
Sections 5.1 and 5.3 . Our explanation is that the data access pat-
tern of the quad-tree naturally has better spatial locality which
gives rise to higher cache hit rate. Specifically, when calling the
resolution function, the OS could load all four sibling nodes (in
consecutive memory addresses) at a time while there are only
two children per node in the kd-tree. We collected the number
of cache misses of two implementations by the perf tool under
Linux, and found that the kd-tree has 1.5x-2x cache misses
comparing with the quad-tree. The impact of such is seen more
clearly for the Zipf data in Case 1, in which the quad-tree won
in all cases (although with a small margin). This is because, the
Zipf distribution rendered much less distance computations,
therefore, more efficient resolution function call shows more
positive effects on total performance.

7.2. Results for 3D data

We first verify the key results for Case one studied in Section
6.1. Figure 14 shows the A; values recorded under different
numbers of levels i visited by the algorithm for 3D data. For the
uniform data, A; approaches 16/15 (baseline) as expected from
Equation (36) when i is beyond 3. For smaller i values, we have
unstable A; values. This is similar to 2D system: coarse grid
causes fluctuations on non-covering factors. For the Zipf data,
the A; values are greater than 16/15 for larger i, this is, much
like the 2D cases, caused by the earlier appearance of empty
nodes in the kd-tree.

For Case 2, Fig. 15a shows the ratio of the number of distance
computations performed by the oct-tree vs. kd-tree. For the uni-
form data, the ratios are all very close to 6/5. This means the
kd-tree saves 1/6 of the distance computations performed by the
oct-tree, confirming our findings in Conjecture 1. Under Case 3
(Fig. 15b), such ratios are all close to 1.5, indicating that the kd-
tree saves 1/3 of the distance computations over oct-tree. This
further validates Conjecture 1, as 1.5 = 6/5 x 5/4. For both
cases, the results of the Zipf data show more fluctuations, and,

Uniform Distribution Zipf Distribution

b Baseline
S 14} 3Bucket —— 1 14t
[a) 4 Bucket
e 5 Bucket —e—
S 6 Bucket
© 121 gBucket 1 12y
[10 Bucket
5 1615 j—— 16/15 e
s W\ S S : ?
=} /
2 Y v
5 7 7
= 0.8)/ 1 0.8}
i
1 2 3 4 5 1 2 3 4 5

Visited levels in oct-tree Visited levels in oct-tree

FIGURE 15. Ratios of Type II operations performed by oct-tree vs.
that by the kd-tree under different data sizes, p values, and data dis-
tribution patterns. (a) Case 2: kd-tree has one extra level and (b)
Case 3: kd-tree has two extra levels.

4 Buckets 8 Buckets
1 T T T 2 T
Oct-Tree(Uniform) ==
L kd-Tree(Uniform) === i [
0.9 Oct-Tree(Zipf) 18
) kd-Tree(Zipf)
o 08 Oct-Tree(Real) 116
N4 kd-Tree(Real)
g 0.7 + 14}
£
'; 0.6 | 112}
S
= 05
3 1r
o]
x 0.4} 4
u 0.8
03} 1
0.6 |

550K 350K 400K 450K 500K 550K
Number of Atoms

02 R R R
350K 400K 450K 500K
Number of Atoms

FIGURE 16. Total running time of the dual-tree algorithm running
on top of oct-tree and kd-tree under different data sizes and data dis-
tribution - Case 1.

in most cases, the ratio is smaller than the 1.2 and 1.5 found in
uniform data. Our explanation is that skewed data are known to
have distances resolved earlier as compared to uniform data
[25]. At any level of the tree, although the average number of
data points in the nodes is the same as in uniform data, we could

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DUAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS

17

—
Q
~

3r Oct-Tree(Zipf) —o—
kd-Tree(Zipf)
Oct-Tree(Real)

25 kd-Tree(Real)

Execution Time (K sec)
N

4 Buckets 8 Buckets
T T T 9 T T T
Oct-Tree(Uniform) =—s—
kd-Tree(Uniform) =——s— 8l |

2 |
700K 800K 900K ™M 1.1M 700K 800K 900K ™M 1.1M
Number of Atoms Number of Atoms
(c) 6 Buckets 10 Buckets
1.6 T T T T T T
Oct-Tree(Uniform) === 25 1
kd-Tree(Uniform) ===
14+ Oct-Tree(Zipf) o 1
< kd-Tree(Zipf)
b 1ol Oct-Tree(Real)
N3 . kd-Tree(Real)
[
E
[
<
£ o8
3
o
<
w 0.6 —
0.4 F 1
350K 400K 450K 500K 550K 350K 400K 450K 500K 550K
Number of Atoms Number of Atoms
(e) 6 Buckets 10 Buckets
12 T T T T T T
Oct-Tree(Uniform) === 18}]
11 kd-Tree(Uniform) =——— p
Oct-Tree(Zipf) =—o—
< 10 kd-Tree(Zipf) g
2 Oct-Tree(Real)
N4 9 kd-Tree(Real)
£ s
[
c 7
o i
g /‘
o]
X
w 5 4
4 |
3 L L L 6 L L L
1.2M 1.3M 1.4M 1.5M 1.6M 1.2M 1.3M 1.4M 1.5M 1.6M
Number of Atoms Number of Atoms
(9) 3 Buckets 5 Buckets
T T T 5 T T T
25| Oct-Tree(Uniform) =—s=— |
. kd-Tree(Uniform) == 45t J
Oct-Tree(Zipf) = :
< kd-Tree(Zipf) al]
2 2+ Oct-Tree(Real)
N kd-Tree(Real)
5
£ 15
c
k]
3 1
x
]
05 1

700K 800K 900K ™M
Number of Atoms

1
1.1M 700K

800K

900K M 1.1M

Number of Atoms

(b) 4 Buckets 8 Buckets
T T T 16 T T T
Oct-Tree(Uniform) =—e—
7r kd-Tree(Uniform) —s— 1
Oct-Tree(Zipf) ——o—
o gl kd-Tree(Zipf) |
2 Oct-Tree(Real)
3 kd-Tree(Real)
5 4
£
[
S 4 1
=
o
o
a 3 1
2 4
L L L 4 L L L
1.2M 1.3M 1.4M 1.5M 1.6M 1.2M 1.3M 1.4M 1.5M 1.6M
Number of Atoms Number of Atoms
(d) 6 Buckets 10 Buckets
6 T T T 10 T T T
Oct-Tree(Uniform) ==—te=——
55+ kd-Tree(Uniform) == E 9l i
Oct-Tree(Zipf) ——o—
S 5f kd-Tree(Zipf) 1
b Oct-Tree(Real)
< 45| kd-Tree(Real)
g]
i
- 35 1
kel
5 3 1
8
X 25 1
2 4
1.5) 1)

—_
—h
~

Execution Time (K sec)

—
=)
=

Execution Time (K sec)

700K 800K 900K M
Number of Atoms

3 Buckets

800K 900K M 1.1M

Number of Atoms

5 Buckets

0.7 T T T
Oct-Tree(Uniform) =t
kd-Tree(Uniform) =——
0.6 Oct-Tree(Zipf) —o—
kd-Tree(Zipf)
Oct-Tree(Real)

0.1

05 kd-Tree(Real) /

400K 450K 500K
Number of Atoms

3 Buckets

400K 450K 500K 550K

Number of Atoms

5 Buckets

Oct-Tree(Uniform) ==t
5r kd-Tree(Uniform) ===
Oct-Tree(Zipf) =—o—
kd-Tree(Zipf)
4 b Oct-Tree(Real)
kd-Tree(Real)

1

1.2M 1.3M 1.4M 1.5M

Number of Atoms

1.6M

0
9
8
7
6
5
4
3
2
1

2M

1.3M 1.4M 1.5M 1.6M

Number of Atoms

FIGURE 17. Total running time of the dual-tree algorithm running on top of oct-tree and kd-tree under different data sizes and data distribution -
other cases. (a) Case 2, (b) Case 3, (¢) Case 4, (d) Case 5, (e) Case 6, (f) Case 7, (g) Case 8 and (h) Case 9.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083

by University of South Florida, chengcheng@mil.usf.edu

on 18 March 2018

18 C. Mou et al.

see more nodes with fewer points due to the skewed spatial dis-
tribution. As a result, the advantage of adding extra levels in the
kd-tree is less significant. Nevertheless, the kd-tree is still the
obvious winner in performance.

We also recorded the total running time of both algorithms
under the nine different cases discussed in Section 6. In sum-
mary, the kd-tree outperforms oct-tree in every experimental
run we conducted, and the speedup in all cases are within the
range suggested by our analysis. A special note here is that
Figs 16 and 17c and f represent different cases in which the
oct-tree and kd-tree have identical leaf nodes. The three lines
representing kd-tree results (under different input data types)
are all slightly lower than their corresponding oct-tree lines
under all data sizes, although such difference is small. For all
other cases (i.e. Cases 2, 3, 5, 6, 8 and 9), the performance
advantage of kd-tree over oct-tree is more significant thus can
be clearly seen in the figures.

8. CONCLUSIONS

SDH is a type of 2-body statistics that found applications in
many computing domains. Being the main building block of
high-level analytics, SDH is of great importance in statistical
learning and scientific discovery. In the past years, research on
efficient processing of SDH has settled on a series of dual-tree
algorithms that work on resolving distances between pairs of
nodes of a spatial tree. Main implementations of the dual-tree
algorithm are based on quad/oct-tree, which partitions data
space along all dimensions, and the kd-tree, which does so along
a single dimension. In this paper, we present quantitative ana-
lysis on the performance of dual-tree algorithms based on these
two types of tree structures. Our analysis established on a geo-
metric modeling framework suggests the kd-tree-based algo-
rithm outperforms the quad-/oct-tree-based algorithm with
different data sizes and histogram resolution. We also provide
bounds for the speedup of kd-tree over quad-/oct-tree, and
extensive experiments with both synthetic and real data inputs
confirm our findings. We believe our results and methodology
can also provide insights on analyzing similar algorithms for
processing more general n-body statistics.

FUNDING

This work is supported by an award (IIS-1253980) from the
National Science Foundation (NSF) of U.S.A. Equipments used
in the experiments are partially supported by another grant
(CNS-1513126) from the same agency.

REFERENCES

[1] Pfaltz, J. and Orlandic, R. (1999) A Scalable DBMS for Large
Scientific Simulations, 1999 Int. Symp. Database Applications

in Non-Traditional Environments, Kyoto, Japan, November
28-30, pp. 271-275, IEEE.

[2] Fei, X. and Lu, S. (2010) A Collectional Data Model for
Scientific Workflow Composition. 2010 IEEE Int. Conf. ICWS,
Miami, FL, USA, July 5-10, pp. 567-574, IEEE.

[3] Shaw, D.E. et al (2008) Anton, a special-purpose machine for
molecular dynamics simulation. Commun. ACM, 51, 91-97.

[4] Howe, D. er al (2008) Big data: the future of biocuration.
Nature, 455, 47-50.

[S] Huberman, B.A. (2012) Sociology of science: big data deserve
a bigger audience. Nature, 482, 308.

[6] Centola, D. (2010) The spread of behavior in an online social
network experiment. Science, 329, 1194-1197.

[7] Lakshminarasimhan, S. et al (2011) Isabela-qa: Query-Driven
Analytics with Isabela-Compressed Extreme-Scale Scientific
Data. 2011 IEEE Int. Conf. High Performance Computing,
Seatle, WA, USA, November 12-18, no. 1-11, IEEE.

[8] Weidner, M., Dees, J. and Sanders, P. (2013) Fast Olap Query
Execution in Main Memory on Large Data in a Cluster. 2013
IEEE Int. Conf. Big Data, Silicon Valley, CA, USA, October
6-9, pp. 518-524, TIEEE.

[9] Tu, Y.-C., Chen, S. and Pandit, S. (2009) Computing Distance
Histograms Efficiently in Scientific Databases. IEEE 25th Int.
Conf. Data Engineering (ICDE, Shanghai, China, 29 March-2
April 2009, pp. 796-807, 2009, IEEE.

[10] Mou, C.-C. (2015) A comparative study of dual-tree algorithms
for computing spatial distance histogram in scientific databases.
Master’s thesis, University of South Florida, Tampa, Florida,
USA.

[11] Klasky, S., Ludaescher, B. and Parashar, M. (2006) The Center
for Plasma Edge Simulation Workflow Requirements. /IEEE
22nd Int. Conf. Data Engineering Workshops, Atlanta, GA,
USA, April 3-7, p. 73, IEEE.

[12] Starck, J.-L. and Murtagh, F. (2002) Astronomical Image and
Data Analysis. Springer, New York City.

[13] Allen, M.P. and Tildesley, D.J. (1987) Computer Simulations
of Liquids. Clarendon Press, Oxford.

[14] Filipponi, A. (1994) The radial distribution function probed by
x-ray absorption spectroscopy. J. Phys., 6, 8415-8427.

[15] Springel, V. et al (2005) Simulations of the formation, evolu-
tion and clustering of galaxies and quasars. Nature, 435,
629-636.

[16] Huang, J., Kumary, S.R., Mitra, M., Zhu, W.-J. and Zabih, R.
(1997) Image Indexing Using Color Correlograms. 1997 IEEE
Conf. Computer Vision and Pattern Recognition, San Juan,
USA, June 17-19, pp. 762-768, IEEE.

[17] Heidemann, G. (2004) Combining spatial and colour informa-
tion for content based image retrieval. Comput. Vis. Image
Underst., 94, 234-270.

[18] Ankerst, M., Kastenmiiller, G., Kriegel, H.-P. and Seidl, T.
(1999) 3D Shape Histograms for Similarity Search and
Classification in Spatial Databases. Proc. 6th Int. Symp. Spatial
Databases, Hong Kong, China, June 25, pp. 207-226, Springer,
Heidelberg.

[19] Gaede, V. and Giinther, O. (1998) Multidimensional access
methods. ACM Comput. Surv., 30, 170-231.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083
by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

DuAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS

19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Moore, A. et al (2006) Fast Algorithms and Efficient Statistics:
N-Point Correlation functions. In Banday, A.J., Zaroubi, S. and
Bartelmann, M. (eds.) Mining the Sky. ESO ASTROPHYSICS
SYMPOSIA (European Southern Observatory). Springer, Berlin,
Heidelberg.

Gray, A. and Moore, A. (2000) N-Body Problems in Statistical
Learning. In Leen, T.K. and Dietterich, T.G. (eds.) Advances in
Neural Information Processing Systems 13. MIT Press,
Cambridge, Massachusetts.

Tsang, J. (2008) Evolving Trajectories of the n-Body Problem. /EEE
Congress on CEC, Hong Kong, China, June 1-6, pp. 3726-3733.
Tsoi, K., Ho, C., Yeung, H. and Leong, P., (2005) An
Arithmetic Library and its Application to the n-Body Problem.
12th Annu. IEEE Symp. FCCM, Napa, CA, USA, April 20-23,
pp.- 6878, IEEE.

Perrone, L. and Nicol, D., (2000) Using n-Body Algorithms for
Interference Computation in Wireless Cellular Simulations. 8th
Int. Symp. Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, San Francisco, CA, USA, 29
August—1 September 2000, pp. 49-56, IEEE.

Chen, S., Tu, Y.-C. and Xia, Y. (2011) Performance analysis
of a dual-tree algorithm for computing spatial distance histo-
grams. VLDB J., 20, 471-494.

Kumar, A., Grupcev, V., Yuan, Y., Tu, Y.-C. and Shen, G.
(2012) Distance Histogram Computation Based on Spatio-
temporal Uniformity in Scientific Data. In Proc. 15th Int. Conf.
Extending Database Technology (EDBT), Berlin, Germany,
March 27-30, pp. 288-299.

Grupcev, V., Yuan, Y., Tu, Y., Huang, J., Chen, S., Pandit, S. and
Weng, M. (2013) Approximate algorithms for computing spatial
distance histograms with accuracy guarantees. IEEE Trans. Knowl.
Data Eng., 25, 1982-1996, [Online]. Available: https://doi.org/
10.1109/TKDE.2012.149.

Kumar, A., Grupcev, V., Yuan, Y., Huang, J., Tu, Y. and
Shen, G. (2014) Computing spatial distance histograms for
large scientific data sets on-the-fly. IEEE Trans. Knowl. Data
Eng., 26, 2410-2424, [Online]. Available: https://doi.org/10.
1109/TKDE.2014.2298015.

Mou, C., Chen, S. and Tu, Y. (2016) A Comparative Study of Dual-
Tree Algorithm Implementations for Computing 2-Body Statistics in
Spatial Data. 2016 [EEE Int. Conf. Big Data, BigData 2016,
Washington DC, USA, December 5-8, pp. 2676-2685, IEEE,
[Online]. Available: https://doi.org/10.1109/BigData.2016.7840911.

APPENDIX 1. EQUATIONS NOT SHOWN IN
SECTION 4

8010,0504 = 4(S@—Q\103 — SA04058 — Sagi05c + SO}BDC)

2

™ .0)
=2|— — arcsin— — arcsin— [p
2 4

p 2p

_ i\/pz _ [%]2 - (5\/172 - [g]z + %2 (A1)

[3”@]52 i1
1§wi2+—3fi
St . J5
- — Zarcsin
4 10(i — 1)
- —arcsinL (i —1)?
5(i—1)
1 /5 1
[Z(i=1)2 - =
2 4(l) 16
~Pa—yp-tle s
4
4p2arccos—
0
— , m=1
2
7p? + 2p[1 - %]5
22
216
|1 - = |2
+p[z%]z
+[1— 2]5
22
[—%]é m is even (>2)
2)2
2 1
mp* +2p|l — — 1|0
277
2)6
+2p|1 — —
-2
+[l— 31]6
22
2

(A2)

(A3)

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083

by University of
on 18 March 2018

South Florida, chengcheng@mil.usf.edu

https://doi.org/10.1109/TKDE.2012.149
https://doi.org/10.1109/TKDE.2012.149
https://doi.org/10.1109/TKDE.2014.2298015
https://doi.org/10.1109/TKDE.2014.2298015
https://doi.org/10.1109/BigData.2016.7840911

20

C. Mou et al.

Sout (1) =

Sshade (l) =

ém’2+£[1—%]i
4 2 22
1 2 V., .
+ =1 — = |6%, miseven, m > 2
2 2%

47rz +«/_[

misodd, m > 2

(A4)
2
5ﬁeven i2 e_m —l - a_m
4 f(i,m) =
On |50
4
2
+ 0— 1 82, m is even
2 8
[5ﬂodd 2 (A.5)
8
O iiz B O
4 \4 4
_ O |5 262,
2
4 O iOnis 19’““ —]62, m is odd

The area of coverable region A’ maps to bucket i and density

map m

[2]3 arccos——

[%’ﬂ' + 3756,

+ 20,,%]52,

[%’/T + zﬁem-%—l + ﬁem—l

+ 291n+|9m7|]52,

Sy I3,
4 4
5
— Zx(i —1)?
;=)
+§(i— 1)(62,

[%m’Z 4350,

_ Sﬂeven (l _ 1)2

[%mﬂ + 250,41

5
+ 56, i — %(z’ — 1y

5. O
+9ml\/z(l - 1)2 Tl

+ 29m+l

5
4(l - 1) 0m+1]623

and m is even

i=1,m>2,

and m is odd

i>1l,m=1

m>2

s

and m is even

m>2,

and m is odd
(A.6)

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conif conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083

by University of South Florida,

on 18 March 2018

chengcheng@rai | . usf. edu

DuAL-TREE ALGORITHMS FOR COMPUTING SPATIAL DISTANCE HISTOGRAMS 21

APPENDIX 2. PROOF OF EQUATION (19)
CONVERGING TO 2/3

To prove the a(m + 1)/ (m) converges to 2/3, it is equiva-
lent to prove the following equation:

! I

Bf(iom+ 1) = 2f (i, m)] = g (i) (B.1)
i=1 i=1
The left-hand side of Equation (B.1) could be expressed as
l
LHS =) "[3f (i, m + 1) — 2f (i, m)]
i=1

%m@ + 350, — %(i —1)?

!
_ 522{3
i=2

(9]

92
Oy = (1 — 1) — =2
(i =17~

N

+ 20, %(i iR — g2

-2

%771'2 + 235 0,10i
+ V50,0 — —552“‘“ (i — 1)

2
4 4

5.
+ 29}n+2\/z (l -])2 - 9r121+2

} (B.2)

The right-hand side of Equation (B.1) could be expressed as

1[5 1 5. 1
- 5\/Z(l - - 16 \/Z(l - - Z”
(B.3)

We could use the difference between LHS and RHS to prove
Equation (B.1)

l

LHS — RHS:&Z{[—%/?% + 635012 — ﬁ] i

i=2 2

3J5 3J5
+ —£0m+ 350,42 — 35 (i—1)
2 4
15 5
+ 5 odd — ~S " Meven + —
Bodd 25 i
5
— —larcsm———
10 — 1)

A | B
+ arcsmm”(t - 1) }
(B.4)

Since the m is level of the density map, when m getting lar-
ger, the approximated boundary will approach to the theoretical
boundary. Therefore, when m approaches to infinity, the 6
approaches to %, thus, we can replace all the 6 by % into the
above equation, and when / — oo, obtains,

I
S o35 Loz L o35
- 2 2 2
I
35 1 1 35
BRI SN SR S N R
Zz[2 2 2 4]()
m : gm\/g . 2‘/§9n1+2 m
ﬂeven = — — arcsin — arcsin——27"=2 _,
2 5i 5i 2
™ 0,5 2500 T
ﬁodd = — — arcsin — arcsin——212
2 5i 5i 2
s(3 s
—|arcsin——— + arcsin———| — 0
10(i — 1) 5(i—1)
! 15 5
,Z::z SﬁOdd - Tﬁeven + Z?T
5 . J5
— = |arcsin———
2 10(i — 1)
+ arcsin_L (i—12 =0
5i—1)

Therefore, we have LHS = RHS, and Equations (B.1) is
proved.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. conf conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy017/ 4942083

by University of South Florida, chengcheng@mil.usf.edu
on 18 March 2018

	A Comparative Study of Dual-Tree Algorithms for Computing Spatial Distance Histograms
	1. INTRODUCTION
	1.1. Problem statement
	1.2. Objective
	1.3. Paper organization

	2. RELATED WORK AND OUR CONTRIBUTIONS
	2.1. Motivating applications of SDH
	2.2. Algorithms for efficient SDH computation

	3. PRELIMINARIES
	3.1. Overview of the dual-tree algorithm
	3.2. Implementations based on different trees

	4. MAIN ANALYTICAL RESULTS
	4.1. The geometric modeling approach
	4.2. Non-covering factor ratios in kd-tree
	4.2.1. Bucket region
	4.2.2. Coverable regions
	The first bucket
	The second bucket and beyond

	5. PERFORMANCE COMPARISON OF TWO TREES
	5.1. Case 1
	5.2. Case 2
	5.3. Case 3
	5.4. Case 4

	6. EXTENSION TO 3D DATA
	6.1. Start/stop at the same level (Case 1)
	6.2. Stop further (Cases 2 and 3)
	6.2.1. Case 2
	6.2.2. Case 3

	6.3. Start earlier (Cases 4 and 7)
	6.3.1. Case 4
	6.3.2. Case 7

	6.4. Start earlier, stop further (Cases 5, 6, 8 and 9)

	7. EXPERIMENTAL EVALUATION
	7.1. Results for 2D data
	7.2. Results for 3D data

	8. CONCLUSIONS
	FUNDING
	References
	References
	References
	Appendix 1. EQUATIONS NOT SHOWN IN SECTION 4
	Appendix 2. PROOF OF EQUATION (19) CONVERGING TO 2/3
	Appendix 2. PROOF OF EQUATION (19) CONVERGING TO 2/3
	Appendix 2. PROOF OF EQUATION (19) CONVERGING TO 2/3

