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rganizations are increasingly choosing to implement service-oriented architectures to integrate distributed,
loosely coupled applications. These architectures are implemented as services, which typically use XML-

based messaging to communicate between service consumers and service providers across enterprise networks.
We propose a scheme for caching fragments of service response messages to improve performance and service
quality in service-oriented architectures. In our fragment caching scheme, we decompose responses into smaller
fragments such that reusable components can be identified and cached in the XML routers of an XML overlay
network within an enterprise network. Such caching mitigates processing requirements on providers and moves
content closer to users, thus reducing bandwidth requirements on the network as well as improving service
times. We describe the system architecture and caching algorithm details for our caching scheme, develop an
analysis of the expected benefits of our scheme, and present the results of both simulation and case study-
based experiments to show the validity and performance improvements provided by our caching scheme.
Our simulation experimental results show an up to 60% reduction in bandwidth consumption and up to 50%
response time improvement. Further, our case study experiments demonstrate that when there is no resource
bottleneck, the cache-enabled case reduces average response times by 40%-50% and increases throughput by
150% compared to the no-cache and full message caching cases. In experiments contrasting fragment caching
and full message caching, we found that full message caching provides benefits when the number of possible
unique responses is low while the benefits of fragment caching increase as the number of possible unique
responses increases. These experimental results clearly demonstrate the benefits of our approach.
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1. Introduction
As organizations strive to better utilize existing
resources for competitive advantage, they often find
that they need to integrate multiple business compo-
nents (e.g., line-of-business applications) to automate
business processes. In practice, these components
are often heterogeneous along multiple dimensions—
they reside on different platforms and are written in
different programming languages. The principles of
service-oriented architecture (SOA) promote the inte-
gration of such heterogeneous components through
loosely coupled services.

Each SOA component service exposes a language-
independent interface using a well-defined service
protocol such as an XML service implemented using
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the SOAP or RESTful messaging protocols. (We note
that binary-formatted messaging is possible though
less frequently used in practice in SOAs, because it
requires a tighter coupling between the service con-
sumer and the service provider). Through this service
interface, any client regardless of implementation lan-
guage can access the service.

Organizations are increasingly deploying SOAs for
a variety of business needs, e.g., integration with busi-
ness partners. SOA growth is expected to continue—
analysts at International Data Corporation (IDC,
http://www.idc.com/about/about.jsp) predict a 7 x
growth in SOA application development in the next
five years (Rogers 2007).
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Several benefits of SOA-driven applications are
expected to propel this growth (Koch 2007). The
most important benefit derives from the fact that
service-oriented applications are composed of reusable
components—unlike conventional applications that are
composed of functions/classes created for use by a
single application. In service-oriented systems, a com-
ponent written once may be offered for reuse as a ser-
vice by any application in need of that component’s
functionality. This, in turn, enhances many desirable
properties of enterprise applications:

e Enterprise applications tend to be distributed
in nature, which makes information consistency an
essential property to support. Component reusability,
i.e., the “code-once, use-many” characteristic of ser-
vices, eliminates component redundancy and reduces
inconsistency in underlying information.

* Because service components are platform indepen-
dent, a service application written in Java running on
a UNIX server may use the services of a component
running on a Windows platform written in C#.

* Perhaps the greatest benefit of reusability is its
ability to impact productivity and therefore cost in
the software development life cycle. Virtually every
step from development to testing to deployment is
significantly impacted by the availability of reusable
components.

In spite of the many benefits of SOAs and associ-
ated systems, there are a few significant problems that
need to be addressed. The two most important such
issues are those of (a) performance and scale—perhaps
the most well-known issues in service-oriented archi-
tectures (Dortch 2008), service-based systems (Liang
et al. 2009), P2P service governance (Liang et al. 2006),
and even cloud environments (Wu et al. 2009)—and
(b) security, privacy, and trust. Though these latter
issues are important (and deserve significant attention
in their own right), our concern in this paper is the
former, particularly in the context of service-oriented
architectures. We begin with a discussion of the root
causes and possible remedies for these concerns.

1.1. SOA Performance and Scale: Root Causes and
Potential Remedies
To place this work in context, it is necessary to under-
stand why service-based applications suffer from per-
formance and scale issues. To see this, consider the
anatomy of a service request/response interaction
between a service consumer and a service provider.
Figure 1 shows a high-level view of such an inter-
action. Here, the service consumer sends a request,
typically using an XML-based protocol for messag-
ing, over the network to the service provider, where a
listener receives the message and kicks off the appro-
priate service method. The service method performs
the requested processing, perhaps accessing one or
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Figure 1 Service Process Example
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more databases in the course of processing. The ser-
vice method then formats the result in a service mes-
sage and returns it to the service consumer.

In this context, let us consider the impact of the
distributed and reusable properties of SOAs and their
impact on SOA performance and scalability:

¢ Services in SOAs are designed to be reusable and
to concentrate on the workload for a given service at a
single location. In contrast, non-SOA implementations
may replicate the same functionality within individ-
ual application silos.

* Because of the distributed nature of processing
in SOAs, all requests and responses are passed across
the network. Responses may contain large amounts of
data that must travel from the service provider to the
service consumer across the network.

First, we consider the processing-related conse-
quences of concentrating the workload for a given
function at a single location (and thus increasing the
processing load there). In this context, let us drill
down into the specific set of tasks that need to be
accomplished by the service provider to respond to a
service request.

Figure 2 shows the processing required of the ser-
vice provider to respond to a service request in
any XML-formatted service protocol. When a request
arrives, the HTTP request handler separates the ser-
vice request from the HTTP request and forwards it to
the service engine, which deserializes the request, i.e.,
pulls the service method name and associated param-
eters from the XML-formatted request and invokes
the application logic. The result of the application
logic is an object, i.e., an in-memory representation of
the result. The service engine takes this result object
and serializes it into an XML-formatted message, i.e.,
it inserts the data from the result object into the XML
format of the service response. When this is complete,
it passes the message to the HTTP request handler,
which wraps it into an HTTP message for transport
and sends it out to the service consumer over the
network.

Of all these steps, two are particularly compute-
intensive (shown shaded in Figure 2), invariant of
the messaging protocol used: running the applica-
tion logic and serializing the result into an XML-
formatted response message. These two steps account
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Figure 2 A Deeper Look at Service Call Processing
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for virtually all of the variation in server-side pro-
cessing times across service requests. Intuitively, this
makes sense. In terms of running the application
logic, for example, one set of input parameters for
a given service method might result in a very short
processing time while another might require signif-
icantly more time. The time required to serialize a
result object into an XML-formatted message varies
directly with the amount of data to be inserted into
the response (a study of the costs of serialization can
be found in Hericko et al. 2003). The problem here
is one of string processing—each data element in the
response object must be copied into the XML format
of the response. (This is similar to the object-relational
impedance mismatch problem.)

Because these two steps account for the variation
in processing time, they constitute the root cause of
time-related performance problems in service mes-
sage processing. One effective way to reduce this
problem is to obviate these steps. It turns out that
caching is a great way to do this, and it serves as the
focus of this work.

Second, we consider the consequences of send-
ing significant numbers of large messages across
the network. XML messaging systems are responsi-
ble for significant and growing bandwidth usage on
enterprise networks spread across geographically dis-
persed locations (Mimoso 2004). These consequences
are obvious: As the number and size of messages
increases, they can begin to clog the network, slowing
the delivery of everything from email to network
management alerts to ERP processing (and so on).
Clearly, bandwidth consumption is a concern. In
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order to reduce bandwidth consumption, we need
to send less data across the network, which we can
achieve by storing cached content on the network
closer to requestors.

1.2. Methodology and Contribution

In this paper, we examine the performance and scale
problems in applications that were designed accord-
ing to SOA principles using XML-based services.
Having presented the nature and cause of these prob-
lems, we suggest a solution that utilizes the technique
of caching. In particular, we demonstrate that caching,
as a general technique, provides significant opportu-
nities to mitigate large portions of delays inherent
in these systems as well as to reduce network traf-
fic caused by XML messaging. We then proceed to
propose a specific technique to cache fragments of
XML messages. This technique is made feasible by a
recently introduced class of enterprise routing devices
called XML routers. Finally, we analyze our solution
using analytical as well as empirical modeling, and
we demonstrate its effectiveness.

We follow a design science methodology in this
effort. We draw on existing foundation work in
caching and performance improvement as well as
the current technology landscape in developing our
method. We motivate our work by describing in detail
the sources of performance issues in SOAs and by
identifying gaps between existing solutions and the
requirements of caching in the context of SOAs. We
describe an implementable solution, including algo-
rithms and a detailed architectural design. We eval-
uate our design through analysis and simulation.
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We build an analytical model of the expected perfor-
mance implications of our method and run a series of
simulation and case study-based experiments to mea-
sure the expected and actual impacts of our method.

The main contributions of this work are as
follows.

1. We identify the root causes of performance and
scale issues in SOAs.

2. We introduce the notion of distributed fragment-
oriented caching as a potential use case for XML
router deployments to enhance SOA performance.

3. We specify an implementable scheme for service
message fragment caching where cache storage loca-
tions are distributed on the XML router fabric.

4. We develop an analysis of the expected bene-
fits of our scheme in terms of both bandwidth and
response time impacts, and we describe a simulation
study, the results of which show an up to 60% reduc-
tion in bandwidth consumption and up to 50% reduc-
tion in average response time.

5. We describe an implementation of our scheme
integrated into commercial networking and middle-
ware solutions.

6. We show the actual impact of our methods in
a set of experiments in a staging environment. The
results of these experiments demonstrate that when
there is no resource bottleneck, the cache-enabled
case reduces average response times by 40%-50% and
increases throughput by 150% as compared to the no
cache and fragment cache cases.

7. In a further experiment contrasting fragment
caching and full message caching in the staging envi-
ronment, we found that full message caching pro-
vides benefits when the number of possible unique
responses is low (where the potential for reuse of
a complete message is high), while the benefits of
fragment caching increase as the number of possible
unique responses increases.

8. We present a discussion of the practical decisions
involved in deploying such schemes, e.g., situations
where caching may not provide sufficient benefit to
warrant its use as opposed to scenarios where caching
can provide significant benefits.

The rest of the paper is organized as follows. In §2,
we review the literature on Web content caching. In
§3, we describe the component-oriented nature of ser-
vice messages and the XML overlay networks that
provide the framework for distributed caching. In §4,
we present the intuition and system architecture for
our caching scheme. In §5, we describe the design-
time configuration and run time processing of our
caching scheme. Section 6 presents a mathematical
analysis of our scheme, §7 presents a set of simula-
tion experiments, and §8 presents a set of experiments
that show the actual impact of our methods in a stag-
ing environment where our methods are implemented
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on commercial networking and middleware hardware
and software. In §9, we discuss the practical implica-
tions of our proposed scheme. We conclude the paper
in §10.

2. Related Work

Using caching to improve the performance of Internet-
accessible services is well-understood (Hosanagar
et al. 2005, Mookerjee and Tan 2002). The idea
behind caching is to provide improved delivery times,
more scalable delivery networks, and lower loads on
servers (Datta et al. 2003) by applying one or both of
the following strategies: (a) reuse computed results rather
than recomputing them, and (b) serve cached items from a
storage location as close to the requestor as possible to reduce
network loads. In this work, we consider the question
of how to gain these benefits in an SOA scenario by
applying caching techniques to fragments of service
messages, which are typically implemented as XML-
formatted messages.

We first consider whether existing Internet-based
caching schemes can be directly applied to service
messages. Virtually all such schemes are proxy based,
i.e.,, cached content is stored in intermediary nodes
that are situated between the content consumer and
the content provider. Such caching schemes have been
used to address both XML and HTML content. We
consider each in turn.

Existing proxy-based content schemes also address
HTML-centric content. Akamai’s content delivery
network (CDN)! is an example of a successful proxy-
based network caching service. However, it is diffi-
cult, if not impossible to apply this technology to the
service message caching case—the CDN proxy has
no knowledge of the higher-level message of which
its delivered content fragment is a component, and
the recipient of the cached content is responsible for
integrating the content into the larger message. This
works because the content is virtually always cached
at a granularity that the recipient (i.e., the browser)
recognizes and can handle (i.e., full HTML pages or
static image files). Consider the case where an HTML
page refers to several image files stored in a CDN
cache. Here, the CDN delivers the images from the
cache to the user’s browser, and the browser knows
how to assemble and render the final page including
all the images.

In the service message case, however, we cannot
assume that the recipient is capable of reassembling
a service message from a set of fragments. Individ-
ual fragments of service messages do not have mean-
ing to the recipient without the context of the overall
service message. Therefore, it is problematic (indeed,

http:// www.akamai.com/.
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virtually infeasible) to transport fragments separately
to the consumer—any fragment, when retrieved from
a cache, must be included in the base message before
the message is forwarded to the service consumer.

Further, proxy caching solutions have access only
to the HTTP transport layer information of a service
message, not the content within the XML message.
Consider the TCP/IP network stack shown in Fig-
ure 3. Here, the XML content containing fragments of
the service message that we wish to cache is part of
the application layer. Proxy caches do not have access
to this layer; rather, they can “see” only the HTTP
transport layer wrapper around the service message.
Thus, proxy caches cannot be used for service mes-
sage content caching.

Datta et al. (2004) propose a proxy-based caching
scheme for fragments of dynamically generated
HTML, where the proxy is able to reassemble the
cached fragments into a final message. This provides
a way to cache fragments that a proxy can reassem-
ble into full messages on a network. However, both
this scheme and Akamai’s CDN are designed to be
deployed on the public Internet. In contrast, ser-
vice message content delivery networks are mostly
intraorganizational or limited to a set of business
partners. Here, service messages traverse private net-
works, either behind firewalls or over VPNs, and
carry corporate communication such as reports and
internal transactions. RouteOne is an example of a
consortium of companies communicating over a pri-
vate network. This consortium consists of auto dealers
and financial services organizations working together
to process car loan applications (IBM 2006). Such
organizations are loath to use public networks for
such sensitive information, which makes public Inter-
net proxies undesirable for use as caches.

Several commercial SOA caching solutions
exist (Azim and Hamid 2002, Cohen 2006, Dattani
et al. 2010, Powell 2002) for XML content. Though
these solutions vary in their cache locations (e.g., at

Figure 3 TCP/IP Stack Accessibility
TCP/IP stack

/ Service message

Application content, not accessible
to layer-4 devices

Transport J/Highest layer accessible
to layer-4 devices
Internet
Link
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the consumer level, at the provider level, or as proxies
on the network), they share a common trait: Virtually
all of them cache full messages. Though such caching
can be beneficial in some limited scenarios (e.g., when
there is high demand for a small number of unique
responses), its utility is limited in scenarios where the
vast majority of requests require unique responses.
We demonstrate this in §8. In many such scenarios,
as we note above, fragments may be reusable across
responses. In this work, we propose a method for
caching such fragments to improve both response
time and throughput performance for SOAs.

Interestingly, an emergent infrastructural standard
in network devices provides new possibilities for
service message caching architectures in SOAs. Net-
works are increasingly being implemented on a new
class of network fabric called XML overlay net-
works (XONs). XONs are composed of switches called
XML routers that provide powerful XML processing
and message routing functionalities, including proto-
col transformation, schema transformation, audit log-
ging, and filtered routing based on message content.

Virtually every networking firm has major initia-
tives in this area (e.g., Cisco’s application-oriented
network (AON) module and IBM’s DataPower prod-
ucts), and organizations are fast deploying these tech-
nologies to support their SOA initiatives (Research
and Markets, Inc. 2003). For example, RouteOne uses
IBM’s DataPower appliances for wirespeed XSLT pro-
cessing (a notorious CPU drain in applications) and to
support encryption for individual XML elements. This
implementation has significantly reduced processing
times for loan applications while simultaneously pro-
viding increased security (IBM 2006).

Given the inadequacies of proxy-based schemes in
addressing the caching needs for service message
content and the emergence of the overlay network
fabric implementations, we propose a new caching
mechanism for service message fragment caching in the
XML overlay network. This requires the coupling of
caching logic and network routing, which is very dif-
ferent from caching schemes proposed to date. This
is also different from the service message content
caching proposals available in the literature today
(e.g., Seltzsam et al. 2005, Tatemura et al. 2005, Tilkov
2009), which make assumptions that limit their appli-
cability in this problem scenario.

Our fundamental observation is that the features
offered by XML routers coupled with the fragment-
oriented composition of service message content
allow the development of fragment-oriented caching
schemes, where the fragments can be stored in XON
devices rather than in proxies. Two important charac-
teristics of service messages and XONs make this idea
feasible.
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First, mechanisms exist to allow for fragment-
oriented composition and the delivery of service mes-
sage responses. In particular, the XPath construct
allows for (1) viewing a service message as a compo-
sition of fragments, and (2) directly accessing specific
service message components inside a message. This
makes fragment-oriented caching feasible because it
enables (a) the identification of a cacheable fragment
within an XML response and (b) the identification
of the location where a stored fragment should be
inserted into a response.

Second, XML routers allow the specification of user-
driven transformation and routing rules; this can
exploit semantic knowledge about the application
that is unavailable to the IP routers in the layer below.
In other words, XML routers can “see” the applica-
tion payload in the application layer, shown in Fig-
ure 3. This allows the XML router to be extended, for
instance, with user-specified logic to process caching
instructions in a service message.

Third, XON routers (e.g., Cisco’'s AON router)
(Cisco Systems, Inc. 2008) typically contain a base
caching infrastructure capable of storing and retriev-
ing generic objects as well as maintaining distributed
cache coherency across multiple XON instances. We
will utilize this base caching infrastructure in our
approach to handle basic cache management func-
tionality. We build our fragment caching scheme on
top of it.

XML caching has recently received much atten-
tion from researchers on aspects including caching
full XML documents (Tilkov 2009), identifying
reusable XQuery results based on previous query his-
tory (Chidlovskii and Borghoff 2000, Dar et al. 1996,
Chen et al. 2002), and discovering frequent query pat-
terns (Yang et al. 2003).

Tilkov (2009) discusses caching full XML docu-
ments at the HTTP layer (i.e.,, on network proxies).
This caching method works well when full documents
are reusable. However, in scenarios where documents
are generated on the fly, full documents are rarely
reusable as a whole document. Rather, fragments of
the documents may overlap across response docu-
ments, making fragments a more useful granularity for
caching. This is the case we consider in this work.

Tatemura et al. (2005) present a scalable middle-
ware architecture for XML caching. The research
question they address is how to keep the XML con-
tent in the cache updated in response to the dynamic
changes made to back end XML data sources stored
in relational databases. They define the cached XML
data as views of the relationally stored data residing
in the back end relational database, and they pro-
vide declarative ways to access these XML data. An
XML-specific view maintenance technique can then be
applied to discover discrepancies between the cached
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content and origin data. Though this work does dis-
cuss XML data cached at the provider, the focus of
Tatemura et al. (2005) is on view maintenance with
the back end data source rather than on supporting
efficient distributed caching in for message content,
which is our purpose here.

Seltzsam et al. (2005) study ways to present seman-
tic caching. They develop an XML-based declarative
language to annotate WSDL (Web Service Description
Language) documents with cache-relevant semantics
to allow for proxylike caching of XML fragments on
the network. Seltzsam et al. (2005) propose a mapping
mechanism to determine whether or not the full set
of content needed to respond to a request is present
in the cache. This work differs from ours along sev-
eral dimensions. First, in their proposed scheme, each
cache instance manages cache eviction and invalida-
tion independently, which allows for inconsistency
across cache instances. In contrast, our method pro-
poses a distributed cache, which ensures consistency
across all cache instances. Second, their proposed
scheme addresses only situations where all content
in a response is cacheable—it cannot handle request
types where responses contain a mixture of cacheable
and noncacheable content. Third and finally, their
proposed method will serve cached content from net-
work locations only when all needed content is avail-
able in the local cache; in all other situations, the
provider services the request. In contrast, our work
addresses the more general case of mixing cacheable
and noncacheable content in responses as well as the
case where only part of the required content resides
in network caches.

Olston et al. (2005) describe a secure and plug-
in (provided by third party) scalability service for
applications. It is achieved by caching home orga-
nizations” code and data in a distributed architec-
ture of proxy servers, each of which has a duplicate
Web server, application server, and database server.
The focus of the research is distributed consistency
management for query and update operations in the
database servers of the proxy servers. Our work
shares with the research of Olston et al. (2005) the
problem space requirements of caching dynamic con-
tent and of not storing sensitive data outside the orga-
nization. However, our caching scheme is not proxy
server-based. The caching nodes in our scheme have
the capability to both read and understand caching
instructions embedded in service message content as
well as retrieve and store fragments according to
those instructions.

Lelli et al. (2006) propose a caching-based scheme to
address XML parsing delays by caching parsing pro-
cessing results of previously parsed XML documents,
thereby speeding up the XML parsing process. This
work is complementary to our own; it is possible to
use both schemes simultaneously.
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3. Background

To understand our work, it is necessary to gain an
appreciation of two background areas—component-
oriented service message documents and XML over-
lay networks.

3.1. Component-Oriented Service Message
Documents

In this section, we provide an overview of ser-

vice message documents with a special emphasis on

explaining how the component-oriented nature of

such documents gives rise to the cacheability seman-

tics that we will exploit in this paper.

We present an example scenario to illustrate the
structure of service message request/response inter-
action. Subsequently, we use this scenario as a run-
ning example throughout the remainder of the paper.
Our example scenario considers the case of a large
construction materials supplier with distributed oper-
ations and a distributed information system. Separate,
loosely coupled information systems serve different
functional needs—Finance/Accounting, Sales, Human
Resources, and Shipping. Functional units, particu-
larly Shipping, are widely dispersed because differ-
ent shipping locations service different geographic
regions.

In this example scenario, we consider the specific
case of purchase orders (POs), which are generated
within the Sales system but are used throughout
the organization. Accounting uses POs to generate
invoices, Finance accounts for the transactions on

Figure 4 Class Diagram of the Purchase Order Example

the books, Human Resources pays any applicable sales
commissions, and Shipping ensures that requested
items are delivered to customers.

Within the Sales system, a PO is represented as
a class of objects, depicted in the diagram shown in
Figure 4. A PO is an aggregation of several object
types: a Customer, i.e., the party actually paying for
the construction; a Contractor, i.e., the party plac-
ing the order for materials needed; an OrderHeader,
which summarizes the order including order totals;
and a set of Lines, each of which specifies a Product
and the quantity requested and any special handling
requirements.

The Sales system makes PO data available through
a service. Table 1 shows an example request for PO
data while Table 2 shows the corresponding response.
In the request, the requestor provides an OrderNumber
(here, 00099999) and expects the associated PO data
to be returned in the response. Our example here is
presented in generically formatted XML for the pur-
poses of illustration, but our methods will work for
any XML-based messaging protocol.

The response, shown in Table 2, contains an XML-
formatted representation of the PurchaseOrder object
shown in Figure 4, with well-defined sections of
the response mapping directly to the “parts” of the
PurchaseOrder class of the same names, e.g., there is
a Customer section in the response that contains data
values for the attributes of the Customer portion of the
PurchaseQrder class diagram.

PurchaseOrder
1
OrderLines
1
1 1 Product
Customer Contractor OrderHeader +UnitPrice
—CompanyName —ContractorCode +OrderType +G$TVaIue
—Address1 —CompanyName +OrderNumber 1. +D|scountVaIue. .
—Address2 —Address1 +OrderDate Line : 1 | +SalesTaxDescription
—City —Address2 +Currency -~ LineNumber +SalesTaxValue
—State —City +DeliveryLocation +Quantity +GSTExempt
—PostCode —State +OrderTerms ) +FreightValue
-LineValue OnCostVal
—ContactName —PostCode +OnCostValue
+Status StockNumb
—Phone —ContactName Packinglnstructi +StockNumber
—Fax —Phone +Packinglnstructions +SubStock
—Email —Fax 1 +ltemDescription
—-ACN —Email OrderTotals +PatternedDescription
—SalesTaxCertificate —TaxID - +UnpatternedDescription
+FreightTotal Manuf
—TaxID —Status +Manufacturer
. +OnCostTotal +PartNumber
—StateOfIncorporation —LicenseNumber u
) ) +OrderTotal TBACod
—Status —LicensingState + o g
—StateOfIncorporation +TBADetails
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Table 1 Example XML Service Request

<Request
xmins:p="“[providerNamespace]”>
<p:getPurchaseOrder>
<p:OrderNumber>00099999</p:0rderNumber>
</p:getPurchaseOrder>
</Request>

We now consider the response in Table 2 more
closely. A given Contractor may be involved in mul-
tiple projects at a given time—perhaps hundreds for
a large construction company. A given Customer may
be involved in multiple construction projects (not nec-
essarily with the same contractor). A given Product
may be ordered through any PurchaseOrder. Clearly,
the contents of these portions of the response mes-
sages are reusable across multiple responses, where
those responses require the same data for Customer,
Contractor, or Product. Only the content pertaining
to the OrderHeader and the non-product-related data
(e.g., quantity ordered) in the Lines is specific to a
single PurchaseOrder and cannot be reused. Figure 5
shows a simple graphical depiction of the example
PurchaseOrder response message, where cacheable
fragments are shown as shaded squares and non-
cacheable fragments are shown as unshaded squares.

It turns out that much of the service-oriented
content exchanged over intraorganizational service
networks can be broken down into cacheable and
noncacheable fragments, where much of the content
is reusable across multiple responses.

3.2. XML Overlay Networks

It is well-known that the vast majority of commer-
cially deployed service applications are inside organi-
zations (as opposed to on the public Internet). Indeed,
in many large organizations (Verton 2003, Gruman
2005), data and document exchange is almost all XML
centric. This has given rise to a new class of network-
ing fabric inside organizations called XML overlay
networks (XONs). These networks sit on top of regu-
lar IP networks and provide value-added functional-
ity such as XML processing, plug-and-play semantic
routing, cross-application data integration, and a host
of other functions including user-defined functional-
ity. The heart of the XON is the XML router. The abil-
ity of XML routers to process service message content
(and act as a cache) is one of the major drivers of this
work. Thus, it would be helpful to provide the reader
with a high-level overview of XML routers.

An XML router is a layer-7 switch, meaning it has
access to data from the service message itself that
other network devices do not have (layer-4 switches
have access only to the transport wrappers that
encode destination and other transport-related infor-
mation). This gives the XML router access to the full
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content of a service message that is passed over the
network. Most commercially available XML routers
provide the ability for developers to build custom
logic to run on the routers using standard well-known
programming languages that enable the XML caching
functionality reported in this paper.

An XML router can provide several types of ser-
vices on the network (Anthias and Sankar 2006),
including XML processing (e.g., XPath routing or XSL
transformation, etc.), security processing (e.g., encryp-
tion/decryption), message transformation (e.g., con-
verting between different B2B interchange schemes),
and load balancing. Enabling such processing on an
XML router has two benefits: (1) it reduces over-
head on servers that do application processing by off-
loading high-CPU tasks; and (2) it allows the XML
router to make policy-based decisions based on user-
defined policies without having to consult a line-of-
business application.

An XML router is meant to complement the IP
routers and switches that carry streams of data traf-
fic across the Internet. It does not interfere with
or replace TCP/IP protocols but rather adds new
functionality to a network. Consider Figure 6 (based
on Fenner et al. 2005), which shows a set of XML
routers deployed alongside IP switches in a TCP/IP
network. Whereas the IP switches can access only
transport layer information, e.g., where a message is
going and how it should be treated along the way,
XML routers have the ability to access application
layer content, i.e., they can access service message
content and act upon it (see Figure 3). These XML
routers form a separate logical layer of devices within
a network, and this “layer” adds the ability to execute
logic on the network.

Here, a message from provider P; arrives at an
XML router XR; from a TCP/IP switch IP;. The XML
router examines the message information against the
policies and services configured on it to determine if
the message is of interest. Recognition of messages
of interest can be based on any observable message
attribute including its URL, an encoding/encryption
scheme, or even a specific query in XQuery. For
example, policies can be defined by path expressions
and user-defined functions using XQuery.

If XR, finds that the message matches one of its
configured policies, the processing specified within
the policy executes (perhaps XSLT processing, a com-
pression scheme transformation, or modified routing
instructions), after which the message is sent toward
its destination through the TCP/IP network. If the
message is not of interest to the XML router, it con-
tinues on its way unimpeded and unchanged via the
TCP/IP network. This trip might be routed through
one or more other XML routers in the network, e.g.,
perhaps to log service access by a given consumer
application for auditing or compliance purposes.
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Table 2 Example XML Service Response

<Response
xmins:p = “[providerNamespace]”>

<p:PurchaseOrder>

<p:Customer>
<p:CompanyName=>0CS Fictional Company <CompanyName>
<p:Address1>ADDRESS LINE 1</Address1>
<p:Address2/>
<p:City>MELBOURNE </City>
<p:State>VIC</State>
<p:PostCode>3182</PostCode>
<p:ContactName>Jim Smith</ContactName>
<p:Phone>03 99999999 </Phone>
<p:Fax>03 99999999 </Fax>
<p:Email>jim.smith@ocs-fict.co.au </Email>
<p:ACN>99 999 999 </ACN>
<p:SalesTaxCertificate>E9999999 </p:SalesTaxCertificate>
<p:TaxID>123-89-4567 </p:TaxID>
<p:StateOfincorporation>VIC </p:StateOfIncorporation>
<p:Status>Active </p:Status>

</p:Customer>

<p:Contractor>
<p:ContractorCode>9999 </p:ContractorCode>
<p:CompanyName>SUPPLIER XYZ</p:CompanyName>
<p:Address1>ADDRESS LINE 1</p:Address1>
<p:Address2/>
<p:City>MELBOURNE</p:City>
<p:State>VIC</p:State>
<p:PostCode>3182</p:PostCode>
<p:ContactName=>John Bloggs</p:ContactName>
<p:Phone=03 88888888 </Phone>
<p:Fax>03 88888888 </Fax>
<p:Email>john.bloggs@xyz-supp.co.au </Email>
<p:ACN>88 888 999 </ACN>
<p:SalesTaxCertificate > E8888888 </p:SalesTaxCertificate >
<p:TaxID>456-12-7893 </p:TaxID>
<p:StateOfincorporation>VIC </p:StateOfIncorporation>
<p:Status>Active </p:Status>

</p:Contractor>

<p:OrderHeader>
<p:OrderType>ST</p:OrderType>
<p:OrderNumber>00099999 </p:OrderNumber>
<p:Currency>AU</Currency>
<p:DeliveryLocation>

0CS CENTRAL WAREHOUSE ADDRESS

</p:DeliveryLocation>

<p:OrderTerms>NET FROM STATEMENT 30 DAYS</p:OrderTerms>

<p:OrderTotals>
<p:FreightTotal>0.00</p:FreightTotal>
<p:0nCostTotal>0.00</p:0nCostTotal>
<p:OrderTotal>702.08 </p:OrderTotal >
</p:OrderTotals>
</p:OrderHeader>
<p:OrderLines>
<p:Line>
<p:LineNumber=>0001</p:LineNumber>
<p:Quantity>1.0000</p:Quantity>
<p:LineValue>21.00</p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
<p:Product>
<p:UnitPrice>21.0000</p:UnitPrice>
<p::GSTValue>2.10</p:GSTValue>
<p:DiscountValue>0.00</p:DiscountValue>

<p:SalesTaxDescription>TAX EXEMPT </p:SalesTaxDescription>

<p:SalesTaxValue>0.00</p:SalesTaxValue>
<p:GSTExempt>N</p:GSTExempt>
<p:FreightValue>0.00</p:FreightValue>
<p:0nCostValue>0.00</p:0nCostValue>
<p:StockNumber>00004004 </p:StockNumber>
<p:SubStock>01</p:SubStock>
<p:ltemDescription>

FLANGE PIPE BLACK 250MM NB

BST D 10IN ABC
</p:ltemDescription>
<p:PatternedDescription/>
<p:UnpatternedDescription/>
<p:Manufacturer>GENERAL MFG </p:Manufacturer>
<p:PartNumber> 03230505 </PartNumber>
<p:TBACode/>
<p:TBADetails/>

</p:Product>
</p:Line>

<p:Line>

<p:LineNumber>0002 </p:LineNumber>
<p:Quantity>50.0000</p:Quantity>
<p:LineValue>18.50</p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
<p:Product>
<p:UnitPrice>0.3700</p:UnitPrice>
<p:GSTValue>0.037 </p:GSTValue>
<p:DiscountValue>0.00</p:DiscountValue>
<p:SalesTaxDescription>TAX EXEMPT </p:SalesTaxDescription>
<p:SalesTaxValue>0.00</p:SalesTaxValue>
<p:GSTExempt>N </p:GSTExempt>
<p:FreightValue>0.00</p:FreightValue>
<p:0nCostValue>0.00</p:0nCostValue>
<p:StockNumber>00006219</p:StockNumber>
<p:SubStock>01</p:SubStock>
<p:ltemDescription>
TAPE THREAD SEALING 12MM X 10M TEFLON PTFE
</p:ItemDescription>
<p:PatternedDescription/>
<p:UnpatternedDescription/>
<p:Manufacturer>BLKWOODS </p:Manufacturer>
<p:PartNumber> 05122404 </p:PartNumber>
<p:TBACode/>
<p:TBADetails/>
</p:Product>

</p:Line>
<p:Line>

<p:LineNumber>0003 </p:LineNumber>

<p:Quantity>30.0000</p:Quantity>

<p:LineValue>457.50</p:LineValue>

<p:Status>Active </p:Status>

<p:Packinglnstructions/>

<p:Product>
<p:UnitPrice>15.2500 </p:UnitPrice>
<p:GSTValue>1.525</p:GSTValue>
<p:DiscountValue>0.00</p:DiscountValue>
<p:SalesTaxDescription>TAX EXEMPT </p:SalesTaxDescription>
<p:SalesTaxValue>0.00</p:SalesTaxValue>
<p:GSTExempt>N </p:GSTExempt>
<p:FreightValue>0.00</p:FreightValue>
<p:0nCostValue>0.00</p:0nCostValue>
<p:StockNumber>00004710</p:StockNumber>
<p:SubStock>01</p:SubStock>
<p:ltemDescription>

2-INCH PVC BALL VALVE

</p:ItemDescription>
<p:PatternedDescription/>
<p:UnpatternedDescription/>
<p:Manufacturer>HEARTLAND </p:Manufacturer>
<p:PartNumber>02732618 </p:PartNumber>
<p:TBACode/>
<p:TBADetails/>

</p:Product>

</p:Line>
<p:Line>

<p:LineNumber>0004 </p:LineNumber>

<p:Quantity>2.0000</p:Quantity>

<p:LineValue>205.08 </p:LineValue>

<p:Status>Active </p:Status>

<p:Packinglnstructions/>

<p:Product>
<p:UnitPrice>102.5400</p:UnitPrice>
<p:GSTValue>10.025</p:GSTValue>
<p:DiscountValue>0.00</p:DiscountValue>
<p:SalesTaxDescription>TAX EXEMPT </p:SalesTaxDescription>
<p:SalesTaxValue>0.00</p:SalesTaxValue>
<p:GSTExempt>N </p:GSTExempt>
<p:FreightValue>0.00</p:FreightValue>
<p:0nCostValue>0.00</p:0nCostValue>
<p:StockNumber=00006219</p:StockNumber>
<p:SubStock>01</p:SubStock>
<p:ltemDescription>

3/4-INCH IPS Union x 3/4-INCH Sweat ISOLATION VALVE

</p:ItemDescription>
<p:PatternedDescription/>
<p:UnpatternedDescription/>
<p:Manufacturer>JOHNSON PLUMBING </p:Manufacturer>
<p:PartNumber>16384472 </p:PartNumber>
<p:TBACode/>
<p:TBADetails/>

</p:Product>

</p:Line>
</p:OrderLines>
</p:PurchaseOrder>
</Response>
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Figure 5 Cacheable Fragments of a Service Response

<PurchaseOrder> <OrderLines> <Line>
<Customer> <Line> .
- Line Item
Customer Llnlefltem Info
Info nio <Product>
<Product>
</Customer> Product
<Contractor> Product Info
Contract Info
rllnrfo or </Product>
</Product> </Line>
</Contractor> </Line> <Line>
<OrderHeader> <Line> -
Line Item Line ltem
Header Ine fte Info
Info Info
<Product>
</OrderHeader> <Product>
Product
Product Info
Info
</Product>
<_/Product> </Line>
</Line> </OrderLines>
</PurchaseOrder>

4. Intuition and Caching Architecture
The intuition behind our proposed scheme is simple
and consists of four related activities: (a) generating a
cache-enabled response; (b) recognizing and caching
the cacheable fragments of a service message response
in the routers of the response path; (c) serving cached
content from the network; (d) determining when
cached fragments can be used in a new response;
and (e) computing a best-cost routing for a new
response through the overlay network from provider
to consumer.

Our method departs from traditional caching
schemes in two significant ways: (1) caching occurs
in the network nodes (as opposed to specialized
proxies), and (2) on-demand routing is performed.
Typically, caching schemes are independent of rout-
ing schemes; however, they are closely coupled in
our case. To make things clearer, we now provide
a high-level overview of three important concepts
for our approach: (a) how caching logic is architec-
turally deployed on the network; (b) how caching-
related information is passed from service providers

Figure 6 XML Overlay Network Architecture

XML
overlay
network

TCP/IP
network
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to cache-enabled XON routers; (c) how cache-enabled
routers process caching-related information. We elab-
orate on the details of these three concepts in later
sections of this paper.

We begin with a discussion of the caching archi-
tecture on a network. Figure 7 depicts this archi-
tecture. Service message requests and responses are
exchanged between applications (App;, App,, Apps,
App,, and Apps) that are geographically distributed.
These applications communicate among themselves
using service messages. The messages are routed
through the common TCP/IP network overlaid with
XML routers (shown in Figure 7 as lightly shaded
circles) as described in §3. Both the service provider
applications as well as the XON routers are equipped
with caching logic, shown in Figure 7 as a cache direc-
tory for service providers and as caches (depicted as
darker-shaded circles) colocated with XON routers.

Service providers pass caching information to a
cache-enabled router by inserting caching instruc-
tions into service messages. These instructions tell the
routers to either get (i.e., retrieve) cached fragments
from a local cache and insert them into the service
message or copy specified fragments from the service
message and set (i.e., store) them to the local cache.
For example, consider the service response depicted
in Figure 5, which shows cacheable fragments as
shaded boxes. Figure 8 depicts this same response,
with caching instructions included, for the case where
the XON router that will process the caching instruc-
tions has the needed Customer fragment and all four
Product fragments stored in its cache but will need to
store the Contractor fragment to cache. In this case,
the service provider generates a service response mes-
sage that omits the cacheable fragments and inserts a

Figure 7 XML Network Caching Architecture
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Figure 8 Cache-Enabled Service Response

Caching <OrderLines> <Line>
Instructions <Line> Line Item
<PurchaseOrder> Line Item Info
<Customer> Info <Product>
</Customer> <Product> </Product>
<Contractor> </Product> </Line>
</Line> <Line>
Contractor <Line>
Line ltem
</Contractor> Line ltem Info
<OrderHeader> Info
<Product>
Header <Product> </Product>
Info </Product> </Line>
</Line> </OrderLines>
</OrderHeader> </PurchaseOrder>

set of caching instructions that describe which frag-
ments need to be drawn from the XON'’s cache and
which fragments need to be stored to cache.

Figure 9 depicts the run time processing for service
messages when network-based caching is in place,
using the PO scenario to illustrate the caching pro-
cess. When a service consumer sends a request to the
service provider (step 1), the provider runs the asso-
ciated code to generate the response (step 2), which
includes inserting any necessary caching instructions
into the response. If the response requires cache pro-
cessing on the network, the service provider selects an
XON router to perform the cache processing (step 3)
based on a best-cost calculation, which takes into
consideration the contents of an XON router’s cache
and its location on the network. The service provider
then sends the response to the selected XON router
(step 4). When an XON router receives a response
message with caching instructions, it performs the
specified operations (i.e., getting and setting cache
fragments) to transform a cache-enabled response
message (e.g., as seen in Figure 8) into a complete
service message (e.g., as seen in Figure 5), identi-
cal to the one that would have been generated by

Figure 9 Run Time Processing Example

the service provider if caching were not in place
(step 5). When all cache processing is complete, the
XON router sends the response message on to the
requestor (step 6).

Having described how our approach works at a
high level, we now discuss the details of how our
methods work.

5. Details of Our Method

Our proposed mechanism impacts an XML over-
lay network to act as a caching fabric for service
message document exchanges. More specifically, our
methods impact the service message response pro-
cess in four ways: (a) we add logic to the service
provider to enable local caching; (b) we add certain
control information to service message response doc-
uments to make fragments of these documents cache
ready; (c) we propose a semantic routing mechanism
to select a delivery path for each service response
from the service provider to the service consumer;
and (d) we add logic to the XON routers in the XML
overlay network to enable the routers to reconstitute
service messages using locally cached fragments.

We first describe the architectural components we
add to the service provider and to the XON routers
to add caching logic, and then we go on to describe
design time configuration details to enable caching
within service applications. Finally, we describe run
time processing at the service provider and XON
routers to provide cache-enabled services.

5.1. Architectural Details
Figures 10 and 11 depict the cache-enabling archi-
tectural components (shown shaded) on the service
provider and an XON router, respectively. In this sec-
tion, we describe each in turn.

Processing on the service provider in a scenario
without caching implemented proceeds as follows.
When a service request arrives at the provider, an

Provider side
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6. Service response Cache-enabled % Cache-enabled service provider 2. Generation code
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and sets K4
»

<Po>[X¥z | [ DEF | <PO>

<Cl><get:XYZ/><setDEF/></Cl> |<PO>|  DEF |</PO>

Final service response

RIGHTS L1 N Hig

Cache-enabled service response



Downloaded from informs.org by [131.247.168.104] on 21 February 2018, at 16:10 . For personal use only, al rights reserved.

516

Datta et al.: XML Fragment Caching
Information Systems Research 23(2), pp. 505-535, ©2012 INFORMS

Figure 10 Cache-Enabling Components on the Service Provider
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XML engine unpacks the XML-formatted request
information, determines which service has been
requested, and invokes the appropriate service with
any input data included in the request. The service
performs the requested processing and produces a
programmatic object representing the response. For
example, in the PO example, the provider would gen-
erate an instance of the PurchaseOrder class (see Fig-
ure 4) populated with the appropriate values for the
PO number in the request. The XML engine then
performs a process called XML Serialization to trans-
form the PurchaseOrder object into an XML-formatted
<PurchaseOrder> (as in Table 2) that is suitable for
inclusion in a service response.

In a caching scenario, three components enable
network-based caching on the service provider:
(a) a cache directory; (b) a cache application program-
ming interface (API); and (c) a custom XML serializa-
tion library. The cache directory allows the provider
to store and retrieve programmatic objects from appli-
cations through a cache APIL This allows a service to
check the cache directory for needed objects before
generating them, and to avoid the processing cost of
generating objects available from the cache (locally
or on the network). The custom XML serialization
library inserts any needed caching instructions (i.e.,
get and set calls) so that a service message can be
reconstituted with network-based cached fragments.
The library also decides which router should handle
cache processing on the network.

For each object cached on the service provider, the
cache maintains a number of data elements to sup-
port caching. These data elements are described in
Table 3. Most of these elements are required to sup-
port generic caching functions—any caching system
will require a unique identifier for each stored ele-
ment, a time-to-live value, a size for the element,

Figure 11 Cache-Enabling Components on the XON Router
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Table 3 Provider Cache Metadata

Provider cache

element Description
ElementID Unique identifier for the stored object
ValidList Which nodes in the XML network have the object’s

XML fragment stored in cache

Time to live Timestamp indicating the end of the fragment’s
validity period

Size Number of bytes in the stored element

Content Content of the element

and the contents of the element itself. To support
caching on the network, we maintain an additional
piece of information for each stored element: a list of
XON routers where the cached element is currently
cached locally that supports the decision of which
router will process the cache-enabled response on the
network. Thus, across all providers in the enterprise,
each application’s cache directory has knowledge of
which routers contain its fragments but no knowledge
of where other providers’ fragments might be cached.

On the XON router, we take advantage of exist-
ing generic caching functionality already available
on the router, e.g., as provided by the Cisco AON
router (Cisco Systems, Inc. 2008), along with standard
XML processing functionality such as XSLT, XML
compression, schema validation, logging, and other
functions. We extend this standard functionality with
a custom plug-in (labeled “response rebuilder” in Fig-
ure 11) that interprets the caching instructions in a
cache-enabled response, performs the required get
and set operations, and reconstitutes the final service
response for delivery to the service consumer. (We
keep our discussion generic here, and then describe
the details of our integration with a commercial XON
router in §8.)

In the cache directory on the XON router, we
maintain the same generic caching data as the ser-
vice provider but, rather than keeping a list of all
routers where the fragment is valid, we store the iden-
tity of the service provider that generated the frag-
ment (as shown in Table 4). This identity is used in
cache maintenance processing (as we will describe

Table 4 Router Cache Metadata

Router cache
element Description

FragmentID Unique identifier for the fragment

ProviderID Unique identifier for the application providing the
fragment

Time to live Timestamp indicating the end of the fragment’s validity
period

Size Number of bytes in the fragment

FragContent Content of the fragment
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in §5.3). Thus, each router in the enterprise XML over-
lay network knows which fragments it stores for each
provider application but not which fragments other
routers may have in their cache instances.

Having described the architectural elements of our
approach, we now describe cache processing, includ-
ing design time configuration requirements.

5.2. Run Time Algorithms

At run time, when a service message request arrives
at a provider application, our proposed mechanism
attempts to ensure low-cost delivery of the response
by using both caching and semantic routing meth-
ods. Within this architecture, the following work-flow
ensues:

1. The provider generates a cache-enabled re-
sponse. This means that the provider generates a
response document where any potential cacheable
fragments are either (a) already inserted in the doc-
ument and ready to be cached en route to the ser-
vice consumer, or (b) marked as get ready, to be filled
in by nodes in the intervening network. Any needed
caching instructions are included.

2. Having generated the cache-enabled response
document, the provider then decides how to route
this response to the requester. At this stage, this
involves identifying a coordinating router (CR), a spe-
cific node in the XON fabric to be responsible for
cache processing on the network and routing the
cache-enabled response there.

3. The CR receives the cache-enabled response
from the provider and inserts all fragments needed
to complete the response. It might do so by finding
such fragments in its own cache or by collaborating
with other neighboring nodes that might have needed
fragments residing in cache.

4. Finally, the CR sends the complete message to
the final recipient.

We next describe these steps as well as the details
of cache maintenance in our approach.

5.2.1. Generating a Cache-Enabled Response. Ef-
fectively, we need to impact a service message docu-
ment in the following ways to make it cache-ready:
(a) we need to mark objects in the provider appli-
cation as cacheable so that the service provider can
avoid the processing cost of generating them when
they are available from cache; and (b) we need to
generate caching instructions in the service message
so that the cache-enabled router can perform the
necessary processing to reconstitute the final service
message.

We mark a class of objects as cacheable by adding
an isCached attribute to the class as shown in Table 5.
This attribute plays a dual role. First, its presence
indicates to other classes in the provider application
that objects of the class are cacheable (the presence
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Table 5 Marking a Class of Objects as Cacheable

class Customer

{
// member variables
String name;

transient int isCached = false;
String getPrimaryKey();
}

or absence of an attribute can be checked via reflec-
tion mechanisms in object-oriented frameworks). Sec-
ond, its value (true or false) indicates whether the
fragment generated from the object is available on an
XON router in the network.

We instrument the class methods to check for an
object’s presence in cache. Algorithm 1 shows a pseu-
docode representation of such logic in the context
of our getPurchaseOrder example. Here, for each
cacheable object, e.g., for the Customer object, the ser-
vice first checks whether the needed object is avail-
able in cache using the getCache call. If the object
is found in cache and exists on the network (i.e.,
the ValidList returned from cache is not empty),
the service retrieves the object from cache (line 8),
sets the isCached attribute value to true (line 9),
and skips the processing required to retrieve the object’s
attribute values from the database. If the object does
not exist in the provider’s cache (and is therefore
not available on the network), the service populates
the object’s attributes with a database call (line 11),
sets the isCached attribute to false (meaning that
the associated XML fragment should be stored to
caches on the network (line 12)), and stores a serial-
ized form of the object to the provider’s local cache
(line 13). This type of application instrumentation is
standard practice in caching applications (see, e.g.,
examples from Oracle Corporation 2010, Limaye 2005,
and open-source caches Apache Jakarta Java Caching
System Project 2010 and OpenSymphony OSCache
Project 2010).

Algorithm 1 (Checking for an object in cache)
1: <WebService>
2: PurchaseOrder getPurchaseOrder
(String orderNumber)
{
PurchaseOrder p=new PurchaseOrder();
// get customer
if checkCache(“Customer:CompanyName
=0CS Fictional Company”) exists then
7:  p.Customer=getCache
(“Customer:CompanyName
=0OCS Fictional Company”);
8: p.Customer.isCached=true;
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9: else

10:  p.Customer=Select*from Customer where

CompanyName="OCS Fictional
Company’;

11:  p.Customer.isCached=false;

12:  p.Customer.setToLocalCache();

13: //get contractor

14: if checkCache('Contractor:CompanyName

=SUPPLIER XYZ’) exists then

15:  p.Contractor=getCache

(‘Contractor:CompanyName

=SUPPLIER XYZ);
16:  p.Contractor.isCached=true;
17: else
18:  p.Contractor=Select*from Contractor

where CompanyName="SUPPLIER XYZ’;
19:  p.Contractor.isCached=false;
20:  p.Contractor.setToLocalCache();
21: // get OrderHeader
22: ...
23: // get OrderLines
24: ...
25: return p;
26: }

When the cache-enabled XML serialization library
finds a cache-enabled object while converting an
object from its programmatic form to XML, it inserts
instructions for extracting cacheable content and stor-
ing it for reuse (in caching terms, a set instruction)
or inserting already cached content inside a docu-
ment (i.e., a get instruction). We first describe the
details of these caching instructions and then describe
how the serialization library actually inserts them into
response messages at run time.

We describe these instructions using the service
message document instance shown in Table 6. This
document is an example of a cache-ready response
and is based on our example service response shown
in Table 2.

The CachingInstructions element contains caching
information that the XML router will use in cache pro-
cessing for the message. Within CachingInstructions,
the set element defines a list of Fragment elements to
be stored in cache on the network. Each such Fragment
element provides caching metadata for a particular
object type, e.g., a Customer or Product object, with
a unique fragmentID and a ttl value. The fragments
to be set to cache reside in the PurchaseOrder portion
of the message, at a location denoted by the XPath
expression in the path element in the set instruction.

Within CachingInstructions, the get element
defines a list of Fragment elements to be retrieved
from cache on the network and inserted into the
response message. The instructions to retrieve a frag-
ment from cache contain a type attribute that maps to
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the object type the fragment represents, a ValidList
that lists the routers where the element is available
in cache, and an XPath expression in a path ele-
ment that points to the location in the PurchaseOrder
where the fragment should be inserted. Note that
the cache-enabled response message contains no ref-
erence within the PurchaseOrder element to fragments
that need to be retrieved from cache until the XON
router fills them in during cache processing.

This completes our description of the Caching-
Instructions information. We next describe how the
XML serialization library inserts caching instructions
at run time.

Algorithm 2 describes the logic that the XML seri-
alization library uses to insert caching instructions
into the response message. For each object o to
be serialized into the response, the library checks
for the existence of an isCached attribute. If o has
an 1isCached attribute and its value is true, then
the library generates the appropriate insertion XPath
expression (line 4), retrieves the ValidList of o from
cache (line 5), and inserts a get instruction into the
CachingInstructions (line 6). If o has an isCached
attribute and its value is false, then the XML frag-
ment of 0 needs to be set to cache on the network. The
library serializes o and inserts the resulting XML into
the response message (line 8), generates the appropri-
ate location XPath expression to find the XML frag-
ment of o at set time (line 9), retrieves the ttl value of
o from cache (line 10), and inserts the appropriate set
instruction into the CachingInstructions (line 11). If o
has no isCached attribute, then o is not cacheable and
the library simply serializes o and inserts the resulting
XML into the response message (line 13).

Algorithm 2 (Inserting caching instructions during
XML serialization)
1: for all object o to be serialized into
the response message do
if o.hasAttribute(“isCached”) then
if 0.isCached==true then
path=generatelnsertionXpath( )
ValidList = o.getValidList( )
insert get instruction for o, with path
and ValidList
7 else
8: serialize 0 and insert into response XML
9
0

path=generateLocationXpath( )

: ttl=o.getTtl( )

11: insert set instruction for o, with path
and ttl

12:  else

13: serialize 0 and insert into response XML

Having described the structure of our caching
instructions as well as run time cache processing at
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Table 6 Example Cache-Enabled XML Service Response

<Response
xmins:p = “[providerNamespace]
xmins:c = “[enterpriseCachingNamespace]” >
<c:Cachinglnstructions>
<C:Set>
<c:Fragment type = “Customer”
fragmentID = “Customer:CompanyName = OCS Fictional Company”>
<c:path>
/p:PurchaseOQrder/p:Customer
[@p:CompanyName = “OCS Fictional Company”]
</c:path>
<c:ttl unit = “minutes”>360<c:ttl>
</c:Fragment>
< /c:Set>
<c:Get>
<c:Fragment type = “Contractor”
fragmentID = “Contractor:CompanyName = SUPPLIER XYZ">
<c:path>
/p:PurchaseOrder
</c:path>
<c:ValidList>
<c:Node>200.17.16.17 </c:Node>
<c:ValidList>
</c:Fragment>
<c:Fragment type = “Product”
fragmentID = “Product:StockNumber = 00004004” >
<c:path>
/p:PurchaseOQrder/p:OrderLines/p:Line[@p:LineNumber = “0001”]
</c:path>
<c:ValidList>
<c:Node>200.17.16.21 </c:Node>
<c:ValidList>
</c:Fragment>
<c:Fragment type = “Product”
fragmentID = “Product:StockNumber = 00006219” >
<c:path>
/p:PurchaseOrder/p:OrderLines/p:Line[@p:LineNumber = “0002”]
</c:path>
<c:ValidList>
<c:Node>200.17.16.14</c:Node>
<c:Node>200.17.16.21 </c:Node>
<c:ValidList>
</c:Fragment>
< /c:Get>
< /c:Cachinglnstructions>
<p:PurchaseOrder>
<p:Customer>
<p:CompanyName>0CS Fictional Company <CompanyName>
<p:Address1>ADDRESS LINE 1</Address1>
<p:Address2/>
<p:City>MELBOURNE </City>
<p:State>VIC</State>
<p:PostCode>3182 </PostCode>
<p:ContactName>Jim Smith</ContactName>
<p:Phone>03 99999999 </Phone>
<p:Fax>03 99999999 </Fax>
<p:Email>jim.smith@ocs-fict.co.au </Email>
<p:ACN>99 999 999 </ACN>
<p:SalesTaxCertificate>E9999999 </p:SalesTaxCertificate >
<p:TaxID>123-89-4567 </p:TaxID>
<p:StateOflncorporation>VIC </p:StateOfIncorporation>
<p:Status>Active </p:Status>
</p:Customer>

<p:OrderHeader>
<p:OrderType>ST</p:OrderType>
<p:OrderNumber>00099999 </p:0rderNumber>
<p:Currency>AU</Currency>
<p:DeliveryLocation>
0CS CENTRAL WAREHOUSE ADDRESS
</p:DeliveryLocation>
<p:OrderTerms>NET FROM STATEMENT 30 DAYS</p:OrderTerms>
<p:OrderTotals>
<p:FreightTotal>0.00</p:FreightTotal >
<p:0nCostTotal>0.00</p:0nCostTotal>
<p:OrderTotal>39.50 </p:OrderTotal>
</p:OrderTotals>
</p:OrderHeader>
<p:OrderLines>
<p:Line>
<p:LineNumber>0001</p:LineNumber>
<p:Quantity>1.0000</p:Quantity>
<p:LineValue>21.00</p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
</p:Line>
<p:Line>
<p:LineNumber>0002 </p:LineNumber>
<p:Quantity>50.0000</p:Quantity >
<p:LineValue>18.50</p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
</p:Line>
<p:Line>
<p:LineNumber>0003</p:LineNumber>
<p:Quantity>30.0000 </p:Quantity >
<p:LineValue>457.50</p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
</p:Line>
<p:Line>
<p:LineNumber>0004 </p:LineNumber>
<p:Quantity>20.0000</p:Quantity>
<p:LineValue>025.08 </p:LineValue>
<p:Status>Active </p:Status>
<p:Packinglnstructions/>
</p:Line>
</p:OrderLines>
</p:PurchaseOrder>
</Response>
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the service provider, we now move on to discuss how
the request is routed to a network-based cache for
processing.

5.2.2. Making a Routing Decision. Once all
required fragments and cache metadata are repre-
sented in the response, a routing decision must be
made—it is time to decide how the message should be
sent to ensure that all fragments are obtained before
the final message is sent on to the consumer.

First, the provider application (specifically, the cus-
tom XML serialization library) identifies a coordinat-
ing router (CR). This router is responsible for not only
serving fragments from its local cache but also for
contacting other neighborhood cache-enabled routers
that contain needed fragments that are not stored
in the CR’s cache. The set of neighborhood cache-
enabled routers is determined by limiting the set of
those routers within v (typically v =1 or 2) hops of
the CR. This limitation is imposed to prevent retriev-
ing cache fragments from distant caches at high costs.

The choice of the coordinating router in our scheme
is based on optimizing a cost function Cg that
attempts to quantify the cost of routing the service
message response from the service provider to the ser-
vice consumer through the CR. This cost incorporates
the following components: (a) the cost of transport-
ing the provider response to the CR, (b) the cost of
acquiring fragments from the local cache and neigh-
borhood nodes, and (c) the cost of transporting the
final response to the service consumer. The cost func-
tion Ccy is computed as follows:

Ccr= f(size of response from the provider, network
cost from provider to the CR);

+ f (size of useful fragments available at
routers in the neighborhood of the CR,
network cost from the CR to these
neighborhood routers);

+ f(size of final response, network cost
from the CR to the requestor),

where f(a,b)=axb. (1)

This function will always generate a CR except in
the case where none of the needed fragments are
stored on the network (or all fragments are stored too
distantly). In this case, because there are no fragments
to get, all caching instructions will be set calls, which
do not require a CR.

In our scheme, we will always pick the node that
has the minimum cost. If two nodes have the same
cost, we break the tie by picking the one that is near-
est to the requestor in terms of the number of net-
work hops.

Once the CR is identified, the library removes all
nonneighborhood routers listed in any get fragment’s

RIGHTS L

ValidList. If any get fragment is left with an empty
ValidList, the fragment element is removed from the
get list, the corresponding object is retrieved from
cache, and the fragment content is generated through
standard XML serialization processing and inserted
into the response message. At this point, the message
is ready to be sent to the CR.

Next, we describe the processing that occurs in the
coordinating router.

5.2.3. Processing on a Cache-Enabled Router.
When a cache-enabled XML router receives a
response message containing a CachingInstructions
element, it stores all cacheable fragments contained
in the message (following the set instructions) to its
local cache, regardless of whether it acts as the CR for
this message. Through this mechanism, every cache-
enabled router that “sees” a cache-enabled message
will store any available elements to its local cache.
The provider application, with the help of the caching
library, monitors the network “ack” messages that are
returned for every network hop made by the mes-
sage on its way to the intended recipient. For each
such “ack” received from a cache-enabled router, the
provider updates its cache directory to note that the
cacheable fragment set in the message is stored in that
router’s cache.

Get instructions are processed only by the CR.
When a cache-enabled message arrives at the des-
ignated CR, the router first retrieves any elements
stored in its local cache, inserts them into the
response, and determines which other needed frag-
ments are not stored locally. The CR then contacts its
neighboring XML routers (up to v hops away) based
on each Get instruction’s ValidList to request these
missing fragments and inserts them into the response
message upon receiving them. These fragments are
also stored to the CR’s local cache. At this point,
the message is complete. After the CR removes the
caching instructions from the message, the CR sends
it off to the service consumer.

5.3. Cache Maintenance

In our approach, we assume the presence of a gen-
eral purpose distributed main memory cache, which
provides basic cache management functionality in-
cluding basic invalidation and any required dis-
tributed synchronization. A detailed discussion of
cache management in distributed cache scenarios is
covered extensively in the literature (Fan et al. 2000,
Tewari et al. 1999).

In this section, we discuss the specifics of cache
maintenance for our fragment caching scheme. These
differ slightly from the requirements of a general
purpose distributed caching scheme. Specifically, we
describe a cache replacement policy for a router-based
cache to handle the case where a new fragment arrives
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and must be stored but the space allocated for cache
storage is already full. Here, when a router must
evict an old fragment to make room for a new one,
the router follows a configurable replacement policy,
e.g., least-recently used (LRU), first in, first out (FIFO),
etc. (many such policies have been described in the lit-
erature, for example, Podlipnig and Bszrmenyi 2003),
and selects a fragment for eviction from the same provider
as that of the incoming fragment. Selecting a fragment
from the same provider helps ensure that no single
provider’s fragments dominate cache storage on a
given cache-enabled router.

When a replacement event occurs on a cache, the
router notifies the provider and waits for the provider
to acknowledge the eviction. The provider updates
its cache directory (removes the fragment from the
ValidList in cache) and sends back an acknowledge-
ment to the router. Only then does the router actu-
ally delete the element from cache. This prevents
race conditions, e.g., where the provider sends a Get
instruction to a router where the corresponding frag-
ment has been evicted from cache through replace-
ment processing.

The expiration of a cached element’s ttl triggers
invalidation of the fragment in all cache storage loca-
tions. Once an item becomes invalid on the provider,
it will not be returned from cache and therefore can-
not be assigned a Get instruction at caching instruc-
tion insertion time. Invalid fragments are prioritized
over valid fragments for cache replacement processing
purposes.

5.4. Availability and Fault Tolerance

In this section, we discuss how we handle unexpected
situations where a Get instruction for an XON router
cannot be fulfilled because of router unavailability.

There are two ways a router can go down: (a) with
notification to the service provider, or (b) without noti-
fication to the service provider. Case (a) occurs when
the router catches an exception (e.g., try catch pro-
cessing) and notifies all service provider caches that
it is shutting down. In this case, no service provider
will generate Get caching instructions for fragments
on that router.

In case (b), where the router did not have the
opportunity to notify the service providers about its
unavailability, the service provider will not receive the
periodic “heartbeat” messages from the router and
will mark it as “unavailable.” The service provider will
not assign any further responsibility to an “unavail-
able” router until it rejoins the network and begins
broadcasting “heartbeat” messages again.

These two cases cover the vast majority of potential
race conditions related to router availability. However,
it is still possible that a service provider could dis-
patch a Get instruction for fragments on (or assign CR
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responsibilities to) an unavailable router while a shut-
down notification traverses the network (for case (a))
or within the heartbeat period (case (b)).

If a CR receives a Get instruction for a fragment
that is only valid on an unavailable router, it will
notify the service provider of the router’s unavailabil-
ity and request the content from the service provider
(available in the service provider cache) via a separate
service.

If a router goes down after it has been assigned
CR responsibilities by a service provider, the mes-
sage will bounce back to the service provider indicat-
ing the router’s unavailability. In this case, the service
provider will retrieve the content from its local cache
and send it directly to the consumer.

For cases where a router must request content from
a service provider, there will be a small delay in pro-
viding the response to the client; however, the prob-
ability of such race conditions overall is low so this
happens only very infrequently. On average, the total
system will perform much better than in the no-cache
case so the benefits accrued from caching on the net-
work far outweigh the costs associated with handling
such faults.

6. Analytical Study

As in other caching systems, end-to-end response time
and bandwidth consumption are the two areas where
benefits accrue. In this section, we first analytically
study how our caching scheme impacts bandwidth
consumption and end-to-end response time. We then
present a study of the space and time complexity of
our scheme. Table 7 shows a list of notations used in
our analysis.

6.1. Benefits of Our Caching Scheme

In this section, we model bandwidth usage and
response time for our caching scheme mathematically.
In §7, we experimentally demonstrate the benefits of
caching under several scenarios.

6.1.1. Bandwidth Consumption. In the no-cache
case, a service message passes through the XML
routers in the overlay network without change so the
bandwidth usage for every XML network hop remains
constant. In contrast, in our caching scheme, a cache-
enabled XML message passes through the CR, an
intermediate node in the XML overlay network that
inserts the cached fragments to complete the message
to be delivered to the client. Thus, in the cache case, the
bandwidth consumption before the CR differs from
the bandwidth consumption after the CR.

To accurately compare the no-cache and cache cases,
we compute the average bandwidth consumption per
hop in the network. First, we compute the network
bandwidth consumption at each hop from the server
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Table 7 Table of Notation
Symbol Description
% =A{R,Ry, ..., Ry} Responses
r={f,....F} Fragments
SF; Average size of a fragment F;
fR; Number of fragments in a response R;
E;={e/le;el,i=1,... 1R} Fragment set for a response type R;
SR; = Z,EE/, SF; Average size of response type R,
f Average regular header size
f, Size of the additional header content per cacheable fragment required for caching
las Number of XML routers between router a and b
lookup Cache table lookup time on the provider
8 Average transmission time per byte between two hops in the network
r XML routing computation and caching instruction generation time
CF; =k, SF; Average access time for fragment £, to read from or write to a cache
sw; =k, SF; Average switching time of fragments of type F; in XML stack
pF; Average server generation time of fragments of type F;
Bhop Bandwidth consumption per hop
b, Number of bytes flowing over the uth hop in a network path
A, Number of bytes inserted by the source node of the uth hop in a network path
my Number of occurrences of the kth fragment type in a response
RT; Response time for the response R,
r; Portion of the response time contributed by the jth distinct fragment in R;
P Probability that fragment j is cached in a particular routing node
h Hit ratio in the cache
V4 Fraction of total fragments cached
ACK Number of bytes for acknowledgement message for each fragment in the cache
INV Number of bytes for invalidation message for each fragment in the cache

to the client in the XML overlay network, and then we
average it across all these hops to compute the average
per-hop bandwidth consumption in the network in the
cache case.

Let By, denote the bandwidth consumption per
hop. We assume that each hop is of equal length
(or weight). Thus, we represent By, as follows:

ZM: U= bll

Bhop = %/ (2)
where u represents the uth hop on the delivery path
of the response from the origin server O to destina-
tion node T. There are a total of U =1,  hops, O...
(U —1), on the path and b, is the number of bytes flow-
ing over the uth hop. The bandwidth consumption at
each hop, b,, for this particular request can be com-
puted as follows in Equation (3), where A, is the pay-
load (fragments) inserted by the source node of hop u
of the path:

b,=b, ,+4A,, Yu=1,...,U-1. 3)
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For the first hop of the path, b, = f + f, + A, for
u =0, where f is the fixed header size, f, is the size of
the extra header content that enables caching, and A,
is the payload inserted by the origin server. The value
of A, will depend on the fragment set that needs to be
generated at the server or inserted from the provider’s
local cache.
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At any router in the XML overlay network, A, =0 if
the response only passes through the source node of
hop u with no processing; otherwise, A, = >, SF, m,,
where SF, is the size of the kth distinct fragment added
by the source node of hop u and m, is the num-
ber of occurrences of that fragment in the response.
Thus, B, is then generally rewritten as given in
Equation (4):

Buop = (f +fe+80) +4, (UJ )

(u-1
T

(u-2)
u

+ 4,

oA @)

Clearly, the CR’s fetching of fragments introduces
extra traffic on the network. If the CR needs to fetch
fragments, the associated additional byte transmission
overhead is }_, > ; SF,, where y indexes the yth node
that CR has to fetch fragments from, k indexes the kth
distinct fragment that CR fetches from node N,, and
SF,; is the size of the kth fragment that CR fetches
from node N,.

Where there is at most one CR node between the
provider O and the destination T, By, is

felo, v+ (f +A0)U+Acrler, 742, 2k SFyiler, N,
op U+, ler, N,

+Y ACK+YINV, )
k k

Bcache _
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where the first term denotes the overhead because of
cache tags, the second term denotes the bandwidth
size coming out of the provider O without cache tags,
the third term denotes the bandwidth that is being
added by the CR, the fourth term denotes the over-
head because of the CR accumulating fragments from
other nodes N, the fifth term denotes the bandwidth
overhead because of the acknowledgement message,
and the sixth term denotes the bandwidth overhead
because of the invalidation message. Also, note that
lo,ck +lcr, 1 =10, r = U. The Ay and Ay are computed
as follows:

A= 2. SK (6)
k|E is generated by
the service provider
Acg = > SF. 7)
k| F is provided
by the CR

In the no-cache case, the bandwidth consumption
at each hop from the provider O to the destination T
remains unchanged. Thus, for the no-cache case, we
have

no_cache __
B hop - f + Z SF k- (8)
k|F is generated
by provider

If we consider & as the hit ratio and assume that Z
is the fraction of the fragments cached, we compute
the total B,,, for all fragments for the cache case as
follows:

Biow! = ZhBiae® + (1 — Zh) Bpos™™. )

Clearly, the benefit of caching will happen when

B}claocphe < B}l:ggcache’ (10)
ie.,
flo,r+ 323 SFyler, n, + <U +2 lCR,Ny)
vy k y
Y (ACK+INV) < Acglp cr- (11)

k

We noted earlier that if the CR needs to fetch frag-
ments from neighboring routers, this introduces a cost
that reduces the benefit of caching on the network. We
explore this trade-off by considering a set of typical
parameter values based on an analysis of the messag-
ing characteristics and the XML network setup at a
major retail organization (these parameter values will
also be used in our simulation study in §7.3). This
company has deployed a service-oriented architecture
to achieve seamless communication across multiple
departments to handle various activities such as order
handling, purchasing processes, inventory manage-
ment, and customer support. It thus serves as a strong
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Table 8 Parameter Values

Parameter Values ranges Distribution

Number of requests
Number of fragments

200, 500, 1,000
10,000, 25,000, 50,000

Not applicable
Not applicable

Number of routers Baseline value 30 Constant
SF; Baseline value Uniform
15,000-25,000 bytes
fR; 40-60 Uniform
E Fragments are randomly
assigned to requests
SR; = Z,efl, SF; Computed Not applicable
f 1,024 Constant
f, 512-1,024 Bytes Uniform
Las 10-20 Uniform
lookup 10 ms Not applicable
r 2 ms Constant
K 2 ms Constant
k, 2ms Constant
pF; Baseline value 400-600 ms Uniform
h Baseline value 0.8 Constant
Percent of cacheable Baseline value 80% Constant
fragments
) 10 Mbps Constant
ACK 100 bytes Constant
INV 100 bytes Constant
Network Base line value 20% Constant
connectivity

basis for our experimental model. Table 8 shows the
parameter values.

We take the average values of each of these parame-
ters and a hit ratio of 0.4. By plugging these values into
Equation (11), we find that caching will be beneficial if

4,76815, 1 +404,000lcy, y, < 400,00000, cr,  (12)

where I denotes the average distance (in num-
ber of hops) between the CR and other routers from
which fragments must be fetched. If all of the neces-
sary fragments are fetched from the CR, then Icg y, =0
and clearly the caching is beneficial.

If the routers from which the CR fetches fragments
are far away from the CR (i.e., the distance compara-
ble to the distance between the CR and the origin node
lo cr), the benefit of caching in the network is lost by
the overhead of fetching the content from other nodes
to the CR. More specifically, if Iz y, and Iy g have
values that are very close to one another, then caching
is not beneficial. In our implementation of the algo-
rithm, we consider only those nodes that are within a
one-hop distance from the CR (i.e., Iy, N, = 1). Other-
wise, the content is drawn from the cache at the service
provider.

6.1.2. Response Time. In this section, we analyt-
ically compare the response time for the cache case
with that of the no-cache case. First, we derive the
response time for the cache case.
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Let RT; be the response time for response R;. RT; =
>_j rtj, where rt; represents the portion of the response
time contributed by the jth distinct fragment of R;. rt;
can be decomposed into three parts:

1. Time for the service provider (origin O) to pro-
duce fragment F: rt{.

2. Time for the CR to fetch the fragment F: rt]CR.

3. Transmission time of F; from origin O to destina-
tion T: Trg 7.

Next, we derive each of the parts that comprise
the overall response time. In deriving these times, we
consider the time required to store a fragment into
the cache as negligible because this typically happens
asynchronously. We also assume that the time required
to transmit a byte across one hop in the network is
same for all XML network hops.

(a) Time for the producer to produce fragment F.
Let Xj be a variable, X]» =1if F] is cacheable, and Xj =0
if F; is not cacheable:

rtjo = (1—X;)(pE +sw;) + X; (hr + (1 — k) (pF, + sw))).
(13)

When F] is not cacheable, the sender needs to com-
pute the fragment pF, and pass it through the XML
stack sw;. When F, is cacheable and available from a
cache on the network, the origin node generates the
appropriate header and performs the routing compu-
tation r. If F. is cacheable but not available in the cache,
the sender computes the fragment pF, and passes it
through the XML stack.

(b) Time for the CR to produce fragment F. Let Y;
be a variable, and Y,=1 if E is cached in the CR or 0
if F; is cached in a node other than the CR:

rtN = X;h(sw; + lookup + CF; +(1 — Y;)(8SF, Iy, N))-
(14)

No matter where F, is cached, the component retriev-
ing F, has to perform a cache lookup (lookup), retrieve
the fragment CF;, and pass it through XML stack sw;.
If it is cached in a place other than the CR, then trans-
mission time is needed to fetch the fragment from the
node where it is currently cached (N;) to the CR. Here,
0 is transmission time per byte per hop.
(c) Transmission time of F, from O to T.

TI‘O, T == (1 —_ X])ZO, T SF] 6
+ X;(hleg, 1 SF; 6 + (1 —h)lo 1 SF; 6 + f.l5 1)
+1p rf6. (15)

If the fragment is not cacheable, the entire fragment F;
of size SF; will be transmitted from the origin O to the
receiver T (expressed in the first term). This is also the
case for cacheable fragments not stored in any cache
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(expressed in the third term). If there is a cache hit,
the fragment will be transmitted from the CR to the
receiver (expressed in the second term).

Adding these three parts, we have the following:

rt = (1-X,)(pF+sw;+1o, 1SF;8)
+X;h(r +sw; +lookup +CF;+(1-Y;)8SF,lcg
+lcg, rSF;8)
+X;(1—h)(pF +sw;+1,, +SF;8)
+Xfelo, 18 +10,1 f6. (16)

In the no-cache case, the complete fragment F of the
response RT is generated at the origin O and is trans-
mitted through the XML network to the receiver T:
r-9 = pE + sw; + 1o, 1 SF; 6 + Lo, 1 f8. (17)
Thus, the benefit of caching in the response time
accrues when the following inequality is satisfied,
where P; is the probability that j is cached in CR (note
that Ip r =1o,cr +Icr, 7):

> (P;(r +lookup + CF; +f.lo 18) + (1 — P,)8SF; Iy, )

]

< Z(pF] +1o,cr SF; 8). (18)
i

Using average values from Table 8 and the 0.4 hit
ratio, from Equation (18) we get

P;(2240.76815, 1) + (1 — P)20Icg ,
<500+ 2010 cx, (19)

where Z_CR, v, is the average number of hops between
the coordinating node and the nodes from where the
cached fragments are fetched.

Following the discussion in §6.1.1, we assume
I_CR,Ny =1, i.e., the CR will fetch cacheable fragments
only from nodes that are one hop away from the CR.
We also assume that 50% of the cached contents are
fetched from the coordinating node, i.e., P;=0.5. The
network fragment caching will be beneficial if follow-
ing inequality holds:

0.384l,, 1 <499 +201; cx. (20)

The above inequality will hold true in all scenarios,
except where [, ; is a very large value and I ¢y is
very small, i.e.,, when the distance between the origin
node and the destination node is very large and the
CR is very close to the origin node. In such scenarios,
the effect of caching in the CR is not beneficial and
only the service provider cache should be used.
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6.2. Caching Scheme Complexity

The space complexity needed by the service provider
is, in the worst case, an LM matrix for the cache
directory, where L is the number of the XML routers
existing in the XML router fabric and M is the num-
ber of cacheable fragments of all its service message
responses. Each matrix element contains the size, ttl,
ID, available in cache, and content of the fragment
if the fragment is cached and valid in the particular
XML router (we note, though, that the content can
be stored once rather than for each fragment-router
pair). The space complexity of a CR is measured as
the size of the cached fragments of the service mes-
sage responses that pass through it plus the size of
the cache directory of the IDs of all the fragments
it stores.

In terms of time complexity, a provider will need to:

(a) process the request to determine which frag-
ments need to be generated and drawn from cache
O(fR);

(b) select the best CR with a cache lookup O(1),
a computation to find the cost for each router O(L),
and selection of the best CR in logarithmic time
O(log(L)); and

(c) generate the response, which takes time O(1).
Thus, the total time complexity at the provider for the
cache algorithm is O(L +1log(L)).

The CR will need to contact a neighboring set of
routers for needed fragments. This requires, in the
worst case, the number of <get> fragments in a
response O(fR).

7. [Experimental Results

We performed a simulation study to validate the
expected benefits of our method and present a set of
those results in this section. In this study, we con-
sidered the impacts of our caching scheme in terms
of both bandwidth and response time as well as the
scalability of the scheme in terms of the CPU usage
required for the cache algorithm.

We consider two scenarios: (a) a cache case that
represents the use of our proposed service message
fragment caching scheme; and (b) a no-cache case in
which caching is not enabled. To demonstrate the effi-
cacy of the scheme, we are interested in two met-
rics: (a) bandwidth savings (expressed as the ratio of
cache bandwidth usage to no-cache bandwidth usage)
and (b) improvement in end-to-end response time
(expressed as the ratio of cache response time to no-
cache response time).

The simulation was written in Java and run on
Windows XP Pentium 2.1 GHz machines with 4 GB
RAM. In the simulation, we assigned baseline val-
ues to various parameters based on an analysis of
the messaging characteristics and the network setup
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at a major retail organization. These parameter value
ranges are shown in Table 8. In this company, about
500 different types of service messages are exchanged
among applications. Through a combination of auto-
matic and manual analysis, we identified about 2,500
fragment types. Of these, about 80% are cacheable and
the remainder change too frequently to merit caching.

The company’s deployment consists of 30 XML
routers that handle SOAP-level security and message
routing among other tasks. These 30 XML routers
are connected by a hybrid ring-and-tree topology. An
analysis of this topology revealed about 20% network
connectivity.

We assume a Zipfian distribution in which 80% of
the fragments are cached by 20% of the routers as
is common in Web and Internet experiments (Breslau
et al. 1999).

We simulate a network of XML routers created by
randomly connecting each router in the network with
a predefined percentage of routers in the network.
We call this predefined percentage network connectiv-
ity. The baseline value of such network connectivity
is 20%, i.e., each router is directly connected to 20%
of the routers in the network.

The simulation involves a multithreaded Java pro-
gram. Each thread of this program represents a node
in the network. Each thread keeps track of the con-
tents of its local cache in an in-memory data structure.
The program precreates a network of nodes to simu-
late the XML network as a graph structure. There is
a one-to-one mapping between these nodes and the
Java threads. The program preselects two nodes as the
destination and the origin. The origin thread keeps
track of which cache fragments reside in which nodes
(i.e., the cache table) and how the network is con-
nected by a routing table.

The simulation program generates a service mes-
sage composed of several fragments following power
law distribution, ie., in 80% of cases, 20% of
fragments are accessed. This distribution is based
on the typical behavior found in Web application
usage (Breslau et al. 1999).

The routing of the message from the origin to the
destination is selected by running the routing algo-
rithm and by looking at the cache table, which keeps
track of which nodes store which cached fragments.

Once the origin node thread has created the initial
message, it passes the message to the CR as selected
by the routing algorithm and the path defined based
on the routing table. The CR adds the cached content
and passes the full service message to the destina-
tion node following the path defined in the routing
table.

At each step, the network delays, the fragment
generation delays, and the lookup cost delay are
introduced by inducing sleep time in the thread
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corresponding to each node. The size of each data
exchange across any two threads is measured in bytes.
At the end of the experiment, the bandwidth usage
across all hops is summed to compute the bandwidth
for the cache case. Similarly, the response time is
computed by measuring the time difference between
when the origin thread starts creating the response
message and when the destination thread receives the
response, including the running time of the routing
algorithm. In the no-cache case, the routing algorithm
does not run; the response content is created at the
origin node and passed to the destination node based
on the routing table. The network delay and fragment
generation costs are introduced by sleep time in the
appropriate threads. Again, the bandwidth and the
response time are measured by summing usage across
hops and total delays, respectively.

Each simulation experiment was run for a total
of 10,000 requests. We compute the average band-
width utilization at the provider site and the end-to-
end response time at the service consumer site across
these 10,000 requests.

We present a total of eight experimental results
in considering the impacts of caching. Four consider
bandwidth impact as fragment size, hit ratio, percentage
of cacheable fragments, and network connectivity are var-
ied. Four consider response time impact as percentage
of cacheable fragments, hit ratio, average processing time
at the provider, and network connectivity are varied.

Each of these experiments was run for each value
of request count and fragment count. For each combi-
nation of request count and fragment count, the sim-
ulation experiment was run 3 times, with a different
random seed for each run, for a total of 27 simulation
experiments in each case.

Because the values of each of the independent
parameters (average fragment size, percent cacheable
fragments, hit ratio, fragment size, network connec-
tivity, and average processing time) are varied, the
values of other parameters are kept at baseline values
as indicated in Table 8.

We also experimentally demonstrate the scalability
of our caching scheme in terms of CPU usage as the
average number of fragments and the number of routers
are varied. These results were gathered during exper-
imental runs for the other experiments in our simula-
tion study.

7.1. Bandwidth

In this section, we demonstrate how bandwidth con-
sumption varies as the independent parameters frag-
ment size, hit ratio, percentage of cacheable fragments, and
network connectivity are varied.

7.1.1. Fragment Size. Figure 12 demonstrates how
the ratio of bandwidth usage between the cache
case and the no-cache case (cache BW /no-cache BW)
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Figure 12 Variation of Bandwidth with Fragment Size
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varies as the average fragment size is increased from
500 bytes to 40,000 bytes. The point of this experi-
ment is to determine the effect of the byte overhead
of caching metadata in the cache case to the full-size
content overhead in the no-cache case.

As the average fragment size is increased from
500 bytes to 8,500 bytes, the ratio decreases dramati-
cally from 1.5 to 0.48. At higher byte sizes, the ratio
decreases more slowly with increases in the average
fragment size. The ratio reaches 0.42 when the frag-
ment size is 40,000 bytes.

Initially, the overhead from adding cache tags is
comparable to fragment size so the benefit of caching
is not significant. For smaller fragment sizes, as the
fragment size is increased, the reduction of overhead
from cache tags as a percentage of fragment size is
high and results in the initial sharp decrease in the
cache BW/no-cache BW ratio. For larger fragment
sizes, the reduction of overhead in terms of the per-
centage of the total fragment size is very small. Recall
that the baseline hit ratio is 80% and the baseline per-
centage of cacheable fragments is 80% so the provider
still needs to generate the uncached and uncacheable
content. Overhead related to generated content and
metadata accounts for the remaining portion of the
cache BW/no-cache BW ratio.

7.1.2. Hit Ratio. Figure 13 demonstrates how
bandwidth savings increase as the hit ratio increases.
At a low hit ratio of 0.1, bandwidth usage in the cache

Figure 13 Variation of Bandwidth with Hit Ratio
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case is almost equal to the no-cache bandwidth—98%.
As the hit ratio increases, the ratio cache BW/no-
cache BW decreases. At a hit ratio of 0.8, the cache
BW is approximately 42% of the no-cache BW. This is
because of the effect of increasing hit ratio—as more
fragments can be drawn from cache, the bandwidth
requirements are reduced.

7.1.3. Percentage of Cacheable Fragments. Fig-
ure 14 demonstrates how the ratio cache BW/no-
cache BW varies along with the percentage of
cacheable fragments. As the percentage of cacheable
fragments among all fragments is increased, the band-
width savings in the cache case is increased and the
ratio of cache BW/no-cache BW decreases. At 10%
cacheable fragments, the bandwidth in the cache case
is 88% of the no-cache case—a 12% improvement
in bandwidth. In the ideal case of 100% cacheable
fragments, the bandwidth in the cache case is 32%
of the no-cache case. This remaining 32% comprises
uncached content (the baseline hit ratio is 80% in
these experiments so not all objects will be found in
cache even in the case of 100% cacheable objects) and
caching metadata.

7.14. Network Connectivity. Figure 15 demon-
strates how the ratio cache BW/no-cache BW varies
along with the network connectivity. A higher value
of network connectivity indicates that the network of

Figure 14 Variation of Bandwidth with Percentage Cacheable
Fragments
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Figure 15 Variation of Bandwidth with Network Connectivity
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routers is densely connected while a lower value indi-
cates a more sparsely connected network.

Overall, the range of difference shown in Figure 15
is approximately 0.1. At 20% network connectivity,
i.e.,, when each router is directly connected to 20%
of the other routers in the network, the ratio is 0.42.
At 50% connectivity, the ratio is 0.48, and at 100%
connectivity, i.e., when each router is directly con-
nected with all other routers, the ratio is 0.52. At
100% network connectivity, the benefit of caching is
mostly derived from avoiding the cost of generat-
ing the fragments.

As network connectivity increases (i.e., as a net-
work becomes more densely connected), the cache
BW /no-cache BW ratio increases, which indicates that
the benefits of caching are greater in more sparsely
connected networks (most networks are sparsely con-
nected) than in more densely connected networks.
This occurs because messages require fewer hops in
more densely connected networks (and therefore less
bandwidth) to reach their destinations in both the
cache and no-cache cases. Because bandwidth costs
are lower overall in more densely connected net-
works, there is less room for improvement through
caching.

7.2. Response Time

In this section, we demonstrate how the end-to-end
response time of the application varies as the inde-
pendent parameters percentage of cacheable fragments,
hit ratio, average processing time at the provider, and net-
work connectivity are varied.

7.2.1. Percentage of Cacheable Fragments. Fig-
ure 16 shows how the cache/no-cache response time
ratio varies along with the percentage of cacheable
fragments. As the percentage of cacheable fragments
is increased, more fragments can be fetched from
the cache, saving processing time and transmission
time associated with these fragments. This results
in increased improvements in response time for
the cache case. When only 10% of fragments are
cacheable, the ratio is 0.96. In the best case, when

Figure 16 Variation of Response Time with Percentage Cacheable
Fragments
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100% of the fragments are cacheable, the ratio is
approximately 0.47. (Recall that the hit ratio remains
at 80% in these experiments so some content must still
be generated for every request to handle uncached
content.)

7.2.2. Hit Ratio. Figure 17 shows how the cache/
no-cache response time ratio varies with increases
in the hit ratio. The increased hit ratio results in
decreased end-to-end response times because of sav-
ings in processing costs on the provider. However,
one interesting point to note is that at a very low hit
ratio of 0.1, the response time in the cache case is actu-
ally worse than in the no-cache case. This is because
of the fact that at low hit ratios, there is overhead
in checking to see whether the fragment instance is
available in the cache. The approximate threshold hit
ratio where the cache becomes beneficial in terms of
response time is i =0.15. We note that a 15% hit ratio
is highly achievable. In practice, hit ratios as high
as 40%-50% (or higher) are commonly achieved in
many Web caching scenarios if good choices are made
for caching granularity, time to live, and primary-
secondary cache size (Caceres et al. 1998, Cao and
Irani 1997, Squid Project 2010, Nikolov 2009).

7.2.3. Average Processing Time. Figure 18 shows
how the cache/no-cache response time ratio varies
with increases in the average processing time at the

Figure 17 Variation of Response Time with Percentage Hit Ratio
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provider side to generate fragments. As the aver-
age processing time increases, the benefit of caching
increases, resulting in decreased end-to-end response
times. However, at a very low processing times
(on the order of 10 milliseconds), the overhead of
caching (the cache lookup time, switching cost in the
router, etc.) is larger than the processing time. Thus,
there is no benefit of caching at very low process-
ing times; rather, the response time is actually worse
when caching is enabled in these cases.

7.2.4. Network Connectivity. Figure 19 demon-
strates how the cache/no-cache response time ratio
varies as network connectivity is varied. The results
shown here are similar to those of the bandwidth
network connectivity experiments. At higher net-
work connectivity percentages (more densely con-
nected networks), a response must traverse fewer
nodes on the way to its destination, which means that
the overall response time is lower in both the cache
and no-cache cases. Thus, in all cases, there is less
room for improvement through caching as the net-
work becomes more densely connected, which leads
to a higher ratio at higher densities of connectivity.

7.3. Scalability

In this section, we demonstrate how our routing al-
gorithm scales with the number of fragments per
response message and the number of routers. Fig-
ure 20 demonstrates the percentage of CPU required

Figure 19  Response Time Improvement with Network Connectivity
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Figure 21 CPU Overhead with Number of Routers in the Overlay
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to run the routing algorithm on a 2.1 GHz Pen-
tium processor machine. The CPU overhead increases
almost linearly with the number of fragments. When
a response has about 60 fragments, the CPU overhead
is 12%. Figure 21 demonstrates the CPU required to
run the routing algorithm along with a number of
routers. Clearly, the CPU overhead increases linearly
with the number of routers. In an enterprise XML
overlay network, the typical number of routers will
be in the range of a few tens of routers. At 50 routers,
the CPU overhead is just 13.5%.

8. Case Study

In this section, we report on the integration of our
approach into a commercial XON router and a set
of experiments describing the performance of our
approach in a staging environment.

8.1. Commercial Integration

We describe in detail our implementation of XML
fragment caching as integrated into a commercial
application server middleware software (enabling
caching in the service provider) and one of the most
popular XML routers, the Cisco Application-Oriented
Network Module (AON), which runs on the Cisco
2600 router (Cisco Systems, Inc. 2010).

8.1.1. Integrating Caching and Routing Logic at
the Service Provider. We integrated our caching logic
into the Tomcat application server® software for the
purposes of this case study, although we could follow
this integration approach for any middleware soft-
ware. As shown in Figure 10, we add two components
to a service provider to enable caching: a cache and a
custom XML serialization library. We describe each of
these components in turn.

The cache is an external process, main mem-
ory cache that supports basic caching functionality.
Caching logic is accessed from within the service
provider through a cache client library, implemented

2 http://tomcat.apache.org/.
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in Java, that provides access to the cache through API
calls, e.g., check-cache and get-cache (this implemen-
tation is similar to that discussed in Datta et al. 2004).

The custom serialization library performs standard
XML serialization (creating XML-formatted versions
of application objects) and provides the additional
functionality required to add caching instructions and
perform routing decision making. Further, we instru-
mented the custom library to maintain counts of frag-
ments served from cache or generated by the back end
server in order to track the hit ratio for experimen-
tal purposes. We wrote our own custom XML serial-
ization library (in Java, of course), although it would
be possible to modify any standard XML serializa-
tion API (such as the Java JavaScript Object Notation
(JSON) library) for our purposes.

8.1.2. Integrating Caching Logic at the XON
Router. We first describe the AON architecture in
general and then discuss how we integrated our
caching logic into the AON module.

The AON module is a Java component running
in a Tomcat environment on the BSD UNIX Oper-
ating System on the Cisco 2600 router. This mod-
ule provides multiple application-oriented services at
the XML network layer such as XSLT transforma-
tion, authentication, compression, caching services,
content lookup, encryption, and message logging.
These services are implemented as components called
bladelets. When an XML message arrives at the AON
router, it passes through multiple bladelets depend-
ing on the services the message requires. The AON
module is extensible; it allows the inclusion of cus-
tom bladelets with user-defined functionality. Such
bladelets are developed in Java using the AON APL

We implemented our fragment caching system as a
custom bladelet. Following the AON architecture, the
bladelet is written in Java. The bladelet uses AON’s
built-in cache service API to store and retrieve XML
fragment content in the AON cache. The cache service
of the AON router also manages the synchronization
and invalidation of fragment contents among multi-
ple AON instances. The details of this cache service
are part of past research work (Datta et al. 2004) and
are described in detail in Cisco Systems, Inc. (2008).

8.2. [Experiments

We performed a set of experiments on our fragment
cache implementation in a staging environment. We
describe the experimental setup and results in this
section.

Our testing environment consisted of a network of
five AON routers configured with our caching logic
as described in §§8.1.1 and 8.1.2. These AON routers
connect two Tomcat application server instances run-
ning on Linux/Java servers. One of these server
instances acts as the origin node (i.e., the service
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provider) while the other is the destination node (i.e.,
the service consumer). Both the service provider and
service consumer servers are 2.1 GHz dual-core Intel
Processor Windows XP machines with 8 GB RAM.
On the service provider, 1 GB of RAM is reserved for
in-memory caching. On the AON routers, 512 MB is
reserved for in-memory caching.

To simulate a realistic application at the origin
node, we configured part of the TPC-App bench-
mark (Transaction Processing Performance Council
2010), which is composed of a database schema
of tables Item, Stock, Author, Customer, Orders,
Order_line, Address, and Country. Based on this
schema, the destination node (service consumer)
selects an object from this list along with its primary
key value (selected following the Zipfian distribu-
tion), and then sends a request for the object along
with all its related objects in XML message format
from the origin node. For example, if the destina-
tion node requests an entity from the orders table,
the service provider should return all nested objects
in the order, e.g., Order_line, Customer, Address,
Country, Item, and Author. The details of the schema
and the table description can be found in the TPC-
App description (Transaction Processing Performance
Council 2010).

The total database size of the TPC-App benchmark
we used was 1 GB. Each cached object is stored in
serialized object form on the service provider and
in its XML format (similar to the example scenario)
on the AON routers. The destination node generates
requests at a periodic interval from multiple parallel
threads. The number of parallel threads from which
requests emanate is gradually increased in our exper-
iments to generate additional request loads.

In our first experimental case, we measure the aver-
age time for the round-trip request-response mes-
sage from the destination node to origin and back
(response time) as well as the average number of
requests per second completed (throughput) with our
fragment caching scheme in place. We plot both the
response time and throughput results against the
number of parallel request threads in Figures 22
and 23, respectively.

We repeated the same experiment along with the
AON router network but without the fragment cache
bladelet and the caching infrastructure on the service
provider. These results are also plotted along with the
fragment cache results in Figures 22 and 23.

We repeated the same experiment again for full
message caching. The AON router contains a message
cache bladelet that, when enabled, stores request-
response pairs. When configured across the entire
AON router network, all the routers through which
a message traverses will store request-response pairs.
If a request arrives at an AON router and the router
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Figure 22 Variation of Response Time with Number of Threads
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finds that it exactly matches a request stored in cache,
the router will deliver the XML response from the
message cache without passing the request to the back
end server. Response time and throughput results
for these experiments are also shown in Figures 22
and 23, respectively. Further, we added a small cus-
tom bladelet designed to count messages delivered
from cache on each router for hit ratio tracking pur-
poses in our experiments, and we report hit ratio com-
parison results for the fragment cache and message
cache cases.

To highlight the differences between the fragment
cache, message cache, and no-cache scenarios in these
experiments, we treated every object as cacheable,
i.e., the percentage of cacheable fragments was 100%
(the expected effects of varying the percentage of
cacheable fragments are described in §7.3).

We first consider hit ratio results for the fragment
cache and message cache cases. We found that the
average hit ratio for the fragment cache scenario was
around 0.5 (i.e., approximately half of the fragments
were delivered from network-based caches) while the
average hit ratio across all routers in the message
cache case was only 0.04 (i.e., approximately 4% of
messages were served from cache). The difference
reflects the level of reusability of stored data in each
case—for a full message to be reusable from cache,

Figure 23 Variation of Throughput with Number of Threads
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the exact same request must pass through a router
where its corresponding response is stored in cache.
That is, only 4% of messages in this experiment could
be drawn from the full message cache because only
4% of cached messages contained the exact content
required for service calls. When the number of pos-
sible requests is very large, the probability of such
matching is low.

Though there may be overlapping fragments within
the messages stored in the full message cache, there is
no way to identify and reuse overlapping fragments
when messages are stored in full message form and
it is not possible to take advantage of any potential
for reuse.

In contrast, our fragment caching method is able to
take advantage of that potential for reuse and serve
cacheable fragments into service messages on the net-
work. Because content is cached at a finer granular-
ity than in the full message caching case, fragments
are reusable across a larger percentage of responses,
which results in a higher hit ratio (50%) for the frag-
ment cache case.

The implication of this difference in hit ratio is that
96% of service requests in the full message caching
case could not be serviced from the network-based
cache. For each cache miss, the request proceeded
to the provider, where the provider did all of the
work required to generate the full message (includ-
ing service logic and XML serialization). In the frag-
ment caching case, the provider needed to generate
and serialize only 50% of needed fragments, with the
remainder served from network-based caches. More
work is required to generate and serialize fragments
than is required to insert needed fragments into ser-
vice messages at run time. Use of this information
resulted in significant improvements in response time
performance for the fragment caching case in our
experiments.

We next consider our response time results. Fig-
ure 22 reports the response time results for the frag-
ment cache, message cache, and no-cache cases as the
number of parallel request threads increases. In gen-
eral, the response time for the message cache case is
slightly lower than that of the no-cache case, but the
fragment cache case response time is much lower than
the message cache case throughout the experiments.

At lower numbers of parallel request threads, the
fragment cache case performance is about two times
better (i.e., roughly half the average response time)
compared to the message cache and no-cache cases,
and the performance results in the message cache and
no-cache cases are virtually equivalent.

As the number of parallel request threads increases,
the fragment cache case scales much better than both
the no-cache and message cache cases. This results
in response time performance in the fragment cache
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case that is far better than those of both no-cache
and message cache cases at higher numbers of par-
allel threads. This is demonstrated by the significant
growth rate of the response time curve in no-cache
cases starting at 12 parallel threads. The response
time curve for message cache cases shows similar
behavior beyond 14 parallel threads. At higher num-
bers of parallel threads, the application server and
database processing must generate each and every
object and serialize these objects into XML format.
This creates substantial performance bottlenecks for
both no-cache cases (where each request must be fully
processed) and message cache cases (where responses
must be fully generated for each request that reaches
the service provider—approximately 96% of requests
in these experiments). In the fragment cache case, the
complete response object does not need to be serial-
ized; rather, only the primary key needs to be written
along with its get tag in the XML message, which mit-
igates a significant portion of the work performed in
the no-cache and message cache cases. Although there
is a marginal improvement in response time in the
message cache case compared to the no-cache case,
the improvement is not that significant when com-
pared with the fragment cache case.

Figure 23 reports the throughput results for these
experiments. Here, the significant feature to note is
in the no-cache and the message cache curves—
noncache throughput peaks at 12 parallel request
threads (the same thread count where response time
began to increase dramatically in Figure 22) and
the message cache throughput peaks at 14 parallel
threads (the same thread count where the response
time began to increase dramatically for the message
cache case in Figure 22). These are the points where
the no-cache and message cache cases reach their
respective peak capacities; adding load beyond this
point actually results in reduced throughput. Here,
we see that the message cache case shows a marginal
improvement in performance over the no-cache case,
as demonstrated by the difference in their respective
bottleneck points (12 parallel threads in the no-cache
case as compared to 14 parallel threads in the mes-
sage cache case). In contrast to both the no-cache and
message cache cases, the fragment cache case contin-
ues to handle increased loads to higher request thread
counts. In fact, the fragment cache case did not reach
its peak capacity in our experiments.

We ran a further experiment to more fully contrast
the fragment cache and message cache cases. We ran
this experiment using the same experimental testbed
described for the previous experiment and using the
same code modules for the fragment cache and mes-
sage cache implementations. In this experiment, we
varied the number of possible unique responses by
varying the number of unique requests that can be
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generated by a service consumer, and then we mea-
sured the end-to-end response time at the service
consumer in both the fragment cache and message
cache cases across multiple set size cases. In Figure 24,
we report the percentage savings in response time
in the fragment cache case compared to the message
cache case as the number of possible unique responses
increases. We note that the horizonal axis in Figure 24
is in logarithmic scale.

When the number of possible unique responses
is low, the probability that the corresponding XML
response will be found in full message cache is high.
When every response is being served directly from
a full message cache, the request need not go to
the service provider at all. In contrast, in the frag-
ment cache case, even if all needed fragments are
served from routers, the request still needs to pass
through the service provider to identify the needed
fragments. When all the unique responses and their
corresponding responses can be cached in the mes-
sage cache case, we would expect the full message
cache to perform better than the fragment cache. As
the number of possible unique responses rises, fewer
of the needed full message responses are likely to
be found in message caches. In contrast, fragments
have a higher rate of reusability than full messages;
we would expect that in such scenarios the fragment
cache would outperform full-message caching.

We show our results for this experiment in Fig-
ure 24. At 1 to 10 unique responses, the hit ratio in
the message cache case was nearly 100%; here, the
message cache case outperformed the fragment cache
case. At 100 unique responses, the message cache case
still outperformed the fragment cache, though the hit
ratio was no longer 100%. This resulted in a narrow-
ing of the performance difference between the mes-
sage cache and fragment cache cases. However, when
the number of unique responses increased to 1,000 or
more, we started to see the benefit of the fragment
cache, which marginally outperformed the message
cache at this unique response count. At high num-
bers of unique responses (say, 10,000), the probability

Figure 24 Percentage of Savings in Response Time in Fragment
Cache Compared to Message Cache
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of a cache hit in the message cache case is very low;
in this case, virtually all responses are served from
the provider with corresponding decreases in perfor-
mance in comparison to the fragment caching case. At
very high numbers of unique responses (say, 100,000),
the full message cache has virtually no utility; here,
we see a significant performance improvement for
the fragment cache case as compared to the message
cache case.

From these results, we can conclude that in scenar-
ios where the number of possible unique responses
is low, a message cache approach is more beneficial
than a fragment cache approach. However, in a com-
plex enterprise system where the number of possible
unique responses is very large, the message cache case
provides no benefit. In such scenarios, as we have
demonstrated in Figures 22 and 23, a fragment cache
will provide greater benefits in terms of improved
response time and throughput performance.

9. Discussion and Managerial

Implications
From a practical perspective, this work provides sev-
eral relevant insights for IT managers who have
implemented SOAs. We discuss these insights here.

First, we have proposed a workable scheme for
utilizing existing XON network fabrics to support
caching for service-oriented message content. This
enables managers to derive desirable benefits, e.g.,
improved SOA performance in terms of end user
response time and bandwidth usage as well as
improved quality of service in terms of better ser-
vice level agreement (SLA) performance. If an XON
is already in place and nominal CPU is available on
the routers, these benefits can be garnered without
additional infrastructure investment.

Second, rolling out the caching functionality re-
quires little implementation effort on the part of the
IT unit. The serverside and routerside caching algo-
rithms are implemented as plug-ins, which add little
CPU overhead at run time and thus scale well with
network size. IT managers need only specify (using
the caching API) which elements are cacheable and
which attribute(s) uniquely identify each cacheable
element. This enables the caching of service message
content at a granularity that is more likely to be
reused than full message caching.

Third, the results of our analysis and experiments
reveal several insights relevant to caching decision
making for an IT manager considering implementing
network-based caching for service message content.
We summarize these insights here.

¢ The average size of a cached service message
fragment must be large enough to make the over-
head of the addition of cache headers worthwhile. For
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very small service message fragments, caching will
actually result in higher costs than without caching
because of the overheads introduced by the cache
header content. As the average size of a service
message fragment increases, the addition of cache
header content overhead becomes a better invest-
ment because of the increases in bandwidth savings
at larger fragment sizes.

e The expected frequency of reuse is an important
consideration for determining a service message ele-
ment’s cacheability. For a service message element to
be worth caching, there should be a reasonable expec-
tation that it will be accessed again within the ele-
ment’s ttl period. The higher the frequency of access
for a service message element within its ttl, the better
it is for caching because the response time and band-
width benefits of caching only accrue with reuse.

¢ In a similar vein, the percentage of service mes-
sage fragment content that is cacheable as compared
to noncacheable service message content must be con-
sidered. When only a very small percentage of ser-
vice message content is cacheable, there are fewer
opportunities to reap the benefits of service message
caching. As the percentage of cacheable content rises,
the benefits that will accrue from caching rise as well.
If there is significant reusability of full messages, then
full message caching using traditional HTML message
caching techniques can be applied.

¢ The density of network connectivity is also
an important factor to consider for this caching
scheme. In a sparsely connected network, a message
requires more hops to reach its destination than in
a more densely connected network. In such scenar-
ios, caching will provide greater bandwidth savings
and better response time performance as compared
to more densely connected networks. This is because
additional caching benefits accrue with every network
hop that is made by a service message, and mes-
sages traverse more hops on average in more sparsely
connected networks compared to more densely con-
nected networks. Though caching will still provide
improved bandwidth utilization and response time
performance in densely connected networks, the ben-
efits are more pronounced in more sparsely connected
networks.

There are a number of considerations that managers
need to contemplate in the course of deploying a solu-
tion of the type we propose here. These considerations
fall into two categories: (a) what should be cached;
and (b) what to consider in terms of trust, privacy,
and security.

The question of what to cache is an interesting one
and there are a number of dimensions to keep in
mind. First, we must consider the nature of the data
that is to be cached. Certain sensitive data may raise
legal or privacy issues. Enabling security controls can
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alleviate much of the risk of caching such data. How-
ever, there may be cases where standard security con-
trols do not sufficiently reduce the privacy or legal
risks. Here, caching should be avoided.

Second, a candidate fragment for caching should
meet several important criteria. We should be able to
expect to reuse a fragment, perhaps multiple times,
before the underlying data is expected to change
(e.g., exact inventory for a particular item may be
updated frequently because orders are continuously
being fulfilled). Some data elements change more fre-
quently than they would be reused; these should not
be cached because the work of storing them would be
wasted.

For candidate fragments meeting these criteria, the
nested nature of the response XML in a service mes-
sage can make it difficult to decide what exactly
should be cached. To illustrate this complexity, we
return to our purchase order example. Suppose that
customer purchase data may be aggregated by a
different service on the same service provider such
that all items (cacheable fragments used in other ser-
vices) purchased by the customer over the course of
a billing period (e.g., a month) are aggregated for use
by accounts payable in a <Billable> element. The
question then arises: Should we cache billable pur-
chase data by individual purchase order or should we
aggregate it by billing cycle? Answering this question
requires that one consider trade-offs across a num-
ber of criteria including the expected reusability of
fragments at each granularity. This is complex and
beyond the scope of our work here. We note, how-
ever, that a similar question is addressed (Dutta et al.
2006) in the context of caching for in-memory appli-
cation objects; managers can find useful insights into
such trade-offs in that work.

Finally, we consider the question of how we can
ensure that the recipient should be able to receive
cached content—i.e., issues of security, privacy, and
trust. As a foundation, the SOAP protocol and under-
lying application services have provisions for authen-
tication and access control. When enabled, these
ensure (with or without caching) that the service mes-
sage recipient and the identity it claimed are the same
(authentication), and that the recipient is allowed to
access the functions and data in its request (access
control). Coupled with the use of secure transport
protocols, basic SOA infrastructures can be secured
against inappropriate access. Trust (e.g., that a ser-
vice provider is the provider it claims to be) can be
enabled with similar authentication mechanisms.

We consider more closely the question of security
in the context of our proposed scheme. The issue of
security for the caching scheme comes down to ensur-
ing that the cache locations on the network are secure,
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and this is really a matter of ensuring that appropri-
ate authentication and access control schemes are in
place on the physical router to prevent inappropriate
access. XML routers are equipped, much like server
operating systems, with fully functional authentica-
tion and access control functionalities that are similar
to those provided by major operating systems.

Having considered the insights this work can pro-
vide to managers and discussed considerations such
as what to cache and how to ensure security and trust,
we move on to concluding our paper.

10. Conclusion

In this paper, we proposed a caching scheme for ser-
vice response message fragments in service-oriented
architectures. We provided background overviews
of XML-formatted service request/response message
formats and the XML router technology underlying
our scheme, and we presented a detailed overview of
the architecture and processing of our approach. We
developed an analysis of the bandwidth and response
time impacts of our method and ran a detailed sim-
ulation study to validate the benefits of our scheme.
Our simulation experiment results showed up to
60% bandwidth reductions and 50% improvement in
response time with low CPU overhead. Further, in
our case study, we integrated our caching approach
into a commercial XON router and an off-the-shelf
application server middleware software. Our experi-
ments using the case study integration demonstrate
that when there is no resource bottleneck, the frag-
ment cache-enabled case reduces average response
times by 40%-50% and increases throughput by 150%
compared to the no-cache and full message caching
cases. In experiments contrasting fragment caching
and full message caching, we found that full message
caching provides benefits when the number of possi-
ble unique requests is low, and we also find that the
benefits of fragment caching increase as the number of
unique requests increases. These experimental results
clearly demonstrate the benefits of our approach.
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