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KEY POINTS
Optimizing with several responses can benefit from an objective approach of eliminating non-
contenders, understanding trade-offs between competing responses, and then identifying a final
choice thatmatches optimization priorities. To offer insights that can help guide thoughtful decisions,
we explore and summarize different patterns of solution sets and their trade-offs for different types
of optimization with responses that are to be maximized and/or to achieve a target.

Introduction

Many optimization scenarios involve a common objec-
tive of selecting an optimal location in the input space
(sometimes called the design space or X-space) that
simultaneously balances good performance for several
competing responses characterized using response sur-
face methodology. Such problems are called multiple
response optimizations (MROs) and require practi-
tioners to initially run a designed experiment to allow
modeling of each response to characterize the relation-
ship between the response and the inputs which were
manipulated during the experiment. Once this charac-
terization is completed, the overall goal is to identify
where input levels can be set to achieve desired perfor-
mance for the responses.

A single-response optimization typically involves
either maximizing (orminimizing, which can be trans-
formed into a maximization of the negative of the
response) or achieving a target value. Even though a
targeting problem can also be turned into maximiz-
ing the negative absolute distance between the response
and the target value, Anderson-Cook, Cao, and Lu
(2016) shows that these two types of optimization often
have quite different behaviors. In this article, we inves-
tigate how combinations of different types of single—
objective optimization can suggest promising choices

CONTACT Christine M. Anderson-Cook candcook@lanl.gov Statistical Sciences Group, Los Alamos National Laboratory, P.O. Box , MS F,
Los Alamos, NM .
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lqen.

for MRO problems. Specifically, we consider three sce-
narios with two responses: maximizing versus maxi-
mizing (MM), maximizing vs. targeting (MT) and tar-
geting vs. targeting (TT). Since it is rarely the case that
all responses can be simultaneously optimized with
the same input settings, trade-off and compromises are
needed.How the practitioner values good performance
for each response contributes a subjective component
to the decision-making that is not present in single
response optimization. An essential part of the prob-
lem is to explore different alternatives and understand
what options are available and how they can satisfy dif-
ferent priorities.

A Pareto front (Lu, Anderson-Cook, and
Robinson 2011) is an excellent way of eliminating
non-contending solutions and identifying rational
options that represent best choices for some combina-
tion of priorities of the different responses. The Pareto
set (PS) is the set of all solutions (here, locations in the
input space) that are not dominated by other solutions,
and the Pareto front (PF) is the set of response values
associated with the PS. Finding a solution with a bal-
ance of good performance for the different responses
can be achieved by looking at a PF constructed from
a grid of locations in the input space (Chapman, Lu,
and Anderson-Cook 2014a, 2014b). In this article,
we explore some of the different patterns and sets of
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Figure . Different response surfaces: (a) stationary point at (X1, X2) = (., .) as maximum with equal-sized eigenvalues; (b) stationary
point at (.,−.) asmaximumwith unequal eigenvalueswith largermagnitude eigenvalue (faster rate of change) directed at ° counter
clockwise from horizontal; and (c) saddlepoint stationary point at (−., .) with positive eigenvalue at ° counter clockwise from
horizontal. The faster rate of change for the positive eigenvalue means that it has larger absolute value.

solutions for the three types of multiple response opti-
mizations (MM, MT, TT). As we will see, the sets of
solutions are dependent on the nature of each response
as well as the trade-off between the responses.

Consider a simple scenario, where two responses
(Y1 and Y2) are both characterized by second order
response surface models based on the two input vari-
ables (X1 and X2) of the form

Yi = β0i + β1iX1 + β2iX2 + β11iX2
1 + β22iX2

2

+ β12iX1X2 + ε, i = 1, 2.

The estimated equation for each response can be
expressed by replacing themodel parameters with their
maximum likelihood or least squares estimates to give

ŷi = b0i + b1iX1 + b2iX2 + b11iX2
1 + b22iX2

2 + b12iX1X2.

To make the characteristics of the surface more
apparent, we convert this functional form to a canon-
ical version (see Myers, Montgomery, and Anderson-
Cook 2016, 277–282), which can be expressed as

ŷi = ŷsi + λ1iw
2
1i + λ2iw

2
2i,

where ŷi is the estimated response for response i, ŷsi is
its estimated response at the stationary point, theλis are
the eigenvalues of a symmetric matrix of the estimated
coefficients for the second-order model andwis are the
corresponding eigenvectors centered at the location of
the stationary point. The advantage of using the canon-
ical form is that the nature and characteristics of the
surface can be readily identified. For example, if both
eigenvalues are negative, then the second order surface
is a “mountain.” If both eigenvalues are positive, the

surface is a “valley.” Having one positive and one nega-
tive eigenvalue creates a “saddlepoint” surface. The rel-
ative size of the eigenvalues or their ratio, λ1

λ2
, describes

the relative rates of change of the surfaces in different
directions. If this ratio is positive but smaller than one,
then the surface has either a global maximum or min-
imum with larger elongation of the surface in the w1

canonical direction (corresponding to slower change
in the surface), while a ratio larger than one implies
more elongation in thew2 direction. If the ratio is equal
to one, then the contour plot has circles (such as in
Figure 1a) rather than ellipses. If the λs have the same
sign but one of them is close to zero, then the response
surface is a rising (positive ratio) or a falling (negative
ratio) ridge. Figure 1 illustrates several of the different
possible surfaces.

Many different combinations of surface types, loca-
tions of the stationary point, and ratios exist, so we ini-
tially focus on one class of response surfaces to gener-
alize patterns in multiple response optimization. Later
we address some other characteristics for other sce-
narios. In addition, three R Shiny apps are available at
https://ycao.shinyapps.io/CAL_xx/ (where xx = MM,
MT, or TT for the three scenarios), to experiment with
other scenarios, beyond what is possible to discuss in
this article. The Appendix provides some information
about the options available in the apps. We begin by
considering a casewhere both surfaces are “mountains”
(λ1 and λ2 < 0), and the maximum of the surface (the
stationary point) is located inside the design region.
This is a natural starting point for our discussions,
since if the goal is maximizing at least one response
for the MM and MT scenarios, we anticipate that the
experimenters have identified the region that includes

https://ycao.shinyapps.io/CAL_xx/
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Figure . Summary of response surfaces and their associated Pareto set and Pareto front values for a MM optimization problem. The top
row shows a contour plot of each response surface for Y1 and Y2. The bottom left plot shows locations in the input space of the Pareto
set, while the bottom right plot shows the Pareto front. The size of dots in the bottom sub-figures is proportional to the value of Y1 and
inversely proportional toY2. In the bottom right figure, the “∗” indicates the Utopia point, with the most desirable response values.

the location of the maximum using expert knowledge
or using sequential experimentation techniques as with
the path of steepest ascent (Myers, Montgomery, and
Anderson-Cook 2016, Chapter 5).

Maximizing-maximizing (MM) optimization

MM is a common focus in the response surface litera-
ture, and thus a good starting point for our exploration.
With this scenario, we explore the impact of chang-
ing the value of the responses at their stationary points
(ŷsi), the location in the input space of the station-
ary points, the orientation of response surface contour
ellipses, and the ratios of the λis. First, we begin with an
initial scenario to gain some understanding about
finding the Pareto front of solutions and how these
results can be displayed.

Figure 2 shows summary contour plots of the esti-
mated responses, the Pareto set identified as well as
the Pareto front. In this scenario, Y1 is estimated to
achieve a maximum of 100 at (X1,X2) = (0.5, −0.5),
while Y2 achieves its maximum of 50 at (X1,X2) =
(0.5, 0.5). The values of Y1 drop most slowly as we
move in a northwest or southeast direction away from
the maximum, while Y2 changes most slowly moving
directly east or west. Since we cannot simultaneously
achieve a setting in the input space that leads to Y1 =
100 and Y2 = 50, we need to identify solutions that do
as well as possible for both responses simultaneously.
The point (Y1,Y2) = (100, 50) is called the Utopia
point in the Pareto front literature and represents
the (usually unattainable) ideal against which other
solutions can be compared. In the bottom right subfig-
ure of Figure 2, it is denoted with an asterisk (∗).
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In this case we restrict ourselves to a gridded set
of points in the input space, where the resolution of
the grid is based on what is practically possible when
we implement the final settings. The bottom left sub-
plot of Figure 2 shows the solutions in the PS, which
might be optimal choices for different prioritizations of
the two responses. For example, the choice (0.5, −0.5)
is in the PS, and this would be the best if we valued
only good performance for Y1 and did not emphasize
Y2 at all (it only achieves a value of 45 for Y2). Simi-
larly, the solution (0.5, 0.5) would be the choice that
maximizes Y2, without considering Y1’s value (approx-
imately 94.5). Between those two are locations in the
PS that correspond to different amounts of prioritiza-
tion of the responses. Larger dots correspond to big-
ger Y1 values and show the connection between dif-
ferent locations in the input space and their values of
the responses in the bottom right subplot of Figure 2.
Clearly, since we are only considering non-dominated
points, improving Y1 results in less desirable (smaller)
values of Y2. Hence, the smallest dot corresponds to
the worst value of Y1 on the PF, but the best value of
Y2.

In this example, the PS locations in the input
space form a “horseshoe” shape region, which resem-
bles the path of traveling from one maximum loca-
tion to the other mainly along the direction allowing
the slowest descent hence the most tradeoff between
the two responses. The locations at the “elbow” of
the “horseshoe” shape represent values that prioritize
good performance on both responses nearly equally.
Note that if we were to select a solution near the
elbow, it is possible to achieve Y1 and Y2 values that
are both relatively close to their global maxima, say
(Y1, Y2) = (99.1, 49.5). This serves to highlight the
benefits of examining the PF, since it easily allows
identification of potential solutions and easy explo-
ration of candidates to see the trade-offs between them.
Lu and Anderson-Cook (2012) and Lu, Chapman,
and Anderson-Cook (2013) describe some graphical
methods for selecting between solutions depending
on how much the different responses are prioritized.
The amount of trade-off required between values of
the responses is inherent to the problem. The max-
ima for each of the responses and the value of the
other response at that location define the ranges from
which the practitioner will need to choose. In this case,
there are a number of solutions that are quite close to
the Utopia point, and hence it should be possible to

achieve excellent (if not optimal) performance on both
responses.

Also shown in the bottom right subfigure of Figure 2
is the hypervolume value (Lu and Anderson-Cook
2013; Cao, Smucker, and Robinson 2015) that summa-
rizes the amount of trade-off between the two crite-
ria. Note that the points on the PF are connected by a
step function, indicating that with the discretization of
the input space to possible settings, there are no avail-
able solutions between adjacent points. The hypervol-
ume (HV), or “normalized hypervolume” (Poles, Fu,
and Rigoni 2009; Bader 2010) is calculated by scaling
the criteria between 1 and 0, with the best value (here
themaximum for each response) being assigned a value
of 1, and the worst value on the PF being assigned 0.
In this case with just two responses, the HV is a frac-
tion of the area of the square [0,1]2 that has attain-
able solutions. Namely, it excludes the region between
the PF and the Utopia point. If we are able to get quite
close to the Utopia point with some solutions, then the
excluded region is small, and the HV value will be close
to 1. If there are more severe trade-offs between the
responses, then the excluded portion will increase, and
the HV will be smaller. There are two special cases: if
the PF consists of just a single point, which is equal
to the Utopia point, this is the ideal (but rare) case
with no trade-off between criteria, and this leads to a
HV value of 1. If there are just two points on the PF,
then this represents maximum trade-off between the
two responses, with either the maximum of one paired
with the minimum of the other on the PF, or vice versa.
This leads to a HV value of 0. In this example, the HV
value is 0.9149 which indicates that there is not a too
severe trade-off between responses, and that it is possi-
ble to nearly attainmaximum values for both responses
simultaneously.

We now consider variations of this MM optimiza-
tion to gain more understanding about how changes to
the different features of the response surfaces impact
the resulting Pareto front characteristics. There are a
number of different features of each of the response
surfaces that might change between different scenar-
ios. First, if the same shaped surfaces are chosen for
each response, but they are just shifted up or down, (say
with responseY1 now having amaximum of 90 or 110),
then the locations in Figure 2c remains unchangedwith
the same locations in the input space being consid-
ered. Figure 2d would have a PF that looks the same,
except that the scales would be changed to reflect the
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Figure . Pareto front set for different locations of the maximum forY1, with maxima at (a) (.,−.), (b) (.,−.), and (c) (., .). For
all plots, the maximum forY2 is located at (., .).

shifted surfaces. The hypervolume value remains the
same for any shift in the responses, since the scaling
of the shifted response will adjust with it.

A second change to consider is if the locations of the
two response surfaces maxima are moved closer or far-
ther apart. For example, in Figure 2 the maxima are
located at (0.5, −0.5) for Y1 and (0.5, 0.5) for Y2. If
these optima move closer together, then the number
of points in the PS gets smaller (corresponding to a
shorter path between themaxima) and the range of val-
ues on the PF gets smaller, until there is just a single
solution (the Utopia point) if the location of the two
maxima are at the same point. If the solutions move
further apart, then the PS includes more locations and
the range of the PF values gets larger for each response.
Figure 3 shows a sample of the PS locations for three
scenarios as the distance separating the locations of the
maxima are varied in the input space. As the locations
of the maxima change, the PF plots that correspond
to the bottom right of Figure 2 experience changes in
the range of values on the PF for each response. If the
shapes of the surfaces stay the same, but the maxima
are moved further apart, the range of values included
on the PF gets larger.

The hypervolume values for the three scenarios
shown in Figure 3a–c are 0.915, 0.912, and 0.877,
respectively, as the maxima are moved closer together.
This is due to the use of a step function between adja-
cent points on the PF (Lu andAnderson-Cook 2013), as
there are no options available between identified solu-
tions. Hence, for the three PFs in similar shapes, the
PF with more points (corresponding to maxima being
further apart) has a larger HV based on having more
intermediate choices (corresponding to a smaller area
between theUtopia point and the front). However, note

that this “normalized hypervolume” is calculated based
on scaling the solutions on the PF between the “best”
and “worst” values for each response on the PF. Note,
when the PF has a narrow range of solutions with near-
optimal response values, the HV value could be small
due to the limited number of solutions identified on the
PF for a given discretization of the input space. There-
fore, it is desirable to check the range of response val-
ues first before usingHV for interpreting trade-off rela-
tionship. If the range of values on the PF for a given
response is small, then less emphasis on the HV is rec-
ommended since all points on the frontmay be deemed
acceptable.

Third, the orientation of the response surface ellipses
also impacts the PF and PS locations in the input space.
In the example shown in Figure 2, the major (direc-
tion of the slowest change in the response) and minor
(direction of the fastest change in the response) axes
of the ellipses are oriented differently for each of Y1
and Y2. This results in the horseshoe shape for the PS
locations in the input space. If the orientation of the
two response surfaces match (both major axes share a
common angle, regardless of where the locations of the
maximum value lies in the input space), then the PS
locations shown in the bottom left of Figure 2, would
be located closely along the straight line connecting
the locations of the two maxima. The PF locations will
fall exactly along a straight line connecting the max-
ima locations if the orientation of either the major or
the minor axis aligns with this straight line (a direct
path between the maxima). Maximum curvature of the
PF occurs when the major axes are 45° apart. At the
other extreme, if the orientations of the surfaces are
90° apart, the PS locations may have some curvature,
but not as much as for intermediate values. Figure 4
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Figure . Pareto front set for different orientations of the responses. Themaxima for the responses are at (.,−.) forY1 and (., .) for
Y2. (a) major axes for two responses parallel; (b) major axes differing by °; and (c) major axes perpendicular.

illustrates how the shape of the PS locations in the input
space changes for different orientations of the surfaces.
Note that the PS locations in the input space follow the
orientation that allows for the slowest change in each
surface, i.e., the locations stay close to the major axes
for both surfaces to change values as slowly as possible.
The HV values for the PFs in Figures 4a–c are 0.830,
0.914, and 0.943, respectively. The more curve shaped
PF is associated with the less trade-off (higher HV)
due to the existence of more intermediate solutions
than the more straight line-shaped PF given the same
end points of the PF determined by the same maxima
locations.

Another aspect of the response surfaces that impacts
the PS locations and PF is the shape of the contours for
each response. The contours in Figure 2a and b aremod-
erately elongated ellipses. If contours for one or both of
the surfaces became circular (with all directions yield-
ing the same rate of descent from the maxima), then
the PS locations in the input space fall exactly on a

straight line (connecting the two maxima). Figure 5
shows a case where Y1 has circular contours, while Y2
remains unchanged. This case is actually a special case
of the discussion above about the orientation of the
response surfaces, where the circular contours means
that there are no differences in orientation between the
two surfaces. Figure 6 shows an alternative case when
the contours of Y1 have been elongated to form a near
ridge surface, which yields a very curved set of PS loca-
tions in the input space. Note, the hypervolume for the
PF for the straight line PS is 0.816 which is consider-
ably smaller than the hypervolume of the PF for the
more curved PS as 0.930. This can again be partially
explained by the richness of choices with the larger PS
along the very curved path between the maxima allow-
ing more intermediate solutions.

In the examples shown above, we have changed one
feature at a time from the original example in Figure 2.
If several features of the surfaces are changed, we can
think of assembling the new PS locations and PF values

Figure . Example of shape of Pareto set locations when one response has circular contours. The maxima for the responses are at (.,
−.) forY1 and (., .) forY2. (a)Y1 contour plot (Y2 contour plot same as Figure b), (b) Pareto set in input space.
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Figure . Example of shape of Pareto set locations when Y1 is a near ridge surface. The maxima for the responses are at (., −.) for Y1
and (., .) forY2. (a)Y1 contour plot (Y2 contour plot same as Figure b), (b) Pareto set in input space.

with a thought experiment that walks through a pro-
gression of adaptations to change from this illustrated
example to the scenario of interest.

Finally, we consider what would occur if the under-
lying scenario of having a “mountain” (both eigenval-
ues are negative) is changed. If the stationary points
are located inside the design region and one or both
of the surfaces has at least one positive eigenvalue, then
the desirable large values for that response will likely
occur at one or more of the edges of the selected input
space. Another scenario that could result in the PS
being pushed to the edge of the region is if the peak of
the mountain is located outside of the input space. In
this case, the PS typically has locations near the edges
of the input space, and can have disjoint regions. This
scenario is similar to some cases that we consider in
greater detail in the coming sections.

Maximizing-targeting (MT) optimization

In this section we consider another two response opti-
mization scenario with the goal ofmaximizingY1 while
achieving a target for Y2. We again restrict our exam-
ination to cases where both of the response surfaces
have a maximum stationary point located in the design
region. We return to the first scenario with the same
response surfaces shown in Figure 2, but now consider
setting a target value for response Y2 at T = 47 (recall
that the overall maximum forY2 is 50). Figure 7 shows
the results for this optimization. Note that now the top
right figure has been changed to show the absolute dif-
ference from the target value, with the ideal values of
zero (white contour), matching where the contour for
values of 47 are in Figure 2. The Pareto set in the bottom

left corner of Figure 7 has changed to reflect the differ-
ent criteria for the second response, and now has some
disjoint groups of locations that connect the maximum
ofY1 with the target contour forY2.

Note that with disjoint locations in the input space,
there is some additional complexity associated with
choosing an optimal operating location, as more
diverse options generally exist. The Pareto front plot in
the bottom right corner of Figure 7 now has the Utopia
point (∗) located in the bottom right corner (maximiz-
ing Y1 and minimizing |Y2 − T |). The range of values
attainable on the Pareto front is Y1 ∈ {96.4, 100} and
|Y2 − T | ∈ {0, 2}.

The hypervolume calculation shown in Figure 7
reflects changes in the optimization scenario. In this
case, we are again examining the attainable fraction of
the [0,1]2 square for the scaled values of our responses.
Visually, we can still interpret theHV value for this case
as oneminus the fraction of the region located between
the Utopia point and the PF in Figure 7. We again scale
the best possible values to 1 for each response, and the
worst value on the Pareto front to 0. This time the worst
value forY2 corresponds to the largest distance from the
target, and we select a distance of 0 from the target to
be scaled to the value of 1. For this example, there are
a number of solutions that have response values quite
close to the ideal values, and hence we have aHV that is
very close to 1. As later examples in this section show,
this can have an important impact on the values of the
HV if the target is not achievable in the input space.

We now explore the effect on the PS and PF when
various aspects of the response surfaces and our opti-
mization criteria are manipulated. We first examine
the impact of changing the target value (relative to the
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Figure . Summary of response surfaces and their associated Pareto set and Pareto front values for a MT optimization problem. Response
surfaces for the two responses correspond to Figure , and the target value forY2 is . The top row shows a contour plot of each criterion
being optimized for Y1 and Y2 with the dark-to-light color indicating large-to-small values of Y1 (to be maximized) and |Y2 − T | (to be
minimized). The bottom left plot shows locations in the input space of the Pareto set, while the bottom right plot shows the Pareto front.
The size of dots in the bottom sub-figures is proportional to the value ofY1. Note that the Utopia point (

∗) for this scenario is located in the
bottom right corner of the bottom right figure.

range of the observed responses), and thenwe also gen-
eralize patterns in the PS and PF across other variations
for the MT scenario.

For the response surfaces shown in Figure 2, we now
consider changing the target value relative to the range
of Y2 in the input space. Figure 8 shows the |Y2 − T |
contour (top row), the PS (middle row), and PF plots
(bottom row) for several scenarios. When the target
value falls below the smallest observed Y2 (Figure 8a),
then this is essentially equivalent to a maximizing-
minimizing problem, with the PS locations connect-
ing portions of the edge of the input space where the
smallest Y2 values are located with the best values of
Y1. It should be noted that in this case, achieving the
target value is not possible, and the range of observed
|Y2 − T | values does not contain 0. Note that this has
a substantial impact on the HV value (here HV =
0.4745), since the PF is located far away from theUtopia

point in the Y2 distance dimension. This small value is
a reminder that possible solutions require considerable
sacrifice towards attaining the target value, since the
smallestY2 value in the input space is approximately 37
and the target value is 30.

For target values above the maximumY2(Figure 8c),
this corresponds to the MM problems described in the
previous section, and again means that we are not able
to achieve the target value. The PS is a continuous
region and matches patterns described previously. In
the PF plot for this scenario, we see that since the max-
imum value ofY2 in the design region is 50 and the tar-
get is set to 52, we are not able to find a location that
achieves the target. Hence, this penalty for a less desir-
able set of solutions is reflected by a relatively small HV
value of 0.6635. For the cases described in Figures 8a
and c, the Pareto set will remain the same for any choice
of target beyond the range of attainable values, but the
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Figure . Changes in |Y2 − T | contour (top row), the Pareto set (middle row) and the Pareto front (bottom row) plots for target values of
(a)  (PS same for any value below the smallest predictedY2); (b) ; and (c)  (PS same for any value abovemaximumY2). Note that there
can be multiple regions in the input space that contribute to the PS, and the PF solution values do not always connect smoothly.

HV will change depending on how far away the esti-
mated values ofY2 is from the target.

There are interesting patterns for the PS when the
target falls within the predicted range of estimated Y2
values. In these cases the PS locations seek to connect
some portion of the |Y2 − T | = 0 ellipse with the max-
imum ofY1. In Figure 8b, we see an example of the rare
special case of the target value (45) forY2 and the max-
imum value of Y1 being obtainable at the same loca-
tion in the input space. This allows the Utopia point
to be achieved. This requires no trade-off between the

responses since we are able to simultaneously optimize
both, and hence the HV value is 1.

There are many different forms that the PS can take
when we are considering the MT scenario. A key dis-
tinction between the MM case and MT case is that if
the target is attainable in the input space, it is gener-
ally associated with a contour instead of a single loca-
tion. (An exception is if the target and the maximum
(or minimum) in the region have the same value.) This
means that the PS location chosen for the optimum
|Y2 − T | (at one end of the PF) is based on choosing the
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largest Y1 across the locations on the best contour for
|Y2 − T |. The other end of the PF (where we are maxi-
mizingY1) contains no choices aboutwhichY2 to select.
For intermediate locations on the PF, to find points on
the PS involves looking across the two contours associ-
atedwith |Y2 − T | = c, oneY2 above the target, and one
Y2 below the target, and selecting the largest Y1 value
possible. The larger number of choices from which to
choose often leads to disjointed locations in the PS as
different regions in the input space emerge as best for
balancing the response values. Unlike the MM scenar-
ios described previously, where changes translate into
easily characterized patterns in the PF and PS, the MT
scenario has many more variations and is difficult to
generalize. We have to restrict our discussion to the
above mentioned cases due to the length constraint
of the article. However, the R shiny apps will allow
the practitioners to explore broader scenarios with
different variations and/or constraints in different

applications. Amore detailed description of the R shiny
app options is available in the Appendix.

Targeting-targeting (TT) optimization

The final scenario that we consider is when we are
attempting to simultaneously achieve targets for both
Y1 and Y2. We saw a substantial increase in complexity
for anticipating where the Pareto set would be located
as we moved from the MM to MT scenarios described
in previous sections. This loss of easily recognizable
patterns continues as we examine the TT case. We
again consider the response surfaces shown in Figure 2,
but now consider that the desired optimization is to
achieve a target of Y1 for T1 = 90 and Y2 for T2 = 47.
The top row of Figure 9 shows the contour plots for
|Y1 − T1| and |Y2 − T2|,with the white regions in each
plot denoting where the estimated function achieves
the target value for that response. When we examine

Figure . Summary of response surfaces and their associated Pareto set and Pareto front values for a TT optimization problem. Response
surfaces for the two responses correspond to Figure , and target values for Y1 and Y2 are  and , respectively. The top row shows a
contour plot of each criterion being optimized forY1 andY2. The bottom left plot shows locations in the input space of the Pareto set, while
the bottom right plot shows the Pareto front. The size of dots in the bottom sub-figures is proportional to the value of |Y1 − T1| with the
smallest dot optimal forY1. Note that in the bottom right figure, the Utopia point (∗) for this scenario is located in the bottom left corner.
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the bottom left subplot of Figure 9, we see that there
are multiple regions in the input space that have been
selected as part of the PS. The smaller symbols corre-
spond to best values forY1, and closely follow the con-
tour |Y1 − T1| = 0 near the top right corner of the input
space. Similarly, the larger symbols are close to the
white contour for |Y2 − T2|. Intermediate-sized sym-
bols are close to the left edge of the input space where
some balance of good performance for both responses
is possible.

As with the example in Figure 7, the separation
between locations in the input space for different
options on the PF can complicate the choice of a best
location where the factor should be set. Examining the
bottom right subplot of Figure 9, we note that there
are substantially greater trade-offs between response
objectives than in the MM case. Here, there are sev-
eral locations in the input space where one response
can be optimized at considerable expense to the other.
Additionally, there are intermediate values where both
responses are balanced between the ideal values. This
degree of trade-off leads to a more moderate HV value
of 0.742. In addition, we can see how the distance from
the target differs considerably for the two responses,
with the distance from target ranging between [0, 2.8]
forY1 and [0, 6.3] forY2.

Trying to generalize patterns in the PS and PF for
the TT scenario is challenging since there are a large
number of factors affecting the nature of the solutions.
If the target value for one or both of the responses lies
outside the range of estimated values in the input space,
then the problem translates to either amaximization or
minimization for that response. In general if the targets
lie within the estimated ranges for both responses,
some generalization is possible. For the ends of the
PF (where all the emphasis is placed on optimizing
one of the responses), the general approach is to focus
on contour |Y1 − T1| = 0 for the primary response
and then find the best available value of the other
response. For intermediate locations that achieve some
balance between the response performance generally
involves looking across the two contours associated
with |Y1 − T1| = c (above and below the target), and
selecting the best value possible for the other response.

Discussion and conclusions

Since most experiments involve collecting data on
more than one response, MRO is a common situation

for many practitioners who need to select the most
desirable input combinations for their product or pro-
cess. While reducing the optimization process to some
variation of aggregating the multiple responses into a
single objective has often been used, we recommend
careful exploration of alternatives to obtain the best
solution that matches the priorities of the study. This
article presented some exploration and summaries of
the trade-offs patterns between two responses and pro-
vided some guidance on how to make the most desir-
able choices for three types of MRO problems with dif-
ferent combination of optimization goals.

To simplify the characterization of the different pos-
sible response surfaces, we used the canonical form of
the second-order response surface model, as it com-
pactly describes the nature of the stationary points and
how the responses change as we move away from it. By
examining different configurations of the nature and
location of the stationary points, the magnitudes of the
eigenvalues and the directions of the eigenvectors, we
describe (1) how trade-offs and choices vary for dif-
ferent types of MRO problems and (2) how to iden-
tify contending solutions in PS. Clearly, there are many
more combinations of inputs that might be explored,
and so we encourage the reader to explore the interac-
tive Shiny apps (at https://ycao.shinyapps.io/CAL_xx/,
where xx = MM, MT, or TT for the three scenar-
ios) for all the three types of MRO that generated the
plots in this article. The Appendix provides the equa-
tions to convert from the canonical form to the stan-
dard equations for a second order response surface
model. We believe that it is usually too simplistic to
either focus on just a single response or to weight all
responses equally when looking to find an optimal set
of input-factor levels. Exploring and understanding the
trade-offs is essential in MRO, because it highlights
the relative changes in one response when another
is altered. The Hypervolume (HV) metric provides a
global summary that quantifies the degree of trade-offs
between responses. Code for calculating HV is avail-
able on GitHub at https://github.com/statlife/Multiple-
Response-Optimization.

Throughout the paper, we used the same sized grid
for examining the Pareto sets and fronts. Depending on
howprecisely the input factors can be set in the process,
it is helpful to match the chosen grid to what is possi-
ble in practice. If the grid is made coarser, then there
are fewer points in the PS, and the PF is less rich. The
diminished number of choices also means that while

https://ycao.shinyapps.io/CAL_xx/
https://github.com/statlife/Multiple-Response-Optimization
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the overall shape of the PF stays the same, the calcu-
lated value of the HV will become smaller.

An important aspect that we have not addressed in
this article, but is worth emphasizing is the role that
estimation plays in the optimization process. The PS
and PF solutions discussed in this paper are based
on having a single estimated equation for each of
the responses. In general, the response surfaces that
are obtained from an experiment are estimated with
uncertain model parameters. Hence, some considera-
tion should be given to alternative response surfaces
that are also consistent with the observed data. Chap-
man, Lu, and Anderson-Cook (2014a, 2014b) provide
two strategies for incorporating uncertainty into the
optimization and understanding the impact that it can
have on the attainable results of a selected set of input
factor levels. More realistic decisions can be made with
improved understanding of the associated uncertainty.
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Appendix

A1: Summary of Options in the Shiny Apps
(https://ycao.shinyapps.io/CAL_MM/, https://ycao.
shinyapps.io/CAL_MT/, andhttps://ycao.shinyapps.io/
CAL_TT/)

1. Common features for all three apps for changing
the underlying surfaces for responsesY1 andY2:
For each response, the following inputs can be
manipulated to the response surface:
� X1 and X2 locations (restricted to design
region [−1,+1])—defines the location of the
stationary point of each surface.

� Maximum response value (range =
[0,200/250])—sets the value of Y at the
stationary point.

� Ratio of eigenvalues (range = [−10,15])—
defines the type of stationary point (positive=
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maximum, 0 = ridge system, negative = sad-
dle point) and relative rate of change moving
away from stationary point (1 = circular con-
tours, larger values = less circular ellipses).

� Angle of maximum change for
eigenvectors—defines the direction of fastest
change of the surface when moving away
from the stationary point (0 = fastest change
in horizontal direction, 90= fastest change in
vertical direction).

2. Feature that is specific for apps with optimiza-
tion involving targeting (MT and TT)
� Target value (range = [0,250])—defines the
target value of response (criterion used for
constructing the Pareto front is |Yi − Target|).

A2: Equations for converting between response surface
forms

1. Canonical to Standard:
Elements of canonical form: (ŷ = ŷs + λ1w

2
1 +

λ2w
2
2 for each response)

xst =
(
x1s
x2s

)
= location of stationary point

ŷst = value of y at stationary point

λ1, λ2= eigenvalues

w1 =
(

w11

w12

)
= standardized eigenvector asso-

ciated with λ1

w2 =
(

w21

w22

)
= standardized eigenvector asso-

ciated with λ2

Conversion to standard form (ŷ = b0 + b1X1 +
b2X2 + b11X2

1 + b22X2
2 + b12X1X2 for each

response):

b0 = ŷst + (
w1

′xst
)2 + (

w2
′xst

)2
b1 = −2w11

(
w1

′xst
) − 2w21

(
w2

′xst
)

b2 = −2w12
(
w1

′xst
) − 2w22

(
w2

′xst
)

b11 = w2
11 + w2

21

b22 = w2
12 + w2

22

b12 = 2w11w12 + 2w21w22

2. Standard to Canonical: see pp. 278–279 of
Myers, Montgomery, and Anderson-Cook
(2016).
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