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Abstract

When multiple responses are considered in process optimization, the degree

to which they can be simultaneously optimized depends on the optimization

objectives and the amount of trade‐offs between the responses. The

normalized hypervolume of the Pareto front is a useful summary to quantify

the amount of trade‐offs required to balance performance across the multiple

responses. To quantify the impact of uncertainty of the estimated response

surfaces and add realism to what future data to expect, 2 versions of the

scaled normalized hypervolume of the Pareto front are presented. To demon-

strate the variation of the hypervolume distributions, we explore a case study

for a chemical process involving 3 responses, each with a different type of

optimization goal. Results show that the global normalized hypervolume

characterizes the proximity to the ideal results possible, while the instance‐

specific summary considers the richness of the front and the severity of

trade‐offs between alternatives. The 2 scaling schemes complement each

other and highlight different features of the Pareto front and hence are useful

to quantify what solutions are possible for simultaneous optimization of

multiple responses.
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1 | INTRODUCTION

Since responses from most experiments cannot be
simultaneously optimized, finding an appropriate
balance between the performance of the responses is
generally required when optimizing a product or process.
A good initial step in identifying promising input
combinations is to construct a Pareto front (PF)1-5 that
shows the range of possible nondominated choices of
response values. The Pareto set (PS) is the corresponding
collection of solutions, here, the combination of input
factor values that objectively provide the best trade‐off
among responses. Understanding the trade‐offs between
wileyonlinelibrary.com/jo
multiple responses can help make an informed and
justifiable decision to sensibly balance performance
between the responses.

One approach to support the decision maker is to use
local criteria to summarize the trade‐off information6 by
examining differences between individual solutions.
Another strategy is to use a quantitative summary of the
degree of trade‐off across all alternative solutions, like
the hypervolume (HV).7-9 This helps to understand if
near‐optimal values of the responses are possible, or if
improvement of one response comes only at the cost of
substantial compromise of the others. The HV considers
both the proximity of the PF to the ideal result of
Copyright © 2017 John Wiley & Sons, Ltd.urnal/qre 2343
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FIGURE 1 Illustration of how hypervolume can be calculated for

a simple 2‐criterion Pareto front. Points on the Pareto front are black

filled circles. Dominated points not on the PF are open circles, and

the unattainable Utopia point is the triangle in the top right corner
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simultaneously optimizing all the criteria, as well as the
richness or cardinality of the front.10

Historically, a single value of the HV has been
reported as a fixed value for the degree of trade‐off.
However, when the response values have been estimated
from data, this summary is too simplistic and hides the
fact that the response surfaces11 have been estimated.
The response surfaces characterize the relationships
between the inputs and outputs and have associated
uncertainty from the natural variability in measured
responses and potential lack of fit of the assumed models.
Chapman et al4 show that the PF and accompanying PS
can change substantially for different estimated response
surfaces consistent with the observed data. Not taking
into account the impact of the uncertainty when optimiz-
ing can lead to overly optimistic assessment of optimal
solution's value and location in the input space. In this
work, we show how the simulation‐based approach5 for
selecting an optimal solution allows exploration of the
impact of the uncertainty on the degree of trade‐off
between responses, as captured by the HV values.

The HV of the PF based on scaling the best possible
value for a given response with a value of 1 and the least
desirable value with 0 is referred to as the normalized HV,
ie, NHV.10 This is similar to the scaling used with
desirability functions.12 Hence, the NHV can be thought
of as the area (for 2 responses), volume (for 3 responses),
or HV (for more than 3 responses) of a unit region [0,1]k

(for k responses) for which attainable solutions are
available. Note that the outer edge of the PF area is con-
nected by step functions (not a smoothed line) between
adjacent solutions to reflect the discontinuity of attainable
solutions in the input space. If the NHV achieves a value
close to 1 (near‐optimal values can be obtained simulta-
neously for all the responses), then relatively little trade‐
off between responses is required, and solutions are likely
to be highly desirable. As the NHV value becomes
smaller, increasing trade‐offs and compromise between
responses are required. When the PF contains only 2
solutions, each with the best value for one criterion and
the worst value for other criteria, the NHV is 0, which
corresponds to the maximum trade‐off between responses
(optimizing one criterion requires the worst performance
on the PF for others).

Figure 1 reviews some basics of PFs and illustrates the
calculation of the NHV for a PF for maximizing 2 criteria.
First, the PF is comprised of the 4 solid circles, which are
the nondominated solutions. The remaining 7 open
circles represent other possible solutions not on the PF.
For each of these solutions, there is at least one point on
the PF for which the criteria values are at least as good,
with one criterion strictly better. The points on the PF
are joined by a step‐function (not by straight lines) since
there are no choices between the solutions, but rather
only those noted with circles. In this paper, we consider
the trade‐off as how much of a decrease in performance
from one criterion is needed to improve in the other.
For example, if we start with the best possible value for
criterion 1 (at the far right of the PF), then the horizontal
distance moved left to get to the next point on the PF is
what we sacrifice to obtain a gain in the vertical direction
for criterion 2. The triangle represents the Utopia point,
the set of solution values that corresponds to simulta-
neously optimizing all criteria. Note that this is not an
available solution in most applications.

The dotted lines represent one possible choice of
scaling for the NHV, where the scaled value of 1 for each
criterion is assigned to the best achievable value, and zero
is assigned to the worst observed value from all possible
solutions. The NHV value for this choice is the scaled area
between the dotted lines and the solid lines of the PF. A
more typical choice for normalization is to keep the
choice of 1 for the scaled value the same (the best
observed) and to set 0 as the worst value on the PF. The
dashed lines indicate the choice of 0 for this case, which
leads to the NHV value for the area between the dashed
lines on the bottom left and the solid lines of the PF. Note
scaling using points on the PF provides a normalized
quantification of the trade‐off among only competing
solutions. This has a different frame of reference than
when the scaling is based on the entire solution space.
The scaling based on the entire set of solutions usually
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results in higher NHV value, which means less trade‐off
between the criteria. Hence, choosing an appropriate
and meaningful scaling for each application leads to more
precise understanding of the amount of trade‐off between
the multiple objectives under consideration.

For the simple example in Figure 1, the criterion values
are fixed, with no uncertainty about the PF or its associated
NHV for a chosen scaling. Now, consider the case of
optimizing multiple responses, where each location in the
input space has an estimated value of each response. There
is uncertainty associatedwith these estimated values, which
means that the points in Figure 1 might move left or right
because of uncertainty from criterion 1, or up and down
for uncertainty from criterion 2. Depending on how much
each point might reasonably move, the shape of the PF
might change, and different points might be included. A
simulation‐based approach5 allows exploration of different
instances of the PF and associated PS.

Anderson‐Cook et al13 describe differences in the
optimization process for a single response depending on
whether the goal is to maximize, minimize, or achieve a
target value. When looking for extremes (maximizing or
minimizing), the optimum generally occurs at a station-
ary point in the region, or at the perimeter of the design
space. When looking to attain a target, it may or may
not be possible to hit the target, and if the target value
does not lie in the range of responses, then the optimiza-
tion reduces to an extreme optimization. It is also possible
to have more than one solution that achieves the target, if
a contour for the response matches the desired value. The
role of uncertainty also changes with the type of optimiza-
tion. Anderson‐Cook et al14 examine patterns for dual‐
response problems on the basis of the nature of the
optimization. In this paper, we consider the Myers
et al11(p333) example with 3 responses, with one of each
type of optimization goal.

The remainder of the paper is organized as follows:
Section 2 describes the chemical experiment on which
FIGURE 2 Contour plots for each of the estimates response surfac

molecular weight. Lighter colors indicate better values for each criterion
the case study is based. Section 3 outlines 2 simulation‐
based choices for the scaling, global and instance‐based,
that serve different purposes. Section 4 illustrates graphi-
cal summaries for improved understanding of the NHV
for 2 responses. Section 5 extends the methods for consid-
ering trade‐offs between 3 responses. Section 6 discusses
general patterns observed and concludes the paper.
2 | PROCESS OPTIMIZATION
BASED ON A CHEMICAL
EXPERIMENT

Myers et al11 (Table 7.4, p333) considered a chemical pro-
cess involving 2 input variables (ξ1= time and ξ2= tem-
perature) and 3 responses (Y1=yield, Y2= viscosity,
Y3=number− average molecular weight). The goal was
to choose the best set of operating conditions to simulta-
neously maximize yield, hit a target for viscosity at 65,
and minimize the molecular weight. The region of inputs
explored included time between 77 and 93 minutes and
temperature between 167°F and 183°F. It was believed
that either a second‐order or simpler model is appropriate
for all responses in the design region. Hence, a 13‐run
central composite design11(p393) was conducted. The fitted
response models using least squares estimation for all 3
responses are given by

y1 ¼ 79:94þ 0:995x1 þ 0:52x2 þ 0:25x1x2−1:38x21−1:00x
2
2;

y2 ¼ 70:0−0:16x1−0:95x2−1:25x1x2−0:69x21−6:69x22 and
y3 ¼ 3386:2þ 205:1x1 þ 177:4x2:

Note that x1∈ (−1.5,1.5) and x2∈ (−1.5,1.5) in the
above equations are the coded variables for the input
factors, which were calculated from the raw values with
formulas: x1= (ξ1− 85)/5 and x2= (ξ2− 175)/5.

The contour plots for the estimated response surfaces
are shown in Figure 2. The maximum yield occurs around
es for the 3 responses: A, yield, B, viscosity, and number‐average
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the ellipsoid region at x1∈ [0,0.8] and x2∈ [−0.1,0.7]. The
best viscosity (target at 65) occurs near x2= ±0.8. The
molecular weight improves as both of x1 and x2
approaches their minimum values in the bottom left cor-
ner of the design space. Since optimal values for different
responses are located at different regions, simultaneously
optimizing all 3 responses requires trade‐offs to be made
between the responses, especially between yield and
molecular weight, as their optima are located in opposite
directions in the design space.

Note that the fitted models are based on point
estimates of the parameters. Under the assumption of
independent and normally distributed random errors,
the sampling distribution of the least squares estimates

of the model coefficients is bβ∼MVN β; σ2 X′X
� �−1� �

,

where X is the model matrix, β is the vector of model

coefficient parameters, and bβ denotes the vector of the
least squares estimates. Chapman et al5 proposed a simu-
lation approach for quantifying uncertainty associated
with the fitted responses surfaces and the multiple
response PF. In particular, a large set of model coefficients

are simulated from MVN bβ;bσ2 X′X
� �−1� �

, which are all

consistent with the observed data. Then, the response
surfaces based on the simulated coefficients are used to
identify possible PFs, and quantifying the trade‐off with
its associated uncertainty. Since the preferred choice
depends on how we value the trade‐off between the differ-
ent response values, Section 3 introduces 2 different
scaling choices sensible for the simulated‐based approach
that serve different purposes for understanding the uncer-
tainty associated with the optimization.
3 | QUANTIFYING TRADE ‐OFFS
USING HV WITH DIFFERENT
SCALING CHOICES

In this section, we present concepts related to the HV and
scaling issues for normalizing the HV in the simulation
setting when optimizing multiple responses with associ-
ated uncertainty. For cases of maximizing or minimizing,
the response values are used directly. For achieving a tar-
get value, a new response (to be minimized) is constructed
by using the distance between the response and the target.
The idea of HV is documented in the receiver operating
characteristic15,16) and HV literature. But to avoid
arbitrary HV values, the NHV is preferred in practice.
More importantly, as discussed in Section 1, the NHV
has a useful interpretation when quantifying trade‐offs
between responses.

To calculate the NHV under the PF, a scaling is
selected and new scaled values of the criteria constructed.
For values ybest to be assigned a value of 1 and yworst to be
assigned 0, a transformation of the following form

Zi ¼ yi−yworst
ybest−yworst

(1)

is used for all points on the PF. This creates values of Zi

between 0 and 1. If it is possible to obtain values of yi
outside of the range defined by ybest and yworst, then these
values should be assigned a 1 or 0 value, depending where
they are outside of the range. This allows for all criteria to
be scaled in the interval [0,1]. Since the final decision is
made from the Pareto optimal set, the trade‐offs associ-
ated with this set of solutions are directly relevant in
seeking appropriate balance between different responses.
We recommend the normalized scaling using the worst
observed values from the PF to define 0 for each criterion,
and the values of the Utopia point (the best values for all
criteria) to correspond to the value 1, as it strictly
quantifies the trade‐offs among competing solutions.

For the two criteria case, there is a unique ordering of
the points on the PF. We can construct a series of
rectangles between the PF and the axes of origin with dis-
tinct values of one criterion used as dividing points to define
the set of rectangles. The NHV is then the sum of the
rectangle areas. This transformation restricts the value of
Zi to lie between 0 and 1; the NHV represents the fraction
of the unit square below the PF with attainable solutions.

Adaptations to the normalized scaling are needed for
the simulation‐based approach. We define 2 ways of scal-
ing to associate an NHV value with the uncertainty. To
simplify the discussion, we assume that the responses to
be optimized all involve maximization. For minimization
or hitting a target, negative values of the quantity to be
maximized can be used.

First, we consider a “global scaling,” where we look
across all of the simulated PFs to find the overall
maximum and minimum values. These are assigned as
ybest and yworst, respectively. The transformation from the
original values to the scaled criteria defined in (1) is
applied to obtain values in [0,1]. The NHV found for each
simulated PF with this scaling is called the “global NHV
(GNHV).”

In contrast, another version is to scale based on only
the range of individual simulated PF, which is referred to
as the “instance‐specific scaling.” The ybest and yworst values
are identified on the basis of each individual simulation.
Hence, for this scaling, there are guaranteed to be some
solutions in each simulation receiving the extreme values
0 or 1 for at least one response. The transformation in (1)
is again applied to obtain scaled criteria values. The NHV
constructed from these values is called the “instance‐spe-
cific NHV (ISNHV).”
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More in‐depth comparisons between the GNHVs and
ISNHVs considering pairs of responses as well as all 3
responses from the chemical experiment example are
presented in Sections 4 and 5. Here, we describe a few
important differences between the 2 scalings. First,
because the PF is scale‐independent, the same solutions
with the same response values are used for each scaling.
In this way, we summarize the same information and
differences in the GNHV and ISNHV values are attribut-
able to only the choice of scaling.

For each simulation, the attainable ranges from the 2
scalings are quite different. For the ISNHV, the best value
of each individual response will be mapped to 1, and the
worst to 0. Hence, the available range for each simulation
spans the entire range. For the GNHV, we expect that
only the simulation(s) with the overall best observed
value of the response have a possible value of 1. Similarly,
only the simulation(s) that contain the overall worst
observed value achieve a value of 0. With this scaling,
the best and worst values are bounds for the most
optimistic and pessimistic conditions. Hence, for the
GNHV, we anticipate that for many simulations, the
range of values spans only a portion of the [0,1] range.

In terms of the variability that we anticipate between
the GNHV and ISNHV across simulations, the values of
GNHV are more likely to be consistent, since the same
scaling is universally applied. The ISNHV can have
dramatic differences in the values since the chosen best
and worst values are based on just a single PF and are
likely to fluctuate more.

When we compare the PF for the mean model of each
response (using the point estimates for all the model
parameters) to the results from the global and instance‐
specific scalings, we anticipate some differences as well.
If we consider each simulation as a plausible set of values
consistent with the observed data, then the PF for each
simulation gives us a sense of how much variability we
might anticipate for the optimization. The ISNHV values
can be thought of as characterizing the range of what
might be possible when looking at just one result at a
time. We have a single number associated with the mean
model NHV, and the ISNHV quantifies how consistent
that the mean model would be if we had run another
experiment from the same process. When we compare
the mean model NHV to the GNHVs, we are more likely
to see that the mean model NHV is centrally located rela-
tive to the simulation values. It is unlikely to have best
and worst values that span the entire normalized range
between 0 and 1, since the mean model rarely achieves
these extremes when compared to the entire population
of simulations. In Section 4, we revisit these findings in
the context of specific examples from the chemical
process case study.
4 | EXAMINING HV PATTERNS
FOR 2 RESPONSES FROM THE
CHEMICAL PROCESS EXAMPLE

In this section, we examine patterns in the NHVs of the
PF across simulations for pairs of responses using the
global and instance‐specific scaling schemes. This
considers pairwise trade‐offs between the responses, and
the associated uncertainty attributable to the natural var-
iability of the responses and the model fitting.

Anderson‐Cook et al13 demonstrated different pat-
terns and complexity of impacts of types of optimization
on the uncertainty of the selected optimal solutions for a
single response. When the goal involves maximization or
minimization, there is usually less uncertainty associated
with the identified optimal solutions compared with
hitting a target. There are often more varied possibilities
for the latter case and the identified solutions may not be
even in adjacent regions. Anderson‐Cook et al14 further
explored how identified solutions are affected by the
shapes of the response surfaces (mountain, valley, or
ridge), the relative location of the individual optimal
regions and different signal‐to‐noise ratios across types
of optimization for known response surfaces without
considering estimation uncertainty. The type of optimi-
zation plays an important role for both the inherent
trade‐off between the responses as well as its uncer-
tainty. In this section, we explore patterns in the NHV
of the simulated PFs for pairs of responses, which
represent three typical combinations of optimization
objectives: maximization vs minimization (Y1 and Y3),
maximization vs target (Y1 and Y2) and target vs
minimization (Y2 and Y3).
4.1 | Optimizing Y1=yield and
Y3=number−average molecular weight

First, we consider optimizing Y1 (maximizing) and Y3

(minimizing) simultaneously. Figure 3 shows a scatterplot
of GNHV vs ISNHV values across 1000 simulations, with
marginal histograms for each type of NHV along the axes.
The mean model NHVs are shown with black lines on the
histograms, and a solid black point in the scatterplot.
Several interesting patterns can be observed. First, from
the marginal histograms, the mean model GNHV is
around 0.52, which is considerably smaller than the mean
model ISNHV at around 0.66. This is because the global
scaling uses a wider global range for the responses across
all simulated PFs as the unit scale, so the relative area of
the obtainable solutions under the mean model PF is
naturally smaller with the larger unit square under the
global scaling.



FIGURE 3 Scatterplot and distribution

of global and instance‐specific hypervolume

values for the PFs for yield (Y1) and

molecular weight (Y3)

2348 CAO ET AL.
Second, if we look across the NHV values for the
simulated response surfaces, the distribution of the
GNHV values is more symmetric and the mean model
GNHV is located closer to the center of the distribution
than for the ISNHV distribution, which is skewed towards
larger values. This matches our intuition about the
unified scale of the global scaling, with the mean model
naturally capturing the central tendency of the overall
distribution. The ISNHVs are a function of independent
choices of ranges and scaling, which leads to the mean
model just being a particular instance that could be
anywhere in the set of simulated values.

Third, the GNHV values range between 0.3 and 0.72,
which is much wider than the range of the ISNHV
between 0.63 and 0.72. In this case, there is less variation
in the size of the area under the individual PF relative to
the unit square bounded by its own range of values. The
larger variation in the GNHV comes from more changes
in the location of the individual simulated PFs in the unit
square bounded by the extreme observed response values.

Next, we consider the correlation between the 2
NHVs. For Y1 and Y3, the correlation is close to zero
(r= . 065), indicating virtually no connection between
the 2 values. When we consider what the 2 measures are
capturing, this lack of association becomes a bit more
intuitive. The value of the GNHV is largely capturing
the location of the PF relative to the simulation extremes.
Hence, a PF that is relatively close to the combination of
ybest values observed across all simulations results in a
high GNHV value. The value of the ISNHV is not
connected to any other simulations, and hence, this
measure focuses on the degree of trade‐off and diversity
of available solutions within that single simulation. A
front able to simultaneously approach the ybest values for
that simulation results in a high ISNHV value.

We can see that with different scaling choices, the
uncertainty of the NHV values are affected by different
factors. For the ISNHV, the areas with attainable
solutions are calculated relative to the range of individual
PF values. Hence, the uncertainty of the ISNHV
characterizes the variability in the degree of trade‐off
across all solutions on the PF, which is largely tied with
the richness or cardinality of the PF. However for the
GNHV, due to the use of the universal scaling bounded
by the extreme values from all the simulations, the uncer-
tainty of the GNHV is primarily affected by the relative
position of the individual PF among all possible PFs. If
the responses include at least one with large variation
such as Y3, the change of the PFs across all simulations
can be large. In this case, the degree of trade‐off is largely
affected by the front cardinality and results in relatively
small variation across simulations, as evidenced by the
consistent patterns among sampled PFs from Figure 4.
There is more variation with the GNHV values than the
ISNHV values.

Figure 4 shows a few representative samples of the
simulated PFs across the simulations for the different
scalings. Throughout the remainder of the paper, all



FIGURE 4 Samples of Pareto fronts from the simulations for optimizing yield (Y1) and molecular weight (Y3) based on A, global scaling and

B, instance‐specific scaling
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figures transform the responses to convert the optimiza-
tion to maximization. For ease of presentation, we convert
minimizing Y3 to maximizing −Y3 and turn targeting Y2

to 65 to maximizing −∣Y2− 65∣. The mean model front
and the fronts corresponding to the five number summary
(minimum, 1st quartile, median, 3rd quartile, and maxi-
mum) based on the NHVs are shown with different sym-
bols. For the global scaling, all sample PFs overlap in the
bottom right corner corresponding to near optimal (at or
above 80) value for yield (Y1) but with a poor (greater than
3500) value for the molecular weight (Y3). The top left end
of the PF moves upwards as the sample percentile
increases. Hence, the value of the GNHV is largely driven
by the estimated best attainable Y3. The minimum and
maximum GNHV fronts bound the range. The pattern
matches Figure 3 with the near symmetric distribution
of GNHV around the mean model value. However, when
the instance‐specific scaling is used, the sample fronts
show more differences on both ends. The relative posi-
tions of the fronts are no longer related to the natural
order of the percentile summaries, since the size of the
ISNHV is not directly related to the location of the PF rel-
ative to other simulations. For instance, the 3rd quartile
ISNHV front is below all other fronts except for the bot-
tom right part, while the minimum ISNHV front is consis-
tently above the 3rd quartile ISNHV front (ie, better Y3

values). But since it has a much narrower range of values
for Y3 and a sparser front, it results in smaller relative area
below the PF for the instance‐specific scaling.

To connect the different PFs with the corresponding
PS of optimal solutions, Figure 5A shows the PS for the
mean model as well as the minimum and maximum
NHVs using both scalings (Figure 5B‐E). The PS for the
mean model forms a fan‐shaped region from close to the
center region to the bottom left edge of the design region
for the original experiment. Recall from Figure 2 that the
best values of yield are located near the center of the
region, while the best values for molecular weight are in
the bottom left corner. Hence, for the mean model, the
locations associated with the top left corner of the PF in
Figure 4 are at the edge of the design region, the bottom
right of the PF are near the center.

The PS for the minimum ISNHV is also a fan‐shaped
region but shifted clockwise, while the PS for themaximum
ISNHV shifts counterclockwise. By overlaying the PSs with
the contour plots in Figure 2, we see that all sets have
similar ranges for Y1 but have considerably different ranges
for Y3. In particular, the PS for minimum ISNHV is associ-
ated with a narrower range of Y3 with all larger values
(smaller/better values on the original scale), while PS for
maximum ISNHV is associated with a wider range of Y3.
This matches with the corresponding sample PFs shown in
Figure 4. The PS for the minimum and maximum GNHVs
show similar patterns except that the PS for the minimum
GNHV is closer to the PS for the mean model.

From both Figures 4 and 5, we can see that the uncer-
tainty of the PF for Y1 and Y3 and its associated PS seems
to be affected more by the variance from the estimated
response surface for Y3. This is explained by the much
larger square root of the mean square error (MSE) (165.6
for Y3 compared with 0.27 for Y1) and smaller signal‐
and‐noise ratio (4.6 for Y3 compared with 16.7 for Y1) that
are associated5 with Y3 than Y1. Figure 6 shows the range
of the response values across all 1000 simulated PFs. The
plots for Y1 (top panel) and Y3 (bottom panel) are both
sorted on the basis of the minimum values (corresponding
to the worst values) on the PF. We can see that there is
little variation for the maximum (best) values on the PF
for Y1. Almost all simulations have the maximum Y1

values at around or above 80. Alternately, the maximum
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the mean model, and the minimum and maximum for each of the

GNHV and ISNHV from the simulations
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values for −Y3 (corresponding to the best values) on the
PF vary much more, which spreads over at least half of
the overall range of the Y3 values on the PFs across
simulations.
4.2 | Optimizing Y1=yield and
Y2=viscosity

In Section 4.1, we examined an optimization involving
maximizing and minimizing. We now consider a different
scenario that involves hitting a target value for
Y2= viscosity, while maximizing Y1=yield. Figure 7
shows the scatterplot of GNHV vs ISNHV across the sim-
ulations with marginal histograms for each type of NHV
values. Again, the mean model values are shown with
black lines and a solid black circle. From the marginal
histograms, the GNHV values range is approximately
symmetrical between 0.824 and 0.991, with the center
located around the mean model value at 0.92. In contrast,
the ISNHV values are highly skewed and cover almost the
entire range of possible values between (0, 0.991). A large
number of simulations resulted in ISNHV values above
0.8, which are substantially larger than the mean model
value of 0.635. This indicates a relatively small trade‐off
between the responses for many of the simulations, but
there are also a small number of cases have a very large
trade‐off. From the scatterplot, there is again little correla-
tion between the 2 types of NHV summaries (0.068). This
is not surprising given that the 2 NHV summaries
quantify different characteristics of the anticipated PFs.

Compared with the first case of optimizing Y1 and Y3,
there are some similarity in the observed patterns,
including the symmetry of the GNHV distribution, the
more skewed distribution for the ISNHV, and near zero
value of the correlation between the two NHV values.
But we also observe some differences. First, the mean
model GNHV for Y1 and Y2 (0.92) is substantially higher
than the mean model ISNHV (0.635). It is due to the
inclusion of the target value for Y2 for almost all estimated
response surfaces. Hence, it is possible to achieve a 0
value for ∣Y2− 65∣ at a number of different locations in
the input space (on the contour for 65), which allows for
choices for Y1. This leads to less trade‐off and larger area
under the PF. In addition, the mean model PF has end
points relatively close to the global ideal values and so it
compares favorably to the larger unit square. This can
be clearly seen from the sampled PFs (including the mean
model) shown in Figure 8, where proximity to the target
value of 65 for Y2 provides many choices from which to
pick the preferred value for Y1. Second, the range of
GNHV is much smaller than ISNHV for the Y1 and Y2

pair, in contrast to the opposite pattern for Y1 and Y3. This
is because the simulated PFs consistently contain a set of
solutions close to the Utopia point in the top right corner
of the unit square but have more variation on the ends of
the anticipated PFs. For GNHV, the variation on the end
points does not make much difference with the unified
scaling based on the extreme values. However, ISNHV is
highly dependent on the end points of the individual
PFs. This leads to the large variation in choice of scaling
for individual simulation cases, which translates into
large variation of the ISNHV values.

An important contributor to the large variation in the
end points of the PF is the sparsity of the PF associated with



FIGURE 6 Ranges of yield (y1) and molecular weight (y3) for the Pareto fronts across the simulations

FIGURE 7 Scatterplot and distribution

of global and instance‐specific
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FIGURE 8 Samples of Pareto fronts from the simulations for yield (Y1) and viscosity (Y2) based on A, global scaling and B, instance‐specific

scaling
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the Y1 and Y2 responses. This is strongly connected to one of
the optimization goals being to hit a target and hence
results in more discontinuity of the solution sets. This can
be also observed from Figure 8, where the sampled PFs con-
tain fewer solution points (compared with Figure 4 for Y1

and Y3) especially towards the ends of the PFs. A change
in a single value on the ends of the PF can lead to big
changes in the instance‐specific scaling and hence the large
variation for the area under the PF across the simulations.

Figure 9 shows the PSs of optimal solutions for the
mean model and for the minimum and maximum NHVs
for the 2 scaling choices. The PS for the mean model forms
a contiguous triangle‐shaped region connecting the optimal
location for maximizing Y1 and the upper part of the ellipse
around the target value of Y2. Note that the locations
around the lower part of the ellipse close to target value
for Y2 are not included in the PS, as they are generally asso-
ciated with poorer Y1 values for themeanmodel (and hence
are dominated by locations around the upper ellipse with
similar distance to the target of Y2). However, as estimation
uncertainty is incorporated, the ellipse where the target
value is achieved can shift up and down. This can result
in different ranges of Y1 values to be included on the PF.
For example, when the optimal regions for the simulated
response surfaces for both Y1 and Y2 are very close, the PS
contains very few solutions, such as the PS shown in
Figure 9C which contains only 2 solutions on the PF and
thus results in maximum trade‐off (ie, minimum NHV of
zero based on the instance‐specific scaling). As the optimal
regions for both responses are separated further, more solu-
tions are included on the PF, even including the locations
around the lower part of the ellipse such as in the PS shown
in Figure 9B, 9D, and 9E.

From Figure 9, the PS for the mean model contains
solutions closer to the Utopia point that are more likely
to be included consistently across simulations. However,
completely relying on the mean model approximation
might miss some possible regions containing optimal
locations for some simulations, especially when unequal
weighting between the responses is preferred. In addition,
when optimization involves hitting a target, there is often
considerable discontinuity in the possible PFs from the
simulations and large variation in the identified PS
regions. In this case, the ISNHV can have much more
variation than the GNHV.

Figure 10 shows the range of response values across all
simulations. Despite the fact that Y1 has the largest signal‐
to‐noise ratio (and smallest MSE) among all 3 responses,
it is associated with a larger range of optimal response
values than Y2 for which the goal is set to hit a target
value. The optimal or near‐optimal values (close to zero
distance to the target) are almost always included on the
PF, unless the target is unattainable in the design space.

As a summary, there is generally less trade‐off
required between the responses Y1 and Y2, given the
frequent proximity of some of the optimal regions for
the 2 responses. However, when achieving a target is an
objective, the uncertainty in the response surfaces can
lead to the PS having some discontinuity, with isolated
regions in the input space. We also see that the PFs have
fewer points and larger differences in response values
between adjacent PF points. Hence, there is substantial
variation across simulations of anticipated PFs, particu-
larly towards the ends of the PF (with solutions doing well
on one response but more poorly on the other). This
translates into large variation in the ISNHV, since there
are large differences between the chosen instance‐specific
scalings. On the other hand, the global scaling is more
robust to variation at the ends of the PFs by using a con-
sistent scaling including the most extreme cases.



FIGURE 9 Pareto sets for yield (Y1) and viscosity (Y2) for the

mean model and the minimum and maximum for each of the

GNHV and ISNHV from the simulations
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4.3 | Optimizing Y2=viscosity and
Y3=number−average molecular weight

The last two‐response optimization considers Y2 and Y3,
which again considers a target combined with a minimiza-
tion. Similar figures as were used in Sections 4.1 and 4.2 are
included in Appendix A. For this optimization, we observe
patterns consistent with our understanding from the earlier
scenarios. For example, the GNHV values between 0.5 and
0.99 are symmetrically distributed around the mean model
value of 0.75. The ISNHV values cover the entire range of
possible values and are skewed towards smaller values.
The mean model ISNHV is 0.96, which indicates the mean
model PF contains solutions with response values close to
the ideal values on that PF. As before, there is little correla-
tion (−0.036) between the GNHV and ISNHV (observed by
the scattered gray points in Figure A1).

Similar to the optimization of Y1 andY2, where achieving
the target for Y2 is generally achievable in the design space,
the best values ofY2 for all of the simulated PFs are at or near
0, which bounds one end of the PF (the bottom right corner
in Figure A2). Large uncertainty for Y3 results in a large
range of best Y3 values across the simulations. This is seen
with large variation in upper part of the simulated PFs
(at the top left corner of Figure A2(A) and a considerable
range for the maximum −Y3 values in Figure A4).

The sparsity of the solutions on the PF leads to large var-
iation in the estimated Y3 values and results in a range of
values at the top left end of the PF (corresponding to the best
solution on Y3). Differences in the number of solutions on the
PF result in variability for the instance‐specific scalings across
the simulations. From Figures A2 and A3, we see that the
ISNHV covers the extreme scenarios of trade‐off relationship
between a pair of criteria. The minimum ISNHV is obtained
when the simulated PF has only 2 points (open squares in
Figure A2B) and 2 input locations (Figure A3C) in the PS.

The maximum ISNHV is obtained when the
simulation PF is comprised of a single point (black solid
square in Figure A2B) and a single location in the PS.
Here, both responses can be optimized simultaneously
and no trade‐off is needed. Despite the largest possible
difference in the ISNHV values, the actual PS locations in
Figure A3 are similar. For the extreme GNHV values
(Figure A3B and A3D), the difference in the PS locations
reflects the range of the Y3 values.
5 | SIMULTANEOUSLY OPTIMIZ-
ING 3 RESPONSES

In this section, we consider optimizing all 3 responses
simultaneously. Recall the general result that when we
are balancing more criteria with a higher dimensional
PF, usually, more trade‐off between the responses is
required. Figure 11 shows the pairwise scatter plot of the
GNHV and ISNHV values with their individual marginal
distributions. The GNHV for the 3 response PF ranges
between 0.42 and 0.74, with the mean model GNHV near
0.54. The ISNHV has a narrower range between 0.53 and
0.77, with the mean model ISNHV takes value at 0.65.
Both GNHV and ISNHV distributions are close to
symmetric. However, the mean model NHVs are not
located at the center of the distributions but are closer to
the smaller values. This indicates that the mean model



FIGURE 10 Ranges of yield (Y1) and viscosity (Y2) for the Pareto front across the simulations

FIGURE 11 Scatterplot and

distribution of global and instance‐specific

hypervolume values for the PFs for all 3

responses
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FIGURE 12 Pareto sets for optimizing all 3 responses for the

mean model and the minimum and maximum for each of the

GNHV and ISNHV from the simulation
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response surface location is slightly farther than typical
from the global scaling Utopia point from all simulations.

The GNHV has a slightly wider range of values because
of the larger variation of the relative location of the simu-
lated PFs within the larger unit square used for the global
scaling than the variation of richness of the PFs reflected
in the ISNHVs. Since the 3 response PFs are points in a
3‐dimensional space, there are more opportunities for
trade‐off between all three of the responses. This leads to
a richer front with adjacent solutions being more similar.

The differences between the GNHV and ISNHV for 3
responses are smaller than the two‐response scenarios
described in Section 4, because the global scaling range is
defined by the most extreme values across all simulations.
Since the 3‐dimensional PF must contain the best value
for each response, this potentially leads to more mediocre
values of the other 2 responses at that location, which
extends the ranges for the global scaling. Table 1 contains
a summary of the worst values for each of the responses
for the scenarios considered. The lower worst case values
have an impact on the GNHV by adding some area at the
bottom of the HV but do not impact the values for the
ISNHV. In addition to the extending of the ranges of worst
values considered, the PF for the three‐response optimiza-
tion is also notably richer, since trade‐offs between all
responses need to be considered. As noted with some of
the 2 response systems, the higher cardinality or richer
fronts have more stable ISNHV values. The sample correla-
tion between GNHV and ISNHV is 0.065, which matches
the pattern of observations in the scatterplot in Figure 11.

Figure 12 shows the PS corresponding to the mean
model as well as the minimum and maximum for the 2
types of NHVs. The PS for the mean model response sur-
faces forms a bow tie–shaped region. The bottom of the
bow tie has more solutions located near the bottom left
corner of the design region with near optimal values for
Y3 and Y2 but worse values for Y1. When the global scaling
is used, the PSs corresponding to the extreme GNHV
values are relatively similar in shape to the mean model
PS with some local changes (eg, the PS for minimum
GNHV shifts towards smaller values on the horizontal
axis). However, when the instance‐specific scaling is used,
the PS locations for the 2 extreme cases show larger
TABLE 1 Worst case values on the PF for each optimization

scenario, where values were set to 0 for the global scaling

Scenario Worst Y1 Worst Y2 Worst Y3

Y1 & Y2 75.628 −7.035 ‐‐‐

Y1 & Y3 75.356 ‐‐‐ −3687.97

Y2 & Y3 ‐‐‐ −9.799 −3898.25

Y1 ,Y2, & Y3 75.305 −10.857 −3926.55
differences from the mean model PS with different
regions of the input space and the overall shape.

Figure 13 shows the range of the response values on
the PF for all 3 responses across the 1000 simulations.
Similar patterns to the 2 response at a time cases are
observed. There is little variation in the best Y2 values as
the input space almost always includes a solution that
achieves the target value of Y2. The best values for Y1

show smaller variation than the best values for Y3 since
it has much smaller MSE for the estimated model (ie, a



FIGURE 13 Ranges of all 3 responses for the Pareto fronts across the simulations
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larger signal‐to‐noise ratio). The best values for each
response appear more consistent than in the 2 response
optimization scenarios relative to the entire range of the
possible values on the PF across simulations, especially
for Y3 as well as Y1. Some of this is due to the worst case
values extending the set of values that are considered,
and some is due to the richness of the front providing a
larger collection of values to be included in the plots. This
matches with our expectation of having less variable PFs
across simulations for all 3 responses than considering
only a pair of responses.
In summary, for the optimization of all 3 responses
simultaneously, due to having a consistently richer and
less variable PF across all the simulations, there are less
differences between GNHV and ISNHV in general. The
resulting PS are generally more similar with more com-
mon input regions across the simulations. Despite the
GNHV having a slighter wider range of values due to
the larger range of values included in the global scaling,
there is more consistency in the identified PS of locations
between the extreme cases and the mean model when
using the global scaling than the instance‐specific scaling.
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This again indicates larger variation in the values of the
simulated response surfaces, which results in larger varia-
tion of simulated PFs on a unified scale than the variation
of the richness of the PF across simulations.
6 | CONCLUSIONS

Pareto optimization is a useful multiple response
optimization method to generate solutions for problems
involving compromise and trade‐offs. Typically, the PF is
built using mean response values. Therefore, it is
important to assess the consistency of the optimal operating
conditions from this “mean” PF. To assess the consistency
of results, an effective method is to use simulations based
on the model parameter uncertainty (or the posterior distri-
bution, if a Bayesian analysis was used). To complement the
work exploring changes in the simulated PFs, we propose 2
types of NHV,GNHV, and ISNHV, which consider different
aspect of changes in the PFs across the variability in the
response surfaces. The GNHV is scaled based on the best
and worst values observed across all of the simulations
and provides information about the consistency of the PF
relative to a fixed unit area of all possible values across
simulations. The ISNHV is scaled separately for each of
the simulations and characterizes the richness of the front
and the severity of the trade‐off between responses.

These 2 measures are minimally correlated and
measure different aspects of changes in the PFs. They com-
plement each other and when used together, allow good
exploration. Some key findings of our exploration are that
(1) both GNHV and ISNHV are large when the PF is close
to the utopia point and (2) the distributions of both NHVs
are sensitive to the type of the optimization. When the goal
is achieving a target and the response surface is expected to
contain this value, the GNHV values are generally larger.
(3) ISNHV is sensitive to the cardinality the PF. One aspect
that introduces large ranges in the ISNHV is that a PF with
a single solution has ISNHV of 1, while when it has 2
solutions, the ISNHV is 0. Hence, for very sparse PFs,
obtaining a wide range of values for the ISNHV is likely.
This is not true for GNHV, which is more stable regardless
of the richness of the front. (4) As more responses are con-
sidered, the richness of the PF increases, which leads to
more stable ISNHV values and generally increased ranges
used for the GNHV scaling. The distributions of the 2 sum-
maries characterize different aspects of the uncertainty in
the trade‐offs and hence examining both GNHV and
ISNHV can improve understanding.

In this paper, we have considered the nature and
variability in the PF, as characterized by the trade‐offs
between responses. The GNHV and ISNHV provide
quantitative information about the interrelationship of
the responses. Another important aspect of the optimiza-
tion process beyond the scope of this paper is how to
further select the solution from the PF that best matches
the study goals. For the chemical process, it is likely that
only one input combination will be selected at which to
run the process, and this needs to be decided based on
the priorities of the experimenters. For this example,
Chapman et al17 describe a structured process to incorpo-
rate subjective priorities into the selection process, while
taking into account the variability of the responses. Fig-
ures 4, 8, and A2 show how the large differences in the
shape and location of the PFs across the simulations will
impact the changes in the optimal combination obtained
and the uncertainty in the input locations.
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FIGURE A1 Scatterplot and histograms
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FIGURE A2 Samples of Pareto fronts from the simulations for optimizing viscosity (Y2) and molecular weight (Y3) based on A, global

scaling and B, instance‐specific scaling

FIGURE A3 Pareto sets for optimizing viscosity (Y2) and molecular weight (Y3) for the mean model, and the minimum and maximum for

each of the GNHV and ISNHV from the simulations
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FIGURE A4 Ranges of viscosity (Y2) and molecular weight (Y3) for the Pareto fronts across the simulations
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