Taylor & Francis
Taylor & Francis Group

Quality Engineering

Ouality Engneenng

ISSN: 0898-2112 (Print) 1532-4222 (Online) Journal homepage: http://www.tandfonline.com/loi/lqgen20

Prioritization of stockpile maintenance with
layered Pareto fronts

Sarah E. Burke, Christine M. Anderson-Cook, Lu Lu & Douglas C.
Montgomery

To cite this article: Sarah E. Burke, Christine M. Anderson-Cook, Lu Lu & Douglas C. Montgomery
(2017): Prioritization of stockpile maintenance with layered Pareto fronts, Quality Engineering, DOI:
10.1080/08982112.2017.1390585

To link to this article: https://doi.org/10.1080/08982112.2017.1390585

A
h View supplementary material (&'

ﬁ Accepted author version posted online: 11
Oct 2017.
Published online: 06 Dec 2017.

\]
[:J/ Submit your article to this journal &

||I| Article views: 46

A
& View related articles &'

@ View Crossmark data &'
CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=lgen20


http://www.tandfonline.com/action/journalInformation?journalCode=lqen20
http://www.tandfonline.com/loi/lqen20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08982112.2017.1390585
https://doi.org/10.1080/08982112.2017.1390585
http://www.tandfonline.com/doi/suppl/10.1080/08982112.2017.1390585
http://www.tandfonline.com/doi/suppl/10.1080/08982112.2017.1390585
http://www.tandfonline.com/action/authorSubmission?journalCode=lqen20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lqen20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08982112.2017.1390585
http://www.tandfonline.com/doi/mlt/10.1080/08982112.2017.1390585
http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2017.1390585&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2017.1390585&domain=pdf&date_stamp=2017-10-11

QUALITY ENGINEERING
https://doi.org/10.1080/08982112.2017.1390585

Taylor & Francis
Taylor &Francis Group

CASE STUDY

M) Check for updates

Prioritization of stockpile maintenance with layered Pareto fronts

Sarah E. Burke?, Christine M. Anderson-Cook®, Lu Lu¢, and Douglas C. Montgomery®

aScientific Test & Analysis Techniques Center of Excellence, The Perduco Group, Wright-Patterson Air Force Base, Ohio; Statistical Sciences
Group, Los Alamos National Laboratory, Los Alamos, New Mexico; “Department of Mathematics and Statistics, University of South Florida,
Tampa, Florida; ¢School of Computing, Informatics and Decisions Systems, Engineering Department of Industrial Engineering, Arizona State

University, Tempe, Arizona

ABSTRACT

Difficult choices are required for a decision-making process where resources and budgets are increas-
ingly constrained. This article demonstrates a structured decision-making approach using layered
Pareto fronts to identify priorities about how to allocate funds between munitions stockpiles based on
their estimated reliability, the urgency of needing available units, and the consequences if adequate
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numbers of units are not available. This case study, while specific to the characteristics of a group
of munitions stockpiles, illustrates the general process of structured decision-making based on first
identifying appropriate metrics that summarize the important dimensions of the decision, and then
objectively eliminating non-contenders from further consideration. The final subjective stage incor-
porates user priorities to select the four stockpiles to receive additional maintenance and surveillance
funds based on understanding the trade-offs and robustness to various user priorities.

Introduction

Many of us have participated in team decision-making
meetings where sharply different priorities of each
team member made reaching consensus difficult and
personalities, not data, drove the decision. This paper
presents a case study for a complex budget allocation
situation among stockpile programs to enhance stock-
pile performance. The decision was particularly con-
tentious since it involved allocating a budget to stock-
pile programs where the managers who stood to benefit
from the choices were part of the decision-making pro-
cess. Historically, decisions were based on which stock-
pile manager had better powers of persuasion. This case
study illustrates an improved strategy using a struc-
tured decision-making process shaped by the Define-
Measure-Reduce-Combine-Select (DMRCS) process,
(Anderson-Cook and Lu 2015), to quantitatively bal-
ance difficult trade-offs and evaluate best choices based
on multiple criteria. DMRCS uses elements of statisti-
cal engineering (Hoerl and Snee 2010 and Anderson-
Cook et al. 2012a, 2012b) to combine statistical tools
for solving complex problems as part of a data-centric

approach. The details of the DMRCS process and
related statistical tools are described specifically for the
case study, but the general process for making decisions
when team members have different priorities is one that
occurs frequently across all industries.

We begin with some context for this particular
decision-making process and how individual stockpiles
are managed. Each year, choices are made about which
stockpiles (populations of munitions) should receive
additional funding to enhance their existing budgets
and ensure that units are available and ready for their
intended use. The current government fiscal environ-
ment limits funds and hence difficult choices must be
made to effectively use limited resources. Potentially
dire consequences can result from poor decisions as an
unreliable or inadequate supply of units could endan-
ger warfighters and compromise missions. Typically,
each stockpile is comprised of units of different ages.
The reliability of the stockpile is estimated and pro-
jected into the future using the population reliability
as a function of the time from present after modeling
the individual reliability as a function of age and/or
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usage (Lu, and Anderson-Cook 2011a, 2011b). While
statisticians are aware of the risks of extrapolation, this
decision-making process requires managers to assess
the future health of the stockpile (Collins, Anderson-
Cook, and Huzurbazar 2011) to anticipate its readi-
ness for projected usage. Generally, reliability is pre-
dicted with an associated uncertainty interval. When
the lower bound of the predicted reliability is projected
to cross a regulated threshold, units are deemed unre-
liable and pulled from service. Each stockpile has a
specific threshold defined by the requirements for the
munitions. Since the lower bound is used to determine
when to pull units out of service, increased surveillance
(more data collected) can help extend the service life
by reducing the width of the uncertainty interval, and
hence “raising” the lower uncertainty bound for the
estimated reliability, even if the point estimate of reli-
ability is unchanged.

Because of the proprietary nature of the data, it is
not possible to examine the details of the original deci-
sion. However, a dataset with similar aspects has been
constructed and the process used mirrors the actual
procedure. In this case study, we consider a group
of 42 small caliber stockpiles from four families (A
with 15 stockpiles, B with 11, C with 11, and D with
5). These assets are relatively inexpensive compared
to more complex systems, and the costs of mainte-
nance/surveillance are similar across different stock-
piles. The 5 member decision-making team includes
four managers responsible for the families of stock-
piles and the sponsor who provides the funds to be dis-
tributed. Since the available budget allows only 4 stock-
piles to receive additional funding, the goal is to iden-
tify the top four stockpiles with the most critical needs
for enhancing the health and quality of reliability esti-
mation across several aspects of the stockpile.

Historically, the process for selecting the stockpiles
was handled in a single meeting where the four stock-
pile family managers made their case for why some
of their stockpiles deserved additional funds. After the
meeting, the sponsor announced their choice. Unsur-
prisingly, managers presented arguments that changed
from year to year and made the most compelling argu-
ment to maximize the chances of success for their
assets. The meeting was highly contentious with clear
winners and losers. The decision was often dictated by
the effectiveness of the manager’s presentation, rather
than data or direct comparison of the stockpiles’ needs.
Based on frustration with the existing process, an

alternate approach was implemented based on the
DMRCS process (Anderson-Cook and Lu 2015).

The goal of this paper is to provide a detailed case
study to illustrate the process for an important, high-
impact problem with data-driven approaches advo-
cated in the statistical engineering literature. The
remainder of the paper is organized as follows: First,
we provide background on the structured decision-
making process and layered Pareto fronts. The next
section explains how the necessary data were collected
for the stockpiles and how the criteria were chosen to
quantify the multi-faceted needs of the stockpiles. Next,
we illustrate the objective stage of eliminating non-
contenders with layered Pareto fronts, and then follow
with a subjective stage of incorporating user priorities
to select the four most critical stockpiles. Finally, we
conclude with a discussion on assessing the robustness
across some of the subjective choices and generalizing
the process to other scenarios.

Background

DMRCS structured decision-making

Similar in spirit to the Six Sigma Define-Measure-
Analyze-Improve-Control (DMAIC) (Hoerl and Snee
2012, p 128-137) approach, the Define-Measure-
Reduce-Combine-Select (DMRCS) process provides
structure for identifying and comparing alternatives
based on multiple objectives. Table 1 shows a summary
of the general elements included in each step of the pro-
cess, as well as what was done for this case study. The
Define step focuses on brainstorming and selecting the
most important characteristics over which to optimize.
As with DMAIC, this step is critical to ensure that the
correct problem is solved. The Measure step also over-
laps with DMAIC and focuses on using appropriate
data and ensuring all key facets of the decision are char-
acterized with representative metrics. The criteria for
the comparison are ideally quantitative, of high qual-
ity with known pedigree (Snee and Hoerl 2012), and
trusted by the decision-makers to allow fair and con-
sistent comparisons among choices.

The Reduce step simplifies the choices in two ways.
First, triage of the decision priorities focuses on a man-
ageable number of dimensions. Similar to designing
an experiment where many potential factors are ini-
tially identified before focusing on the most important
ones, this allows preliminary consideration of many
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Table 1. Summary of the Define-Measure-Reduce-Combine-Select (DMRCS) process.

Stage General Steps Steps in Stockpile Example
Define - Identify choices under consideration - 42 stockpiles were under consideration
- Identify the aspects of the decision - After initial brainstorming, two aspects of reliability, two aspects of urgency, and
which are most important consequence were selected as key to the decision-making process
Measure - Identify a quantitative metric suitable - Current reliability and time to threshold were defined for reliability, available
to characterize the aspects chosen supply and availability of alternate were defined for urgency, and a metric for
consequence was defined
- Gather the relevant data for each - Subject matter experts defined what characteristics to define with each of the
metric for all choices measures
- Scores were assigned in [0,10] for all metrics for all choices
Reduce - Eliminate some criteria from further - Some criteria of lesser importance or for which no good data were available were
consideration removed from consideration
- Eliminate non-contending choices - A 4-layer Pareto front was constructed which eliminated 16 of the 42 stockpiles
from further discussions
Combine - Evaluate trade-offs between choices - An additive desirability function based on scaling [0,10]— [0,1] for all criteria was
used to rank choices (robustness also explored)
- Incorporate subjective weighting of - Identified a universally agreeable sub-region of weights to select the final
criteria for all team members stockpiles for the Top 4
Select - Identify top solutions - Top 3 choices emerged as clear winners

- Explore performance of top choices
relative to competitors

- Finalize choices and how process can
be defended to outside scrutiny

- Used synthesized efficiency plot and (N+1) plot to understand relative

performance of final choices

- Examination of final choices consolidation, choice of metrics, and process.
- Discussion about whether 4 stockpiles could be expanded to include more in the

future

potential choices before focusing on the right subset of
criteria. The second type of reduction is to eliminate
non-contending choices from further consideration.
Constructing a Pareto front (PF) (discussed later in
this section) is an objective and efficient way to achieve
this goal.

The Combine step examines trade-offs between dif-
ferent criteria, which often represent diverse (and
potentially conflicting) facets of the decision. Here,
the priorities of the decision-makers and how much
they value each criterion are keys to elevating the top
choices. This step provides better understanding of
the impacts of the different priorities for making an
informed and justifiable decision.

Finally, the Select step identifies the top choices
best suited to the decision-makers’ priorities and pro-
vides tools for comparing close contenders. Both the
Combine and Select steps involve a subjective element
because they (1) involve making different criteria com-
parable and (2) include the decision-makers’ relative
emphasis of the criteria on the final decision. After
the DMRCS process, the decision-makers have iden-
tified the top choices and can articulate why they are
best. With experience in data collection, the impact
of uncertainty on analysis results, and a system-level
view of processes, statisticians have important and
influential roles in the DMRCS process (Anderson-
Cook, 2016).

While the details of each step will differ for each
application, the process of focusing on what problem
to solve, how to make it data-centric with suitable met-
rics, and how to select the best choices for the priori-
ties of the team members will allow this approach to be
flexibly used across different fields.

Desirability functions and Pareto fronts

To combine multiple criteria, a common choice for
making diverse criteria (potentially measured on dif-
ferent scales) comparable is to use a desirability func-
tion (DF) (Derringer and Suich 1980). Each original
criterion is assigned a desirability score, d; in the inter-
val [0, 1], where 1 is the most desirable and 0 is least
desirable. This scaling allows maximizing, minimizing,
or hitting a target to be handled with the same scor-
ing system. The choice of how to map the original units
to the desirability scores provides flexibility when com-
paring a given value for different DF scores. The desir-
ability scores for all criteria can be combined into a sin-
gle value for any weighting choice, using an additive or
multiplicative structure:

k
AddDF] = Z ll)idij
i=1
k
. _ w;
MultiDF; = Hdij

i=1
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The w;s are the weights (0 < w; <1, > w; = 1)
assigned to the k criteria and reflect the priori-
ties of the decision-makers. For a particular set of
weights, the best solution maximizes the value of the
DEF. However, the choice of the w;s is subjective, and
each decision-maker may prefer different values of
the w;s. Different w;s generally lead to different rank-
ings of the choices, and hence the DF approach alone
may not be sufficient for reaching consensus for the
team.

A Pareto front (PF) (Lu et al. 2011) identifies mul-
tiple solutions best for all the possible weights. A PF
consists of all choices with values at least as good as any
other choice across all criteria and a strictly better value
for at least one criterion. The PF contains all solutions
with maximum overall DF value for variations of the
additive and multiplicative DFs in the form of L,-norm
for any p and across all w;s (Lu et al. 2011). Construct-
ing the PF does not require specification of weight pref-
erences, and hence is an objective summary of leading
choices.

In this case study, the goal is not to identify just a
single optimal solution, but the top 4 solutions from
an enumerated list of candidates. To accommodate
multiple solutions, the PF approach was adapted to
include layered PFs for the top N solutions (Burke et al.
2016). The layered PF approach is well suited for one of
two objectives: (1) given multiple quantitative criteria,
identify the top N solutions to accomplish a task; or (2)
make a decision by evaluating several primary quan-
titative criteria as well as secondary qualitative priori-
ties. The first scenario matches our goals, where we are
interested in finding a collection of critical solutions;
namely, the top 4 stockpiles to receive additional fund-
ing. While the traditional PF looks for non-dominated
solutions, layered PFs identify potential solutions that
lie just behind the PF as candidates. While these solu-
tions are never top choices, they could be highly com-
petitive for regions of the w;s when multiple top solu-
tions are of interest. For the top N solutions being
sought, it is recommended to use N layers of the Pareto
front (Burke et al. 2016).

The layered PF approach divides the choices into
multiple layers of PFs with ranked solutions. The
choices on the top layer PF are strictly better than
those on the second layer PF and so on. Because the
top N solutions for any choice of weights must nec-
essarily be included in the top N layers of PFs (Burke
et al. 2016), the N PF layers provide an objective set of

superior choices before considering the subjective
weighting choices. For the stockpile prioritization case
study, any of the 42 stockpiles not on the top 4 layered
PFs, can therefore be excluded from further consider-
ation. This useful reduction in solutions to consider
can make the decision-making process and discussions
more manageable.

Expert elicitation of stockpile criteria scores

A key advantage of the DMRCS process is the early
emphasis (in Define and Measure) on determining
important characteristics and which criteria to use in
the decision-making process. Long before individual
stockpiles are discussed and compared, the decision-
making team considers what would lead to a good deci-
sion. This upfront discussion of criteria plays an impor-
tant role in grounding the decision-making in data
and prevents early maneuvering by managers to sway
the decision. The stockpile prioritization team began
the exercise by brainstorming different facets of the
stockpiles.

Historically, the estimated reliability curves were the
primary focus, but even this metric had several aspects
to consider. For example, for a population reliability
curve plotted as a function of time from present (y-axis
= reliability and x-axis = time from present), the verti-
cal difference between the lower bound for current reli-
ability and the threshold where action was mandated
is of interest. Alternately, in the x-direction, the esti-
mate time until the lower bound crossed the thresh-
old is also relevant. Figure 1 illustrates both metrics for
a generic population reliability curve with associated
uncertainty. Both metrics had previously been used to
justify a decision and the choice between the two gener-
ally depended on which made a more compelling case
for the individual stockpile family manager.

A second category identified as important in the
decision was urgency. The essence of this category was
to evaluate the current supply of units available relative
to projected needs. A critical stockpile here suggested
that with projected usage, there would be a shortage
in supply. In addition, for most stockpiles, established
documentation exists for which alternative stockpiles
can be substituted in the event of a shortage. Hence,
another dimension to urgency was which other stock-
piles might be used in the event of diminished supply.
The more alternatives available, the less urgent it is to
request maintenance or enhancement funds.
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Figure 1. Sample population reliability curve with threshold to
action line with the two reliability-based criteria illustrated. Cur-
rent reliability (1.a) measures the distance between the lower
bound of the estimated uncertainty interval and the threshold,
while the time to threshold (1.b) measures the time until the lower
bound of the uncertainty interval crosses the threshold.

The final category that emerged was consequence,
which considered the impact on missions. This aspect
was influenced by whether the current demand was for
combat or training missions. Consequence can be akey
factor in decision-making, especially when a combat
situation is encountered.

Other aspects initially discussed, but not ultimately
included were the number of historical failure prob-
lems, subject matter expertise on problems with usage,
and the quality of the reliability testing procedures.
In each case, after some discussion, these alternative
criteria were removed from consideration. In some
cases, these criteria were deemed less essential, while
in others, getting objective, quantifiable data was nearly
impossible.

In the Measure step, the definition of each charac-
teristic specified in the Define step was made more pre-
cise, and the method for scoring was clarified. The team
obtained data for each stockpile, and rigorous scoring
criteria on a 0-10 scale (0 = least critical, 10 = most
critical) was defined for the metrics:

1. Reliability (illustrated in Figure 1):

l.a Current reliability - the difference between
the threshold for action and the lower
bound of estimated uncertainty interval for
the reliability curve at the present time.

1.b Time to threshold - the number of months
until the lower bound of estimated uncer-
tainty interval for the reliability curve is pro-
jected to cross the threshold to action value.

2. Urgency:
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2.a Available Supply - the degree of discrep-
ancy between current supply and projected
demand.

2.b Availability of Alternate — the number and
health of acceptable alternate stockpiles
available as replacements in the event of a
shortfall of units.

3. Consequence: Assessment of the impact if a
shortage occurred based on training vs combat
and how important the munition is in the com-
bat missions. This criterion was the most diffi-
cult to quantitatively characterize, and involved
considerable debate among the subject mat-
ter experts, in part because it was based on
imprecise knowledge of the future. However, the
stockpile managers ultimately were comfortable
with the consistency of the assigned scores made
by the subject matter experts.

The choice to use a score of 0-10 for each of
the 5 metrics was based on historical precedent, and
was based on comparing available data for each of
the stockpiles to standardized definitions for each of
the score values (Anderson-Cook 2013). The stan-
dardized definitions were established by subject mat-
ter experts (different than the decision-making team).
Each stockpile was then assessed by several experts
to obtain a final score for each metric. The fact that
the scores were determined by the subject matter
experts who do not directly benefit from the alloca-
tion of the funding and not directly involved with
the decision-making process helps eliminate potential
bias. By using experts from all aspects of the stock-
pile design, maintenance, and surveillance, the gath-
ering and scoring of the data for each of the stock-
piles was a labor-intensive process. However, there
were additional benefits of transparency and consis-
tency of assessment. After detailed evaluation and dis-
cussion, the scores in Table 2 were obtained for the 42
stockpiles.

Since the two metrics for reliability and the two met-
rics for urgency were complementary summaries of
similar aspects, the decision was made to combine 1.a
and 1.b into a single reliability summary, “Overall Reli-
ability;” and 2.a and 2.b into “Overall Urgency”” In each
case, the summary was a simple average of the two val-
ues. In the final section, we look at robustness of results
to this choice. The three primary summaries (Over-
all Reliability, Overall Urgency, and Consequence) have
different ranges:
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Overall Reliability Min =575 Max=9.5
Overall Urgency Min=6 Max =9.5
Consequence Min =25 Max =9.5

While the possible range for all the criteria was
0-10, the least critical (smallest) value for consequence
was considerably lower than the other metrics. We later
consider the impact of this.

Prioritization of stockpile maintenance with
layered Pareto fronts

A portion of the Reduce step of DMRCS was already
considered in the specification of metrics. Some stock-
pile characteristics initially identified were discarded
from formal consideration. The second portion of the
Reduce step seeks to objectively remove candidates

with values not sufficiently critical to justify their inclu-
sion. The use of the layered PFs allows for quick deter-
mination of leading choices. A JMP Add-In “TopN-
PES” (Top N Pareto Front Search) generated the top
4 PF layers. The JMP Add-In is available at https://
community.jmp.com/t5/JMP-Add-Ins/Top-N-Pareto-
Front-Search-for-Structured-Decision-Making/ta-p/
36527.

Figure 2 shows a pairwise scatterplot of the top 4
layers, which by definition contain the top 4 solutions
across all different prioritizations (Burke et al. 2016).
As motivation for using more than one PF layer, con-
sider stockpile A4 with criteria values (Overall Relia-
bility, Overall Urgency, Consequence) = (OR,0U,C) =
(9,8.75,9). 1t is not on the first PE since stockpile A3
(with values (9.5,8.75,9)) dominates it; however, when
compared to most other stockpiles, it has very high

Table 2. Data used to rank the 42 small caliber stockpiles based on reliability, urgency, and consequence. The columns in bold are the

combined scores based on multiple measures within a category.

Stockpile  Current Reliability ~ Time to Threshold ~ Overall Reliability ~ Available Supply  Availability of Alternate  Overall Urgency ~ Consequence
Al 85 9.5 9 7 5 6 25
A2 75 55 6.5 75 10 8.75 5.5
A3 9.5 9.5 9.5 9 85 8.75 9
A4 9.5 85 9 85 9 8.75 9
A5 7 7 7 8 9 8.5 4.5
A6 7 75 7.25 8 8 8 3
A7 75 85 8 9 6.5 7.75 3.5
A8 75 9.5 8.5 85 6 7.25 3.5
A9 75 6.5 7 7 6 6.5 3
A10 8 75 775 85 9 8.75 5
AN 8 9 8.5 8 6 7 3.5
A12 7 6 6.5 8 55 6.75 8.5
A13 75 8 775 9 5 7 5.5
A4 8 9 8.5 75 8.5 8 4
A15 75 7 7.25 85 8 8.25 3
B1 6.5 8 7.25 85 6 7.25 7
B2 9 75 8.25 75 5 6.25 7
B3 7 6 6.5 6.5 6 6.25 8
B4 85 9 8.75 9 9 9 9
B5 85 85 8.5 75 85 8 3
B6 9 8 8.5 8 8 8 3
B7 6 75 6.75 8 8 8 9.5
B8 6.5 55 6 9 55 7.25 4.5
B9 9 75 8.25 75 85 8 4.5
B10 6.5 6 6.25 7 9.5 8.25 6
B11 9 75 8.25 9 6 7.5 9
(@] 55 7 6.25 9 55 7.25 4.5
(o] 85 9 8.75 9.5 6.5 8 35
c 9.5 6 775 7 9 8 9
c4 6.5 5 5.75 8 55 6.75 25
c5 8 9 8.5 85 6 7.25 6
cé6 8 8 8 75 9.5 8.5 5
c7 75 75 75 9 6 75 75
c8 85 6.5 7.5 9 55 7.25 6.5
c9 7 75 7.25 9 9 9 4
Cc10 85 6 7.25 75 5 6.25 9
cn 7 75 7.25 9 6.5 7.75 8
D1 75 7 7.25 8 55 6.75 25
D2 7 8 75 6.5 6 6.25 9
D3 10 8 9 8 6.5 7.25 4
D4 9 7 8 7 9 8 9
D5 6.5 6 6.25 9.5 9.5 9.5 8
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Figure 2. Top 4 Pareto front layers for the stockpile prioritization
example. Each layer is identified with a different symbol and the
most critical stockpiles have large values for all of the criteria and
henceare located in the top right corner of each subplot. Stockpiles
shown with black small dots are not on the top 4 layers.

scores for all three criteria and hence is likely to be
among the top four choices for certain weights. Exclud-
ing these additional PF layers in the process when
looking for multiple top choices could lead to flawed
decision-making.

Table 3 lists the solutions in each PF layer (4 stock-
piles on the top PF, 2 on second layer, 11 on third,
and 9 on fourth). Stockpiles B5 and B6 have identical
values for the three criteria and are both included in

Table 3. Top 4 Pareto front layers for stockpile prioritization.

Stockpile Overall Reliability Overall Urgency Consequence PF Layer

A3 9.5 875 9 1
B4 8.75 9 9 1
B7 6.75 8 9.5 1
D5 6.25 9.5 8 1
A4 9 8.75 9 2
c9 725 9 4 2
A2 6.5 875 55 3
A10 775 8.75 5 3
A14 85 8 4 3
B9 8.25 8 45 3
B10 6.25 8.25 6 3
B11 8.25 75 9 3
(o] 8.75 8 35 3
c 8.5 7.25 6 3
(e 8 85 5 3
D3 9 7.25 4 3
D4 8 8 9 3
Al 9 6 25 4
A5 7 8.5 4.5 4
A7 8 775 35 4
A8 85 7.25 35 4
A15 7.25 8.25 3 4
B2 8.25 6.25 7 4
B5 8.5 8 3 4
B6 8.5 8 3 4
c 775 8 9 4

QUALITY ENGINEERING 7

PF layer 4. In general, if two (or more) solutions are
tied for all criteria, all are included. Without including
these in the same PF layer, potential solutions could be
missed in the decision-making process. Sixteen of the
42 stockpiles are not in the top 4 layers, and so can be
objectively eliminated. The 26 remaining stockpiles (10
from A, 8 from B, 5 from C, 3 from D) continue under
consideration. Hence, the Reduce step of the DMRCS
process eliminated approximately 1/3 of the stockpiles
as non-contenders. While the total number of choices
is not huge for this problem, often the exhaustive list
of alternatives can feel overwhelming. By constructing
the layered Pareto fronts, some candidates can be
eliminated as never being in the top N, which makes
the problem feel more manageable and allows the team
to make progress before embarking on the subjective
phases of the decision making.

The Combine step focuses on evaluating the
trade-offs between contenders by leveraging the DF
approach. The team considered several choices on how
to weigh the different scores for reliability, urgency, and
consequence. The first choice for the team was the scal-
ing of the individual desirability scores. There are sev-
eral possible choices to define the mapping to [0,1]: (1)
use the natural range of each metric and map the 10 to
a desirability score of 1, and the worst possible value (0)
to 0; (2) use the range of the observed data (for exam-
ple, for Overall Reliability, 5.75 — (maps to) 0, and
9.5 — 1)); or (3) use the range of data on the top N PFs
layers (here for Overall Reliability, 6.25 — 0, and 9.5—
1). The choice of scaling does not impact the PFs (i.e.,
the exclusion of non-contenders), but does impact the
Combine step when scores from the different criteria
are combined and compared.

Another important choice is choosing between the
additive and multiplicative forms of the DF in Egs. [1]
and [2]. The multiplicative DF more severely penalizes
low criterion values than the additive DF. For example,
if one stockpile has a small score for any of reliability,
urgency, or consequence, it is difficult for other crite-
rion scores to overcome this poor rating.

The decision-making team deliberated on the mer-
its of the different alternatives, and the majority agreed
to use the natural range from 0 to 10 mapping to 0
and 1 on the desirability scale. The definition of con-
sistent metrics across categories meant that a partic-
ular value (say, 5 on the natural scale or 0.5 on the
desirability scale) would be comparable across metrics.
The choice between using the additive or multiplicative
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Figure 3. The mixture plot for showing the top choice for differ-
ent possible weights of the three criteria, reliability, urgency, and
consequence, considering only stockpiles on the top layer of PF.
The red triangle shows the agreed upon sub-region of interest
in the weight space requiring Overall Reliability >20%, Overall
Urgency >10%, and Consequence >30%.

DF led to more vigorous debate, since whether a low
score could eliminate a stockpile from consideration
was not as clear. In the end, the consensus was to focus
on the additive DE The team did not want to com-
pletely exclude other scaling or DF form options. Hence
in the discussion section, we examine other choices. In
general, we recommend select a primary scaling and
DF form, but also explore the impact of these choices
on results before making a final decision. The use of
layered PFs allows efficient evaluation of different scal-
ing and DF choices by avoiding repetitive and unnec-
essary evaluations of non-contenders across different
scenarios.

Figure 3 shows a mixture plot (Lu et al. 2011) for the
top choice (those on the first PF layer) for all weight
combinations using the additive DF scaled [0,10] —
[0,1]. Regions close to a vertex emphasize a single cri-
terion. Regions close to an edge emphasize the crite-
ria for the adjacent vertices while down weighting the
third criterion. Regions in the interior give non-zero
weight to all three criteria. Only 4 stockpiles are most
critical: Stockpile A3 with (OR,0U,C) = (9.5,8.75,9) is
most critical for the majority of weight combinations
(more than 70% of weights), particularly when relia-
bility is weighted more heavily (>25%) than the other
criteria. Stockpile B7 with (OR,0U,C) = (6.75,8,9.5)
is most critical when consequence is heavily weighted
(we > 70%), and D5 with (OR,0U,C) = (6.25,9.5,8)
is top when urgency is highly prioritized (woy >
70%). Stockpile B4 with (OR,0U,C) = (8.75,9,9) is
top when reliability is down-weighted (wr < 25%),

and urgency and consequence are weighted similarly.
These results illustrate the benefits of the PF approach,
with both stockpiles with top individual scores and
those with balanced high scores are identified as
critical.

Because the top 4 stockpiles are of interest for this
decision, we now explore the additional information in
the layered PFs. Figure 4 shows the top 4 choices for
two slices of weighting choices from the mixture plot
in Figure 3. Fixing the weight of consequence (w¢) to
be 40% (0.4) matches the horizontal line labeled 0.4 on
the left side of Figure 3. Consequence set at 50% cor-
responds to another horizontal line between 0.4 and
0.6 in Figure 3. The different shades of gray in Figure 4
indicate the top 4 choices (black = most critical, lightest
gray = 4th most critical) for a given set of weights. First,
note that the results are consistent with Figure 3. For
example, when wc = 0.4, A3 is the top choice for wor
between 0.15 and 0.6, and B4 is the top choice when
WoR is between 0 and 0.15.

The summaries in Figure 4 allow exploration of
the top 4 choices for any weight combination. Sup-
pose that one team member chooses (Wor,Wou,
wc) = (0.35,0.25,0.4). In this case, the top 4 choices (in
order) are stockpiles A3, A4, B4, and D4. For weights
(Wor>Wou,wc) = (0.3,0.3,0.4), there is a tie for second
rank between A4 and B4. Similarly, there is a 2-way tie
for 4th most critical stockpiles between B11 and D4
when (wor,Wou,wc) = (0.4,0.2,0.4). The JMP TopN-
PFS Add-In allows dynamic exploration of the 4 most
critical stockpiles over varying weights by selecting dif-
ferent fixed weights for one criterion and then looking
across the possible weights of the remaining two. Stock-
piles A3, A4, and B4 are most often among the top 4
choices for both wc values.

In addition to exploring individual weights, the team
was also interested in the robustness. Figure 5(a) shows
the proportion plot from the TopN-PFS Add-In that
summarizes how often different stockpiles were iden-
tified in the top 4 across all weight combinations. The
stockpiles are sorted from most frequently in the top
4 to least, and all stockpiles that appear anywhere
in the top 4 for any weight combination are shown.
Although the team started with 42 stockpiles (with
26 in the top four PF layers), only 14 were ranked
in the top 4 for this scaling and DF choice. Differ-
ent shades of gray again indicate the ranking achieved
by the stockpile. As with Figure 3, note that only
stockpiles A3, B4, B7, and D5 are ever shown as the
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Figure 4. Sample mixture plot summary for top 4 choices when Consequence is weighted 40% and 50% using an additive DF and scaling
[0,10]— [0,1]. (Top) Where (wt Consequence = 0.4); (bottom) Where (wt Consequence = 0.5).

top choice (black bars in the stacked proportions) in
Figure 5(a).

This plot shows that three stockpiles (A3, B4, A4) are
in the top 4 for almost all the possible weights. Stockpile
A3 is most critical for approximately 70% of all weights,
and always in the top 4. Stockpiles B4 and A4 are in the
top 4 for over 95% of weight combinations. This plot
highlights the importance of including additional lay-
ers of the PE, as A4 (on the second PF layer) would not
have been considered as a solution using only the top
PF layer. When the team saw these results, it was clear
that A3, B4, and A4 should receive additional funding.
Seeing the right summary made some of the decision-
making easy and non-controversial.

Proportion of Top 4 Choices Across Weights
1.00

0.75
0.50
0.25
fo A3 B4

Proportion

A4 D5 BN BT D4 D3 Q
Stockpile

(a)

Deciding on the 4th stockpile was more difficult.
From Figure 5(a), the 4th through 7th place stockpiles
in the top 4 were not easy to distinguish. For exam-
ple, both B11 and D5 were in the top 4 for 25% of the
weights. The next step for the decision-making team
was to identify a universally agreeable range of weights.
Identifying a focused region that matches decision-
maker goals can narrow the search (Lu et al. 2014).
None of the team thought eliminating any criterion
(i.e., setting a weight to zero) was appropriate. After
some discussion, the team reached a consensus on
the sub-region with Overall Reliability >20%, Over-
all Urgency >10%, and Consequence >30% (the over-
laid triangle in Figure 3). All the team members agreed

Optimal Level

Il Cptimal Level 1
I Cptimal Level 2
I Cptimal Level 3
Optimal Level 4
portion of Tag 4 Stockpiles of Weights
120
s
5
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s
TR 00— m M [ B i 0
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(b)

Figure 5. Proportion plot summary for top 4 choices using an additive DF and scaling [0,10]— [0,1] (a) across all possible weight com-
binations, and (b) across the specified subset of weight combinations requiring Overall Reliability >20%, Overall Urgency >10%, and

Consequence >30%.



10 S.E. BURKE ET AL.

m

EEE ETENEER T2
EE ErEEEEE S

"

S EEEEEEENEENEET
EENEECEEEEEEE
S ANEEEEEEEEEEED
EENEECENEEEEE
EEEEETEEEENEE
ENEEEEENENNEE
EEECETEEEEEEE
EEEDEC AN
EEEEEEEEEEEEE S
El
ENEEEEEREEEEEE
EEEEEEEEEEEEEE S

=
=]
[
2
[
o
=

05
wi Overall Reliability

=
o

iciency Plot

08 09 1.0

{wt Owerall Urgency = 1 - wi Overall Reliability - wi Consequence)

Where(wt Consequence = 0.4)

3
=

S AN
EErEErENEEEEE
EEEEEEEEEEEEED
EENEEEEEEEEEED
EENEEEEEEEEEEE
EECOECAEEEEEE
EECOE AEEEEE
EEEEENEEEEEEEE
EEEEEEEEEEEEEnY
EENEENEEEEEEEE
EEEEEEEEEREEEE

=]
=
Fa
=
(]
o
=

05 06
wi Overall Reliability

Efficiency Plot

1.00
Al
A10 l E'z
AZ " Synthesized Efficiency

A3 0.40

B11 0.20
B84 0.00
B7

08 09 1.0

(wit Overall Urgency = 1 - wt Overall Refiability - wt Consequence)

Where(wt Consequence = 0.5)

Figure 6. Synthesized efficiency plot when Consequence is weighted 40% and 50% using an additive DF and scaling [0,10]— [0,1]. (Top)
Where (wt Consequence = 0.4); (bottom) Where (wt Consequence = 0.5).

consequence should always be prominently consid-
ered, while urgency was least important. A new pro-
portion plot for this subset of weights is shown in
Figure 5(b). The choice of the fourth stockpile now
becomes clearer for this region of weights. D4 is the
4th most critical solution for approximately 50% of this
subset of weights.

From the different numerical and graphical sum-
maries, the team selected A3, A4, B4, and D4 as the
four stockpiles to receive the additional funds. To final-
ize the decision, the team considered the dynamic syn-
thesized efficiency plot (also in the TopN-PFS Add-In).
This adapted version of the synthesized efficiency plot
for a single PF (Lu and Anderson-Cook 2012) allows
exploration of how top solutions compare to the best
available solution at a given weight combination. In

N+1 DF Score / N DF Score

100 gttt

0.75 a4

0.50

Propaortion

0.25

0.00
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
wi Overall Reliability
(Wt Urgency = 1 - wt Reliability - wt Consequence)

Where (wt Consequence = 0.4)

Figure 7. N 4 1 comparison plot for N =4 and N = 3 when Conse-
quence is weighted 40% using an additive DF and scaling [0,10]—
[0,1]. Where (wt Consequence = 0.4).

Figure 6, the same two slices of weights for consequence
fixed at 0.4 and 0.5 are shown. Note that from Figure 4,
stockpile A3 is the top choice for wor = 0.15 and is
therefore shown with the darkest shade in Figure 6.
Note that even for wor < 0.15 when wc = 0.4 or
we = 0.5, stockpile A3 has near optimal performance
with synthesized efficiency close to 1 (very dark shade).
This suggests stockpile A3 is nearly universally most
critical for all weights in Figure 6. In addition, all the
top 4 stockpiles (A3, A4, B4, and D4) have dark shades
throughout the range of weights shown, indicating they
are leading choices. A few other stockpiles (such as B7,
B11, and C4) also have similar shades for much of the
ranges, which shows that more than 4 stockpiles could
merit consideration. This plot allows the managers to
assert to the funder the benefits of receiving even more
funds to support additional stockpiles.

The final decision for the top 4 leads to a natu-
ral question about whether the choice made by the
sponsor of N = 4 stockpiles was sensible. The N +
1 comparison plot (Figure 7) shows the impact of this
choice on the final decision. This plot shows the ratio
of the DF scores for the (N + 1)th best solution to the
Nth best solution for given weight combinations. The
ratio is naturally bounded between 0 and 1 with high
values indicating the (N + 1)th solution is very close



to the Nth best choice. If the ratios across all weights
are relatively low, it indicates the next best choice is
not competitive with the Nth best choice. Figure 7
shows the N + 1 comparison plot for N=3and N =4
using an additive DF and the scaling [0, 10] — [0, 1].
We can see that when N = 4 and w¢ = 0.4, the fifth
best solution has very close (almost indistinguishable)
performance compared to the fourth. For N = 3, there
is bigger separation. For some of the weights, the
fourth best choice is below 90% efficient (in terms of
the DF score) compared to the third best choice. If the
criteria scaling was based on the range of values on
the layered PFs, there is an increased change in the
DF scores between the Nth and (N + 1)th solutions
because the desirability scale is mapped to a narrower
range of criteria values (Figure SM1.1 in the online
supplementary materials [SM]).

In the end, three of the four managers received addi-
tional funding for at least one of their stockpiles. While
the manager of the C family was disappointed about the
outcome, there was much more clarity about how the
decision was made and he understood justification for
the choices.

Discussion and conclusions

One potential issue with the approach is the concern
that the tools and graphical methods described in the
paper may require extensive training before a manager
is able to comfortably use them for decision-making.
One of the authors (CAC) has introduced these meth-
ods to multiple groups with different scientific and
quantitative backgrounds. A helpful strategy begins
the decision-making process with discussion about the
process that will be followed. The DMRCS process is
quite intuitive once explained and it is helpful if the par-
ticipants understand that there will be time later in the
process when their opinions will be discussed. When
the graphics for the Reduce, Combine, and Select steps
are needed, it is helpful to introduce them with a simple
example of similar dimension, unrelated to the current
decision to be made, and walk through how to extract
information from the plots. In 10-15 minutes with
encouragement to ask questions about the mechanics
of the process, the group is comfortable with the infor-
mation and able to consider the details of their own
decision.

One reviewer noted that the particular set of choices
will differ with each application. For example, the three
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clear winners in this case would not likely occur for
other applications or even in subsequent years. Our
goal in describing the DMRCS process is not to define
a specific path to decision-making, but rather to give
a framework to guide how teams approach their task
to make informed decisions. If instead of choosing the
top 4, the sponsor only had funds for the top 2, then
the team would take a closer look at A3, B4, and A4
to determine which of these emerge as most critical.
The process of eliminating non-contenders is helpful to
make the problem manageable, but the discussion and
choices in the subjective Combine and Select stages will
be unique to each problem.

As discussed previously, several subjective choices
were made in the Combine and Select steps, includ-
ing the choice of scaling and the DF forms. A com-
parison of the additive DF results to using a multi-
plicative DF was performed with the same scaling [0,
10] — [0,1]. In the dynamic mixture plots at wc = 0.4
and wc = 0.5 (Figure SM1.2), we see that stockpiles
A3, B4, and A4 remain clear winners. However, the
choice of the fourth stockpile again requires additional
investigation among B11, D5, D4, and B7. The pro-
portion plot in Figure SM1.3(a) confirms that stock-
piles A3, B4, and A4 are clearly among the four most
critical stockpiles for nearly all weights. Stockpiles B11,
D5, D4, and B7 compete for the fourth place, each of
which is among the top 4 choices between 20-25% of
all weights. Hence, the multiplicative DF also identifies
the same stockpiles (although with minor frequency
changes). Figure SM1.3(b) shows the proportion plot
for the subset of weights with OR > 20%, OU > 10%,
and C > 30%. The same decision is made using the
multiplicative DF as the additive DF: D4 is again the
fourth ranked stockpile. This was helpful confirmation
for members of the decision-making team about the
robustness across both DF forms.

The team also investigated the impact of the choice
of scaling on the final decision. One of the alterna-
tive scaling options is to use the range of criteria val-
ues found on the top N layered PFs. For example, for
Overall Reliability, the minimum value found on the
layered PFs is 6.25, which maps to 0 and the maximum
value 9.5 maps to 1. The detailed graphical summaries
for using the scaling based on the identified layered PFs
using an additive or a multiplicative DF are available in
Sections 2 and 3 of the SM. Even with the change of
scaling, the top three choices remain the same (A3, B4,
and A4), for both the additive and multiplicative DFs
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(see Figure SM2.2 and SM3.2, for example). The team
was reassured that their decision was robust to these
subjective choices. The differences in the scaling and
DF impacted the fourth most critical stockpile; how-
ever, when the more focused weight region is consid-
ered, the same set of top 4 choices (A3, B4, A4, and D4)
is always identified.

In addition to the scaling and DF choices, the
stockpile decision-making team also investigated the
impacts of combining the reliability and urgency
metrics in different ways. In the original analysis, the
Overall Reliability and Overall Urgency criteria each
combined two metrics equally. A mini-factorial of
the possible weight combinations between the two
reliability measures (1.a and 1.b) and the two urgency
measures (2.a and 2.b) are explored. Table SM4.1 in the
SM shows the four combinations of weight combina-
tions for the reliability and urgency metrics that were
investigated. The tables of the stockpiles identified on
the top 4 PF layers and the graphical summaries using
an additive DF and the scaling [0, 10] — [0, 1] for
supporting informed decision-making are included
in Section 4 in the SM. The number of stockpiles on
the PF layers does change under these four different
scenarios. In the original analysis, there were 26 stock-
piles on the top 4 PF layers. Scenario 1, however has 29
stockpiles on the top 4 PF layers (Table SM4.2), while
scenario 4 only has 19 (Table SM4.5).

The top 3 leading choices remain as A3, B4, and A4
across all four scenarios. The choice of the fourth stock-
pile, however, does change with different combinations
of the reliability and urgency metrics. The team liked
the consistency of the results for the top 3 stockpiles.
The differences in the choices of the 4th stockpile did
trigger animated discussion. However, the team mem-
bers admitted that no a priori preference for a partic-
ular reweighting and they were primarily reacting to
the results obtained. Again, the DMRCS process, which
builds a solid foundation of focusing on how to make
the decision before looking at results builds consensus
and understanding of the true goals of the decision.

The final decision of the top 4 stockpiles depends
on the region of weights for each criterion as well as
the metrics chosen for quantifying the key characteris-
tics. However, when the average reliability and urgency
metrics were used, the final decision was more robust to
the scaling and DF choices for the more focused prior-
ities. Arriving at a consensus for the region of weights

is therefore critical for the team to agree on the final
decision of the most critical stockpiles.

Finally, we compare the original process for select-
ing these stockpiles with the new structured approach.
The previous method determined the outcome in a sin-
gle meeting where the managers presented arguments.
In this case, the onus was on managers to develop
convincing arguments, which often involved trying to
sway the sponsor with an argument that highlighted
the merits of choosing particular stockpiles. The met-
rics they chose were selected for their persuasiveness,
rather than having a consistent objective. The new
process using the DMRCS approach is data-driven,
involves first determining which criteria will lead to
an informed decision, and uses input from multiple
experts. The sponsor was in a better position to make
fair comparisons between alternatives.

A common alternative is to use a DF with a fixed set
of weights, typically weighting the criteria equally. This
is considerably better than the original method, in that
it could encourage the careful a priori choice of metrics
based on what is important and has a solid data-based
foundation. However, this approach is weaker in that it
becomes a “black box,” where a single answer with a top
4 ranking of the stockpiles is obtained. The subjective
choices made along this process are ignored and a sin-
gle simplistic decision is made. There is also no explo-
ration of the robustness of the results to weight choices.
Often the discussion among the team on the relative
importance of the criteria is a valuable part of the pro-
cess and small differences may still lead to a common
choice of best solution. Since there is little or no visual-
ization of alternatives to understand the space of pos-
sibilities and robustness, a single choice of weights will
either be hard to agree on or a default non-thoughtful
choice made. This omission will likely limit the degree
of buy-in in the final solution and the decision-making
team is unlikely to be able to defend their choice effec-
tively to others. The time to execute this method is sim-
ilar to the new method, but results in a less satisfying
decision.

While this new outlined process increases the time
to make the decision over the original method, the
stockpile managers understand how the decision has
been made, and there is greater buy-in from all partici-
pants. Finally, choices made in the Define and Measure
steps of the DMRCS process form the foundation of the
process for subsequent years, when the choices made



will be reexamined, but likely continue to be the basis
for the decision-making.
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