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Abstract

A large class of sequential decision making problems under uncertainty with multiple
competing decision makers can be modeled as stochastic games. It can be considered that
the stochastic games are multiplayer extensions of Markov decision processes (MDPs).
In this paper, we develop a reinforcement learning algorithm to obtain average reward
equilibrium for irreducible stochastic games. In our approach, we first define a sequence
of auxiliary matrix games having equivalent equilibrium points and values to the above
mentioned stochastic games. We then extend the theory of RL algorithms for average
reward MDPs to learn the elements of the matrix games. A convergence analysis of the
algorithm is developed from the study of the asymptotic behavior of its two time scale
stochastic approximation scheme and the stability of the associated ordinary differential
equations (ODEs). The learning algorithm is tested using a grid world game.

Keywords: Stochastic game, matrix game, reinforcement learning, stochastic approxi-
mation, ODE limit

1. Introduction

Many industrial decision making problems such as inventory management, supply chain
management, and airline yield management are inherently sequential. In these sequential
problems, based on the observed system state, a decision maker chooses an action. The
action results in two outcomes: an immediate reward, and a new state at the next deci-
sion epoch. An action is then chosen for the new state, and thus the system continues.
Markov/semi-Markov decision process (MDP/SMDP) Puterman (1994), Das et al. (1999)
models are used to study these noncompetitive sequential decision making problems, if their
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underlying stochastic models are Markov chains.

Stochastic games are extensions of the noncompetitive decision problems, and consist of
multiple competing decision makers (also referred to as agents or players). The collective
actions of the players dictate the next system state and also the individual rewards of the
decision makers. A stochastic game is dynamic in the sense that the decision environment
is nonstationary to each decision maker. The nonstationarity arises from the changes in
the behavior of the other decision makers with time. Also, an inherent aspect of a non-
cooperative game is the conflict of interest among the players. Hence, making decisions
in a noncooperative game environment is challenging. Game theory provides a framework
to analyze the conflicts of all agents’ interest Rasmusen (2001), Myerson (1997). In this
paper we first combine knowledge from the theory of MDPs and the game theory to show
how average reward irreducible stochastic games can be represented as a series of equiva-
lent matrix games. Since solution methodologies exist for matrix games Mckelvey et al.,
Nanduri and Das (2007), the above equivalence enables us to solve stochastic games. Later
in the paper, we develop a two time scale reinforcement learning algorithm for obtaining
the equivalent matrix games and provide a convergence analysis. Methods used for solving
the resulting matrix games are not explicitly discussed in this paper.

Stochastic games have received some attention in recent years from mathematicians,
computer scientists, and engineers Shapley (1997), Filar and Vrieze (1997), Altman and
Spieksma (1997), Altman and Pourtallier (2000). Many dynamic programming and rein-
forcement learning based techniques Borkar (2002), Littman (2001, 1994), Brafman and
Tennenholtz (2000), Hu and Wellman (1998), Bowling and Veloso (2000), Ravulapati et al.
(2004), Rao et al. (2002) have been presented as solution methods for certain classes of
games. Based on the reward criterion, stochastic games can generally be divided into dis-
counted reward stochastic games and average reward stochastic games. Most of the above
referenced work studied discounted reward games, since the discount factor that applies to
many real life applications allows analytical advantages over the average reward criterion.
But when decisions are made frequently or the reward criterion do not need to be described
in economic terms, the average reward criterion is often more appropriate. In this paper
we focus our attention on the average reward criterion.

Discounted reward stochastic games are defined as games without nonzero stopping
probabilities. In such games, where future payoffs are discounted using a discounting factor
β Filar and Vrieze (1997), the payoffs eventually approach zero. This can be construed as
the termination of the game. Hence the discounted reward stochastic games can be viewed
as transient stochastic games with stopping probability 1 − β independent of the actions
taken. For finite state space and bounded rewards, the discounted rewards are continuous
in the strategies. So every discounted reward stochastic game possesses at least one equilib-
rium point. The fact that average rewards may not be continuous in the strategies makes
the average reward stochastic games more challenging. However, for some special categories
of games, such as irreducible games, the average reward is continuous in the strategies. Our
focus here is on finite state space and bounded reward irreducible stochastic games with the
expected average reward optimality criterion in the infinite horizon. We present for these

2



Learning in Average Reward Stochastic Games

games the mathematical structure of their Nash equilibrium policies, which is critical to
developing learning based solution algorithms.

In what follows, we first present an outline of the theory of MDPs and the game theory,
in order to establish notation and the theoretical foundation for stochastic games. We
then present, in Section 4, discounted stochastic games and define a sequence of auxiliary
matrix games that are shown to be equivalent. In Section 5, the average reward stochastic
games are defined along with the associated matrix games that are shown to be equivalent.
In the following section, we develop a Nash-R learning algorithm for iteratively obtaining
the elements of the equivalent matrices for average reward irreducible stochastic games.
Section 6 also contains the convergence analysis for the Nash-R algorithm using a stochastic
approximation method with two-time scales. In Section 7, the learning algorithm is tested
and benchmarked against other learning approaches using a grid-world game.

2. Single Decision Maker Problems–Markov Decision Processes

In sequential decision making problems, the decision maker’s goal is to choose a sequence of
actions that maximizes the utility of the system based on a given criterion. Such problems
with an underlying Markovian structure can be defined within the framework of MDPs
(Puterman (1994), Filar and Vrieze (1997), Abounadi et al. (2002), Gosavi (2004)) denoted
by a tuple < S,A, P, R >. The elements of the tuple are as follows.
S denotes the finite set of states of the environment.
A denotes the finite set of actions available to the decision maker (agent), with A(s) denot-
ing the subset of actions available at state s.
P denotes the set of all transition probability matrices P a, a ∈ A. An element p(s′|s, a) of
P a gives the one step probability of reaching state s′, when action a is taken in state s.
R : S × A → R is the reward function that gives the immediate reward corresponding to
every action in each state. An element r(s, a) of R denotes the reward for action a in state s.

For MDPs, the consequences of the decisions are uncertain but the environment is
stationary. A probability distribution of consequences are associated with each alternative
action, and this distribution does not change over time once the decision policy is given.
For a given policy, a reward is received in each period. The agent’s job is to find a policy π,
mapping states to actions, that maximizes some measure of the rewards received. The MDPs
are either finite-horizon models or infinite-horizon models. The infinite-horizon discounted
reward model takes the long-run reward of the agent into account, but rewards that are
received in the future are geometrically discounted according to discount factor β (where
0 ≤ β < 1). The expected discounted reward for an infinite-horizon MDP starting in state
s ∈ S can be given as Vβ(s) = E(

∑

∞

t=0 βtrt), where rt is the reward received at the tth

decision epoch. Another optimality criterion is long-run expected average-reward, which
can be given by g(s) = lim supT→∞

E( 1
T

∑T−1
t=0 rt). The average reward g is also referred

to as the gain of this system. A deterministic policy is one that assigns a probability value
of 1 to an action in each state. Every MDP has a deterministic stationary optimal policy
Puterman (1994). For unichain average reward MDPs where there is only one recurrent
class of states, and possibly a set of transient states, the gain is identical for all the states.
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Under this unichain assumption, limsup is a limit for any stationary policy (Abounadi
et al. (2001)). Henceforth, we will use the limit notation instead of limsup. Since in average
reward MDPs the sum of the rewards can be unbounded, a surrogate used is called bias h,
which is defined for a starting state s ∈ S and for stationary policies as:

h(s) = lim
T→∞

Es

T−1
∑

t=0

[rt − g(s)].

The bias is interpreted as the expected total difference between the reward and the station-
ary reward.

The optimality equation for discounted reward MDPs is given as:

Vβ(s) = max
a∈A(s)

(

r(s, a) + β
∑

s′∈S

p(s′|s, a)Vβ(s′)

)

. (1)

The average reward of unichain MDPs can be seen as the limiting discounted reward with
discount factor β approaching 1. Using truncated Laurent series expansion of the discounted
value function (1) (refer to pp314-355 for details Puterman (1994)), we can write the value
function in vector form for the average reward MDP in terms of gain (or, average reward)
and bias as follows:

g + (I − P )h = r. (2)

From (2), the optimality equation for a unichain average reward MDP may be expressed in
component notation as

0 = max
a∈A(s)

(

r(s, a)− g +
∑

s′∈S

p(s′|s, a)h(s′)− h(s)

)

.

The above equation can be rewritten in Bellman’s optimality equation form as

h∗(s) + g∗ = max
a∈A(s)

(

r(s, a) +
∑

s′

p(s′|s, a)h∗(s′)

)

. (3)

If the reward functions and the transition probability functions are known, dynamic
programming algorithms such as value iteration or policy iteration can be used to find the
optimal policy. In real life, for many stochastic decision problems, the transition probabil-
ity matrices and the reward functions are not easily available. A common approach used
is to simulate the system and learn the model first. This approach is called model-based
learning. The framework of dynamic Bayesian networks (DBNs) can be used to describe a
certain class of MDPs in a compact way Ghahramani (1998). A more common approach is
model-free learning, which is suitable for solving problems with very large state spaces. In
recent years, reinforcement learning methods have shown to yield optimal or near-optimal
solutions to large MDPs. Two classes of asynchronous model-free learning algorithms for
discounted reward and average reward models are Q-learning and R-learning respectively
Kaelbling et al. (1996), Tsitsiklis (1994), Mahadevan (1996). In the next section, we give a
description of stochastic games.
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3. Stochastic Games

Stochastic games have two or more decision makers whose interests are coupled since their
state transition probabilities and/or rewards are coupled. Stochastic games having Marko-
vian state transition properties are also called Markov games or competitive Markov decision
processes (CMDP) Filar and Vrieze (1997), which are an extension of MDP to noncoop-
erative scenario. We consider finite state/action noncooperative games, where all decision
makers make their decision independently and noncooperatively to maximize their individ-
ual payoff criterion.

A stochastic game can be defined by a tuple < n, S,A1, ..., An, P, R̃1, ..., R̃n >, the
elements of which are as follows.

n denotes the number of agents/players/decision makers.
S denotes the finite set of states of the environment.
A1, ..., An denote the collection of finite set of admissible actions to the agents 1, ..., n,

where Ai = {Ai(s) : s ∈ S} and mi(s) =
∣

∣Ai(s)
∣

∣ , i = 1, ..., n, are the cardinalities of
the action spaces in state s. Let A = A1 × ... × An. To play the game, each agent
chooses an action ai ∈ Ai resulting in a joint action vector a = (a1, ..., an). Let a−i =
(a1, ..., ai−1, ai+1, ..., an) be vector of actions of all players except the agent i. We will use
this vector notation whenever there is no confusion. Same notation will be used later for
mixed strategies.

P denotes the set of transition probability matrices, where p(s′ | s,a) is the transition
probability of reaching state s′ as a result of a joint action a by all of the n players.

rk : S× A→ R gives the immediate reward gained by the player k for each set of actions
of each agents in each state. R̃k is the reward matrix of player k. Throughout the paper
we assume that p(s′ | s,a) and rk(s,a) are continuous in a.

In a stochastic game, the transition probabilities and the reward functions depend on the
choices made by all agents. Thus, from the perspective of an agent, the game environment
is nonstationary during its evolution phase. However, for irreducible stochastic games,
optimal strategies constitute stationary policies and hence it is sufficient to consider only
the stationary strategies Filar and Vrieze (1997). We define πk(s) as the mixed strategy
at state s for agent i, which is the probability distribution over available action set, Ak(s),
of player k. Thus πk(s) = {πk(s, a) : a ∈ Ak(s)}, where πk(s, a) denotes the probability
of player k choosing action a in state s, and

∑

a∈Ak(s) πk(s, a) = 1. Then π = (π1, ..., πn)

denotes a joint mixed strategy, also called a policy. A pure action a ∈ Ak(s, a) can be
treated as a mixed strategy πk for which πk(a) = 1.

Under policy π, the transition probability can be given as

p(s′ | s, π) =

m1(s)
∑

a1=1

· · ·

mn(s)
∑

an=1

p(s′ | s, a1, ..., an)πn(s, an) · · ·π1(s, a1).

The immediate expected reward of player k induced by a mixed strategy π in a state s is
given by

rk(s, π) =

m1(s)
∑

a1=1

...

mn(s)
∑

an=1

rk(s, a1, ..., an)πn(s, an)...π1(s, a1).
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Then the overall discounted value of a policy π to player k starting in state s can be given
as

V k
β (s, π) =

∞
∑

t=0

βtEs(r
k
t ) =

∞
∑

t=0

βt
∑

s′∈S

pt(s′ | s, π)rk(s′, π),

where pt(.) denotes an element of the tth power of the transition probability matrix P . The
overall average value of a policy π to player k starting in state s can be given as

V k
α (s, π) = T →∞lim sup

1

T

T−1
∑

t=0

Es(r
k
t ) = T →∞lim sup

1

T

T−1
∑

t=0

pt(s′ | s, π)rk(s′, π).

We will assume the following unichain condition for the average reward stochastic games.

Assumption A1: (Ergodicity) If there is at least one player that uses average reward
criterion, then unichain ergodic structure holds. That is, under any stationary policy π, the
process is irreducible Markov chain with one ergodic class.
Assumption A1 will imply that limsup is a limit under any stationary policy Abounadi
et al. (2001). Thus, hereon, we will use limit instead of limsup.

3.1 Matrix Games

A matrix game can be defined by a tuple < n, A1, . . . , An, R̃1, . . . , R̃n >. The elements of
the tuple are as follows.
n denotes the number of players.
Ak denotes the set of actions available to player k.
rk : A1 × . . .×An → R is the payoff function for player k, where an element rk(a1, . . . , an)
is the payoff to player k when the players choose actions a1 through an.
R̃k for all k, can be written as an n-dimensional matrix as follows

R̃k =
[

rk(a1, a2, · · · , an)
]a1=m1(s),...,an=mn(s)

a1=1,...,an=1
.

The players select actions from the set of available actions with the goal of maximizing
their payoffs which depends on all the players’ actions. The concept of Nash equilibrium
is used to describe the strategy as being the most rational behavior by the players acting
to maximize their payoffs. So for a matrix game, a pure strategy Nash equilibrium is
an action profile (a1

∗
, · · · , an

∗
), for which rk(ak

∗
, a−k

∗
) ≥ rk(ak, a−k

∗
), ∀ak ∈ Ak, and k =

1, 2, · · · , n. The equilibrium values denoted by V al[·] for player k with payoff matrices R̃k

is obtained as V al[R̃k] = rk(a1
∗
, · · · , an

∗
). The appealing feature of the Nash equilibrium is

that any unilateral deviation from it by any player is not worthwhile. A mixed strategy
Nash equilibrium for matrix games is a vector (π1

∗
, · · · , πn

∗
), for which we can write

m1(s)
∑

a1=1

. . .

mn(s)
∑

an=1

πk
∗
(ak)π−k

∗
(a−k)rk(ak, a−k) ≥

m1(s)
∑

a1=1

. . .

mn(s)
∑

an=1

πk(ak)π−k
∗

(a−k)rk(ak, a−k)

where π−k
∗

(a−k) = π1
∗
(a1) · · ·πk−1

∗
(ak−1).πk+1

∗
(ak+1) · · ·πn

∗
(an).
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Figure 1: Stochastic game as multi-state matrix game

A matrix game may not have a pure strategy Nash equilibrium, but it always has a mixed
strategy Nash equilibrium Nash (1951). There exist methods for solving Nash equilibrium of
finite nonzero-sum matrix games McKelvey and McLennan (1996), Wilson (1971), Mckelvey
et al.. Since in matrix games, there are no transition probability functions, matrix games
are static. Also matrix games can be viewed as recursive stochastic games with a single
state. On the other hand, stochastic games can be viewed as extensions of matrix games
from a single state to a multi-state environment, as depicted in Figure 1. This viewpoint is
utilized in this paper.

As shown in the Figure 1, when system time T = t, the system is at state s, and
R̃k is the immediate payoff matrix for player k. Thus, each state s has associate with
it an n-dimensional matrix game. If the players choose strategy π at time t, then at
time T = t + 1, the system evolves to state s′ ∈ {s1, . . . , sm} according to the transition
probability p(s′|s, π), where m is the total number of states. For each of the new possible
states, there is a corresponding matrix game. So a stochastic game evolves through a series
of matrix games, which are connected by transition probabilities. But one can not just solve
for the immediate payoffs of the matrix games separately to get the equilibrium strategies
for the states, since in addition to the immediate payoffs the opportunities in future states
must also be considered.

In the next section, to motivate the matrix game based abstraction of stochastic games,
we describe the discounted reward stochastic games and its connection to matrix games.
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4. Discounted Reward Stochastic Games

Due to the economic meaning of the discount factor and due to the mathematical conve-
nience it provides to bound the infinite sum, discounted stochastic games have been studied
extensively. Most of what is presented in this subsection are from Hu and Wellman (2003),
which presents a multi-player extension of the two-player games in Filar and Vrieze (1997).

The discounted stochastic games are defined as games in which future payoffs are dis-
counted by a discount factor β. The total discounted reward is given by

V k
β (π) =

∞
∑

t=0

βtP t(π)rk(π). (4)

The strategy π∗ denotes a Nash equilibrium point for discounted stochastic game if V k
β (π∗) ≥

V k
β (π−k

∗
, πk) for all players k = 1, ...n. The discounted reward given in (4) can be rewritten

in component notation in terms of expected immediate reward and the expected discounted
value of the next state as follows

V k
β (s, π) = rk(s, π) + β

∑

s′∈S

p(s′ | s, π)V k
β (s′, π), (5)

from which the definition of Nash equilibrium can be expanded to

rk(s, π∗) + β
∑

s′∈S

p (s′ | s, π)V k
β (s′, π∗) (6)

≥ rk(s, π−k
∗

, πk) + β
∑

s′∈S

p(s′ | s, π−k
∗

, πk)V k
β (s′, π−k

∗
, πk).

Directly solving for Nash equilibrium using the inequality (6) is difficult, even when
the reward functions and transition probabilities are available. However, since methods
are available to solve for Nash equilibrium of matrix games, researchers have attempted to
study discounted reward stochastic games using their connection to matrix games Hu and
Wellman (2003).

Filar and Vrieze Filar and Vrieze (1997) combined the theories of discounted Markov
decision processes and Matrix games to develop an auxiliary bi-matrix game for two player
discounted stochastic games. In what follows, we extend the above technique to n-player
games and construct n-dimensional equivalent auxiliary matrices Qk(.) for all players k =
1, ..., n.

The elements of the Qk(.) matrices are payoffs for all possible pure action sets a, which
take into account both the immediate reward and the future opportunities. For s ∈ S, the
matrix with size m1(s)×m2(s)× ...×mn(s) for the kth player can be given by

Qk(s) =

[

rk(s, a1, ..., an) + β
∑

s′∈S

p(s′ | s, a1, ..., an)V k
β (s′, π∗)

]a1=m1(s),...,an=mn(s)

a1=1,...,an=1

(7)
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where V k
β (s′, π∗) is the equilibrium value for the stochastic game starting at state s′ for

player k. Note that this auxiliary matrix, Qk(.) captures the information from the matrix
game resulting from the pure strategies as well as the equilibrium payoff of the stochastic
game. This enables us to establish a connection between the matrix games and stochastic
games.

If the players use a mixed strategy π, the value of the above matrix game for player k
can be obtained as:

V al[Qk(s), π) =

m1(s)
∑

a1=1

...

mn(s)
∑

an=1

π1(s, a1)...πn(s, an)Qk(s, a1, ..., an)

=

m1(s)
∑

a1=1

...

mn(s)
∑

an=1

π1(s, a1)...πn(s, an){rk(s, a1, ..., an) +

β
∑

s′∈S

p(s′ | s, a1, ..., an)V k
β (s′, π∗)

= rk(s, π) + β
∑

s′∈S

p(s′ | s, π)V k
β (s′, π∗).

For the matrix game (7), the equilibrium point π∗ is defined such that

V al[Qk(s), π∗] ≥V al[Qk(s), π−k
∗

, πk]. (8)

which can be expanded to

rk(s, π∗) + β
∑

s′∈S

p(s′ | s, π∗).V
k
β (s′, π∗) ≥ (9)

rk(s, π−k
∗

, πk) + β
∑

s′∈S

p(s′ | s, π−k
∗

, πk)V k
β (s′, π∗).

The difference between the definitions of Nash equilibria for discounted reward stochas-
tic game (6) and auxiliary game (10) is subtle. The only difference is that the last term
in (6) is V k

β (s′, π−k
∗

, πk), where as the corresponding term in (10) is V k
β (s′, π∗). The follow-

ing result establishes the connection between the matrix games and the discounted reward
stochastic games.

Theorem 1 The following are equivalent:

(i) π∗ is an equilibrium point in the discounted reward stochastic game with equilibrium
payoffs (V 1

β (π∗), ..., V
n
β (π∗)).

(ii) For each s ∈ S, the strategy π∗(s) constitutes an equilibrium point in the static n-
dimentional matrix game (Q1(s), ..., Qn(s)) with equilibrium payoffs (V al[Q1(s), π∗], · · · ,
V al[Qn(s), π∗]). The entry of Qk(s) corresponding to actions a = (a1, · · · , an) is given by

Qk(s,a) = ri(s,a) + β
∑

s′∈S

p(s′ | s,a)V i
β(s′, π∗), for i = 1, ..., n, where a ∈

n
∏

i=1
Ai(s).

9
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Proof: If (i) is true, it means that πk
∗

is the best response of player k to the equilibrium
responses of other players. Then player k is not able to improve his/her reward by deviating
from the strategy πk

∗
even for one step (a similar argument can be found in many cited

works including Filar and Vrieze (1997), Herings and Peeters (2000). Then we write that
V k

β (s, π∗(s)) ≥ rk(s, π−k
∗

(s), πk(s)) + β
∑

s′∈S

p(s′ | s, π)V k
β (s′, π∗(s)). Now, using (5) and (8),

V k
β (s, π∗(s)) = V al[Qk(s), π∗], which implies inequality (10). So π∗(s) is the equilibrium

point of the matrix game in (ii).
If (ii) is true, then the equilibrium points satisfy the inequality (10). Also, note that by

the definition of Nash equilibrium, Vk
β(s, π∗) ≥ V k

β (s, π−k
∗

, πk)Thus, using (6) and (10)

V al[Qk(s), π∗] = V k
β (s, π∗(s))

≥ rk(s, π−k
∗

, πk) + β
∑

s′∈S

p(s′ | s, π−k
∗

, πk)V k
β (s′, π∗)

≥ rk(s, π−k
∗

, πk) + β
∑

s′∈S

p(s′ | s, π−k
∗

, πk)V k
β (s′, π−k

∗
, πk)

So π∗(s) is the equilibrium point of the stochastic game in (i).

Note that we can not interpret any of the elements of (7) as the expected discounted
reward gained when all players play the corresponding pure action set in that state. This is
due to the fact that the expected utility in stationary strategies does not hold for the class
of stochastic games Herings and Peeters (2000). Once the matrices Qk(·) are constructed,
linear or quadratic programming methods can be used to solve for Nash equilibrium. How-
ever, to construct the static matrix games, we need to know the reward functions rk(·),
transition probability functions P (·), and the equilibrium value V k

β (π∗). We may know
the reward and transition probability, but not the equilibrium value before the problem is
solved. A nonlinear complementarity programming approach for solving two player matrix
games is presented in Filar and Vrieze (1997).

We note that, the entries in this matrix game (7) have similar structure to the Bell-
man’s optimality equation for discounted MDP. Well known algorithms to solve Bellman’s
discounted optimality equation are value iteration and policy iteration. An extension of the
value iteration and redefinition of the value operator to solve stochastic games ws presented
in Shapley (1997). There exist learning algorithms that attempt to learn the entries of
the Qk(·) matrices. The matrices are updated during each stage and are expected to con-
verge to their optimal forms. Minmax Q-learning algorithm for discounted zero-sum games
is presented in Littman (1994). A Nash Q-learning for discounted general-sum games is
presented in Hu and Wellman (2003). Both Minmax Q-learning and Nash-Q learning al-
gorithms are extensions of the model-free reinforcement Q-learning Kaelbling et al. (1996),
Sutton and Barto (1998). A summary of the available stochastic game algorithms can be
found in Bowling and Veloso (2000).

For MDPs, there is only one optimal value for each state. But for stochastic games,
there may be several Nash equilibrium points and perhaps several equilibrium values. The-
orem 1 says that each equilibrium value has a corresponding matrix game. So there can
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be several possible equivalent matrix games for each state of a stochastic game. But in
a machine learning based approach, where each agent usually can only learn one matrix
game, assuring or verifying that all the matrices learned by different players correspond to
the same equilibrium value is difficult. In other words, it is possible that strategies learned
by the players may not constitute a Nash equilibrium policy. For zero-sum games with
unique Nash equilibrium value, such a problem does not arise. Nash-Q algorithm Hu and
Wellman (1998) for general-sum games is developed only for problems having a unique Nash
equilibrium value.

5. Average Reward Stochastic Games

In this section, for average reward stochastic games, we will construct auxiliary matrix
games having equivalent Nash equilibria and values. In Li (2003), average reward stochastic
games were explored by examining a relationship between discounted reward Vβ and average
reward Vα. In that work, for some special cases (e.g., irreducible games), the limiting
average criterion was treated as the limit of the β-discounted criterion with β → 1. This
was accomplished by using the Hardy-Littlewood Theorem Filar and Vrieze (1997), and the
Laurent series expansion approach in obtaining the average reward optimality function in
terms of gain and bias from the discounted optimality function. The resulting optimality
equation is as follows.

hk(π∗) = rk(π∗)− V k
α (π∗) + P (π∗)h

k(π∗). (10)

We call V k
α (π∗) the gain equilibrium value, and hk(π∗) the bias equilibrium value. A similar

structure of equilibrium points for average reward stochastic games with countable states
was also derived in Altman and Spieksma (1997). From (10), we can write

hk(π∗) ≥ rk(π−k
∗

, πk)− V k
α (π∗) + P (π−k

∗
, πk)hk(π∗). (11)

For n-player average reward game, construct an n-dimentional equivalent auxiliary ma-
trices Rk(.) for all players k = 1, ..., n, similar to the discounted games. The elements
of these matrices are payoffs for all possible pure action sets a, which take into account
both the immediate reward and the future opportunities. For s ∈ S the matrix with size
m1(s)×m2(s)× ..×mn(s) for the kth player can be given by

Rk(s) =

[

rk(s, a1, ..., an)− V k
α (π∗) +

∑

s′∈S

p(s′ | s, a1, ..., an)hk(s′, π∗)

]a1=m1(s),...,an=mn(s)

a1=1,...,an=1

(12)
where hk(s′, π∗) is the bias equilibrium value for the stochastic game starting at state s′ for
player k. For a mixed strategy π

V al[Rk(s), π] =

m1(s)
∑

a1=1

...

mn(s)
∑

an=1

π1(s, a1)...πn(s, an)Rk(s, a1, ..., an)

= rk(s, π)− V k
α (π∗) +

∑

s′∈S

P (s′ | s, π)hk(s′, π∗).

11



Li, Ramachandran, and Das

For the average reward matrix game (12), the equilibrium point π∗ is defined such that

V al[Rk(s), π∗] ≥V al[Rk(s), π−k
∗

, πk]. (13)

which can be expanded to

rk(s, π∗)− V k
α (π∗) +

∑

s′∈S

P (s′ | s, π)hk(s′, π∗) ≥ (14)

rk(s, π−k
∗

, πk)− V k
α (π∗) +

∑

s′∈S

P (s′ | s, π−k
∗

, πk)hk(s′, π∗).

The connection between average reward irreducible stochastic games and the average
reward matrix games are given in the following result.

Theorem 2 The following are equivalent:

(i) π∗ is an equilibrium point in the average reward irreducible stochastic game with bias
equilibrium value hk(π∗) and gain equilibrium value V k

α (π∗) for k = 1, 2, ..., n.

(ii) For each fixed s ∈ S, the strategy set π∗(s) constitutes an equilibrium point in the
static n-dimensional equivalent matrix game (R1(s), ...Rn(s)) with bias equilibrium value
hk(s, π∗) and gain equilibrium value V al[Rk(s), π∗] for k=1,...,n.

Proof of this result follows in a similar manner to that of Theorem 1, by using inequalities
(11) and (14).

For games with finite number of players with finite action choices, the following result
gives the existence of Nash equilibrium.

Theorem 3 For every n-player game with finite number of actions, there exists a stationary
policy π∗ which is a Nash equilibrium (Fink (1964)).

6. Learning Nash Equilibrium for Irreducible Average Reward Stochastic
Games

Reinforcement learning is an efficient method of mapping states to actions that maximizes
a numerical reward signal for sequential stochastic decision making problems Kaelbling
et al. (1996), Sutton and Barto (1998). The learner is not told which actions to take,
but instead must discover the actions that yield the most reward by trying them. In
reinforcement learning, an agent need not explicitly model the environment (as in the case
of dynamic programming), since the agent’s actions are directly based on the rewards.
Reinforcement learning (RL) has been successful at finding optimal control policies for a
single agent operating in a stationary environment Kaelbling et al. (1996), Sutton and Barto
(1998). In recent years RL has been applied to discounted reward stochastic games Borkar
(2002), Littman (1994), Hu and Wellman (1998). In this section, a reinforcement learning
algorithm for average reward stochastic games is presented. Average reward RL algorithms
are commonly referred to as the R-learning algorithms, hence we call our algorithm Nash-R
learning.

12
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6.1 A Nash R-learning algorithm

We consider a multiplayer irreducible stochastic game on a finite state space and a finite ac-
tion space. We are interested in finding stationary Nash equilibrium policies. The structure
of Nash equilibria is given in (10), which is similar to Bellman’s optimality equation for av-
erage reward MDP. Since it can be shown using Theorem 2 that V al[Rk(s), π∗] = hk(s, π∗),
we can rewrite (12) as follows,

Rk(s, a1, . . . , an) = rk(s, a1, . . . , an)− V k
α (π∗) +

∑

s′∈S

p(s′|s, a1, . . . , an)V al[Rk(s′), π∗], (15)

where π∗ is the Nash equilibrium point for matrix game R(·), and

V al[Rk(s), π∗] = rk(s, π∗)− V k
α (π∗) +

∑

s′∈S

P (s′|s, π∗)V al[Rk(s′), π∗]. (16)

The fixed point of equation (15) is the auxiliary matrices for the stochastic game, whose
value is the Nash equilibrium bias value hk(π∗).

In most real applications, the transition probabilities are extremely difficult to obtain.
Hence we use adaptive learning mechanisms such as simulation based reinforcement learning
to intelligently build Rk(·) matrices. There exist three main classes of reinforcement learn-
ing (RL) mechanisms: value iteration based methods such as Q-learning and R-learning
algorithms, policy iteration based methods, and combination of value and policy iteration
based methods referred to as the Actor-Critic algorithm Borkar (2002). In this paper, we
use a value iteration based approach. In this approach that uses value function based RL
algorithms Szepesvari and Littman (1999), an estimate of the optimal value function is
built gradually from the decision maker’s experiences, and these estimates are often used
for control of the learning process. For stochastic games, we extend a value function based
two time scale R-learning algorithm Abounadi et al. (2001) to a multi-agent scenario. It
is considered that each player learns not only her own R values but also other players’ R
values based on the observation of all other players’ immediate rewards and chosen actions.
Hence the auxiliary matrices R(·) are developed simultaneously by each player using the
learning scheme presented below.

Let at the tth stage, the system state is s and the action combination (a1, . . . , an) is
chosen by the players. Also let the system state be s′ at the (t+1)th stage. The R(·) matrix
and the average reward value for the kth player are updated as follows

Rk
t+1(s,a) = Rk

t (s,a) + αt[r
k(s,a) + V al[Rk

t (s
′), π∗t]−Rk

t (s,a)−Gk
t ] (17)

Gk
t+1(s,a) = Gk

t (s,a) + βtV al[Rk
t (s

′), π∗t] (18)

For any t, since we assume that r(t) is bounded, {Gk
t } is also bounded.

In the above updating scheme, π∗t represents a Nash equilibrium policy of the matrix
game Rt(s

′) at the tth stage. The element V al[Rk
t (s

′), π∗t] reprerents the Nash equilibrium
value for player k in state s′ which is obtained as

V al[Rk
t (s

′), π∗t] =
∑

a1,...,an

π1
∗t(s

′, a1) . . . πn
∗t(s

′, an)Rk
t (s

′, a1, . . . , an).

13
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Following Hu and Wellman (2003), we call the V al[Rk
t (s), π∗t] as Nash R-function. Ideally,

for convergence analysis, one needs unique mixed strategy Nash equilibrium. This is an
unrealistic assumption. The concept of R-function requires that all players follow a specific
Nash equilibrium at each iteration. When there are multiple equilibrium for the stochas-
tic game, choice of different Nash equilibrium by the players may result in different Nash
R-functions. The particular choice of Nash equilibrium that we follow in our algorithm im-
plementation is based on Assumption A4 (presented later). In our numerical experiments
we explore convergence behavior when this assumption is violated.

The algorithm described in (17) and (18) presents a two time scale iteration scheme, in
which the parameters αt and βt represent the step sizes at time t. The simulation process
on which the learning scheme is applied is assumed to satisfy the following assumption.

Assumption A2: Every state and every action of the players are visited infinitely
often.
Assumption A2 can be relaxed, Borkar (2002). In the above two time scale learning scheme,
two diminishing step sizes αt and βt are needed to update the Rt(·) matrices and the average
reward Gt. We make the following assumption for αt and βt.

Assumption A3: {αt} ⊂ (0,∞), with
∑

t αt =∞,
∑

t α2
t ≤ ∞.

{βt} ⊂ (0,∞), with
∑

t βt = ∞,
∑

t β2
t ≤ ∞. Also, βt = o(αt), which denotes limt→∞

βt

αt
=

0.

The assumption βt = o(αt) made above implies that the updating of Gt in iteration
(18) proceeds at a “slower rate” than Rt in the iteration (17). Hence, in the analysis of Rt,
Gt can be viewed as quasistatic. It can be seen from (17) that updating of Rt(·) matrices
requires the Nash equilibrium value V al[Rk

t (s
′), π∗t] which in turn requires the Nash equi-

librium policy π∗t for stage matrix game Rt(s
′). The following assumption is needed for the

Nash equilibrium policy π∗t.

Assumption A4: A Nash equilibrium policy π∗t for any n-dimensional stage matrix
game [R1

t (·), . . . , R
n
t (·)] satisfies one and only one of the following properties.

1. The Nash equilibrium is global optimal for which V al[Rk
t (s), πt∗] ≥ V al[Rk

t (s), π],
k = 1, . . . , n,∀s ∈ S, ∀π.

2. The Nash equilibrium satisfies V al[Rk
t (s), π∗t] ≤ V al[Rk

t (s), (π
−k, πk

∗t)], k = 1, . . . , n,
∀s ∈ S, ∀π. This property implies that an agent receives a higher payoff when other
agents deviate from the Nash equilibrium strategy.

The Assumption A4 guarantees that there is only one Nash equilibrium value Hu and
Wellman (2003). Uniqueness of the Nash equilibrium value implies a unique auxiliary matrix
game, which again suggests that the auxiliary matrices learned by the players converge to
the same matrices. Such an assumption may not hold for all real life scenarios. Hence,
in Section 7 for numerical experiments, we discuss effects of relaxing this assumption (see
Table 1). The above assertion will be further addressed in our convergence analysis.

14
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6.2 Two Time Scale ODE Convergence Analysis

The convergence of Rt and Gt given by (17) and (18) is the consequence of stochastic
approximations. The proposed Nash R-learning algorithm, like most learning algorithms,
involves fixed-point computation. The existing approaches to convergence analysis include
smooth potential function such as the stochastic gradient algorithm Bertsekas and Tsitsiklis
(1996), contraction map Tsitsiklis (1994), Szepesvari and Littman (1999), and ODE meth-
ods Abounadi et al. (2001), Gosavi (2004), Abounadi et al. (1996), Borkar and Meyn (2000).
Our analysis is inspired by a similar analysis by Abounadi et al. (2001) and Gosavi (2004)
based on Borkar’s approach to stochastic approximation with two time scales Borkar (1997).

The standard form of stochastic approximation with two time scales as in our algorithm
has the following structure. We can only obtain observed values that include noise, which
we denote by Mk

t . Let F(t) denote the history of the algorithm up to and including the
point at which the step size αt for the tth iteration is selected, but just before the noise
terms Mk

t are generated, that is, F(t) = σ(Rk
s , M

k
s , s ≤ t), t ≥ 0. Define

H(Rk
t )(s,a) = E[rk(s,a) + V al[Rk

t (s
′, π∗t] | F(t)], and (19)

H ′(Rk
t , G

k
t )(s,a) = H(Rk

t )(s,a)−Gk
t (s,a). (20)

Then (17) can be rewritten as

Rk
t+1(s,a) = Rk

t (s,a) + αt[H
′(Rk

t , G
k
t )(s,a)−Rk

t (s,a) + Mk
t ], (21)

where

Mk
t = rk(s,a)− E(rk(s,a)) + V al[Rk

t (s
′, π∗t)]− E[V al[Rk

t (s
′, π∗t] | F(t)]. (22)

From (22), it is clear that
E[Mk

t | F(t)] = 0. (23)

Now E[(Mk
t )2|F(t)] is the conditional variance of the noise term Mk

t . Using V ar(·|F(t))
to denote the conditional variance, we can write from (22) that:

E[(Mk
t )2|F(t)] = V ar(r(s,a)|F(t)) + V ar(V al[Rk

t (s
′), π∗t]|F(t)). (24)

Since the reward r(s,a) is bounded and there are only finitely many states and policies, the
conditional variance is bounded. Let C denote the bound of V ar(r(s,a)|F(t)). The condi-
tional variance of V al[Rk

t (s
′), π∗t] given F(t) is bounded above by the largest possible value

that this random variable could take. This value is maxs′∈S maxπ∗t(s′) [ Rk
t (s

′, π∗t(s
′))]2.

Then we can write (24) as:

E[(Mk
t )2|F(t)] ≤ C + ‖(Rk

t )
2‖ξ, (25)

where ‖ · ‖ξ denote the weighted maximum norm, Tsitsiklis (1994). From Abounadi et al.
(2001), Tsitsiklis (1994) it follows that H(.) is “nonexpansive” in the weighted maximum
norm sense:

‖H(Rk
t )−H(R′k

t )‖ξ ≤ ‖R
k
t −R′k

t ‖ξ (26)

Since Gk
t can be viewed as quasi stationary in the analysis of (17), it follows that H ′(Rk

t , G
k
t )

also satisfies the property (26).
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6.3 Boundedness and Convergence

We now address the boundedness of Rk
t . Our approach is derived from Bertsekas and

Tsitsiklis (1996). From (18), boundedness of rk(·) implies that Gk
t is bounded. Hence Gk

t

does not influence the boundedness of Rk
t sequence in (17). The following results require

Assumptions A1 through A4.

Theorem 4 Assume that for all one-stage costs rk(s,a), Rk
0 ≥ 0. Then, the sequence {Rk

t }
generated by the algorithm (17) is bounded with probability 1.

The proof of this result follows exactly similar to Lemma 9 of Tsitsiklis (1994). Also,
similar to Lemma 4 in Tsitsiklis (2002), we could write equation (21) as

Rk
t+1(s,a) = (1− αt)R

k
t (s,a) + αt[H

′(Rk
t , G

k
t )(s,a)] + αtM

k
t , (27)

and the boundedness proof follows.
Now, using (25), (26), Theorem 4, and the fact that Gk

t is also bounded with probability
1, the time asymptotic part of the two time scale recursions Rk

t , and Gk
t tracks the associated

ODEs
·

Rk
t = H ′(Rk

t , G)−Rk
t , (28)

and
·

Gk
t = 0, (29)

where in (28) G is treated as a fixed parameter, since βt = o(αt) Borkar and Soumyanath
(1997).

Remark: The proof of Theorem 4 can also be argued in the following manner. The
boundedness of {Rk

t } can be shown by the following observations. In equation (19), by as-
sumption, rk(·) is bounded. From which it follows that the V al[Rk

t (·)] is also bounded since
the elements of the Rk

t (·) matrix are comprised of rk(·). With finite numbers of players and
actions, ‖H(Rk

t )‖ξ is also bounded. Now, H ′(·) in equation (20) is bounded in ‖ · ‖ξ, since
it is a linear combination of H(·) and G(·), which are already shown to be bounded. The
aforementioned facts along with equation (25) imply that {Rk

t } of equation (21) is bounded
with probability 1.

Now what remains to be shown for the convergence of our RL algorithm is the stabil-
ities of the associated ODEs. The equilibrium point Rk∗ of the ODE (28) is precisely the
corresponding fixed points of H ′(·, ·). Let Gk∗ be the equilibrium associated with the ODE
(29). For simplicity of notation, now we write H ′(Rk

t , G) as H(Rk
t ).

The ODE (28) is independent of ODE (29). Hence we consider ODE (29) first. We
present the following lemmas that are based on the results of Abounadi et al. (2001) and
Borkar and Soumyanath (1997).

Lemma 5 The ODE (29) has a unique global asymptotically stable equilibrium point G∗.

Since F (Gk) is a non-expansive mapping, and the fixed point set is not empty, the
solution of the differential equation converges to an asymptotically stable equilibrium point.
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Figure 2: A Grid-World Game

Lemma 6 The ODE (28) has a unique global asymptotically stable equilibrium point Rk∗(Gk),
and Rk∗(Gk) is Lipschitz continuous.

For any fixed G value, fixed point Rk∗ exists. Now since H(·) is a weighted maximum
norm nonexpansive, the ODE (28) has a unique global asymptotically stable equilibrium
point Rk∗(G). Since

Rk∗(s, Gk) = rk(s)−Gk +
∑

s′∈S

p(s′|s, π∗)V al[Rk∗(s′), π∗]

is a linear function of Gk, Rk∗(Gk) is Lipschitz continuous.
Based on the above analysis and the Theorem 1.1 from Borkar (1997), we make the

following conclusion.

Theorem 7 For the Nash R-learning algorithm (17)(18), (Rk
t , G

k
t ) → (R∗k, Gk) a.s. for

each k.

7. Numerical Experiments

The grid games have been popular testbeds for evaluating and benchmarking of multiagent
learning algorithms since these games possess all the key elements of dynamic games. For ex-
ample, the MinMax Q-learning algorithm Littman (1994) was implemented on a two-person
zero-sum soccer grid game, and the Nash Q-learning algorithm Hu and Wellman (1998) was
tested on two-person general-sum grid-world games. We adopt one of the grid games used
in Hu and Wellman (1998) to test and benchmark our Nash R-learning algorithm.

7.1 A Grid-World Game

As shown in Figure 2, Player A starts from the lower left cell and tries to reach the upper
right cell, her goal state. Player B starts from the lower right cell and tries to reach the
upper left cell. The players can only move up, down, left, or right to the adjacent cells.
After both players select their actions, the two moves are executed at the same time. If they
collide with each other, the players bounce back to their previous cells and get punished
with reward of -1. The game terminates as soon as any player reaches her goal state, upon
which the player gets a reward of 100.

The objective of a player is to reach her goal state through the shortest path, which sat-
isfies the maximizing average (or, discounted) reward criterion. Two noninterfering shortest
paths of the players, that are constituted of the best responses, represent a Nash equilib-
rium. In Figure 3, we identify some of the Nash equilibrium paths for this grid game. The

17
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Figure 3: Some Nash equilibrium paths for the grid-world game

Nash equilibrium paths take both players four steps to reach their goals. Clearly there are
multiple Nash equilibrium policies, but there is only one unique Nash equilibrium average
cost, which is 100/4 = 25.

In this grid game, the players’ joint positions define the system state. Since there are
nine cells and the players can not be in the same cell, the total number of states is seventy
two including fifteen terminating states (in which at least one player is at her goal state). It
is considered that the players do not know their goal states and the payoff functions. They
choose their actions independently and simultaneously. They can observe the opponent’s
previous actions, immediate rewards and current state.

7.2 Benchmarking and Testing of the Nash-R Algorithm

We implemented four different learning schemes on the above grid game, for the purpose
of benchmarking and testing of the Nash-R algorithm. The first two learning schemes are
based on MDP approximations. The MDP approximations are often used for games due
to two common reasons: 1) lack of computationally feasible methods to solve stochastic
games, and 2) lack of complete information about the other players. In the first scheme
(referred to as MDP-RL), each player ignores the existence of the other player, and uses
an independent single agent R learning algorithm for MDPs. The players perform their
actions, obtain a reward and update their Rk(s, ak) values using the maxakRk(s′, ak) oper-
ator, without regard to the actions performed by the other player. In the second scheme
with a modified MDP approach, the players observe the opponents’ action (not the reward)
and update their Rk(s, a1, a2) values using the max(a1,a2)R

k(s′, a1, a2) operator. We refer
to this scheme as MMDP-RL.

The remaining two schemes are variants of the Nash-R learning algorithm, shown in
Figure 4. In the convergence analysis of Nash-R algorithm, it is assumed that at each stage
of learning the players use a unique Nash equilibrium value V al[Rk

t (s
′), π∗t] in updating

their matrices of Rk
t+1(s, a

1, a2) values for all k. The purpose of examining the first of these
two variants of Nash-R was to assess the impact of deviation from the above assumption
by allowing players to use different Nash equilibrium value for updating purposes, when
multiple equilibria exist. In our implementation, each player randomly chose any one of
the Nash equilibria values of the stage game. In the last of the four schemes, the players
always use the same Nash equilibrium value for updating their matrices. The results from
the numerical experiments are presented in Table 1.
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Nash-R Algorithm for a Grid-World Game:

1. Let time step t = 1. Initialize matrices Rk(s, a1, a2) = 0 and average cost
Gk(s, a1, a2) = 0 for all s ∈ S, a1 ∈ A1(s), a2 ∈ A2(s) and k = 1, 2. Set the
frequency for the tuple (s, a1, a2) being visited n(s, a1, a2) = 0. Set the number of
learned episodes episode = 0. Start system simulation.

2. Learning Phase: While episode < 5000 do

(a) Randomly generate the initial positions for the players.

(b) While neither player is in the goal position, do the following:

i. Choose for each player a random action.

ii. Simulate the chosen actions. Let the system state at the next decision epoch
be s′, and rk(s, s′, a1, a2) be the immediate reward for player k earned as a
result of actions (a1, a2) chosen in state s.

• If player k enters her goal position, set immediate reward
rk(s, s′, a1, a2) = 100, for k = 1, 2.

• If the players collide with each other in a cell other than the goal states,
set rk(s, s′, a1, a2) = −1, k = 1, 2, and s′ = s.

• In all other cases rk(s, s′, a1, a2) = 0, k = 1, 2.

iii. Obtain a Nash equilibrium policy π∗t for the stage matrix game Rk
t (s

′),∀k,
using a suitable mathod (e.g., GAMBIT), and calculate the corresponding
Nash equilibrium value for each player V al[Rk

t (s
′), π∗t].

iv. n(s, a1, a2)← n(s, a1, a2) + 1. Update the steps sizes as: αt = 1/n(s, a1, a2),
and βt = 1/t.

v. Update stage matrices Rk(s, a1, a2) and the Gks, a1, a2) values for each player
as follows.

Rk
t+1(s, a

1, a2) = (1− αt)R
k(s, a1, a2) + αt

{

rk(s, s′, a1, a2)
−Gk

t + V al[Rk
t (s

′), π∗t]
}

.
Gk

t+1 = (1− βt)G
k
t + βtV al[Rk

t (s
′), π∗t].

vi. If s′ indicates goal state for either player, then episode← episode + 1, go to
step 2. Else, set s← s′, and t ← t + 1, go to step 2(b)i.

3. Evaluation Phase

(a) Select the players’ starting locations as the bottom corners opposite to their goal
states.

(b) Let the players choose their actions based on the Nash equilibrium of the matrix
game for the current state, and continue to move until both players reache their
goal states.

(c) Compare the paths followed by each player to reach goal state and compare them
with known Nash strategies.

Figure 4: A Nash-R reinforcement learning algorithm for computing Nash equilibrium poli-
cies for a grid-world game. 19
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Benchmarking schemes Success rate ±95%C.I.

MDP-RL (learning without observing another player’s action) 16%± 5.1%

MMDP-RL (learning with observing another player’s action) 30.0%± 6.3%

Nash R learning (updated with possible different Nash values) 29.8%± 5.6%

Nash R learning (updated with the same Nash values) 98.9%± 1.3%

Table 1: Testing and benchmarking results for four different learning algorithms

For each of the four schemes, the players were allowed to learn their R-values ( for MDP-
RL and MMDP-RL schemes) and R-matrices (for the two Nash-R based schemes) over 5000
training episodes. After each training session, the players were allowed to test the strate-
gies calculated based on the learned values/matrices for one episode. Starting positions for
both the players were always set to the lower corners as shown in Figure 2. During the
one episode testing phase, for mixed strategies, random numbers were generated to select
actions. We labeled a testing phase as “success” if both players reached their respective
goal states in four steps ( which is optimal). For every scheme, two hundred training-testing
runs were conducted and the respective “success” rates were obtained. We note that our
method of establishing success rate is different from that of Hu and Wellman (2003). It
appears that they compared the Nash equilibria obtained from the learned Q-matrices with
the theoretical results, and a match was defined as a “success”.

We adopted a non-exploitive exploration strategy to ensure that all states are visited a
large number of times. According to this strategy, the players choose their available actions
with equal probability. Let t be the number of steps in the learning phase of the game
and n(s, a1, a2) denote the visit frequency of the tuple (s, a1, a2). The learning rates were
obtained as α(s, a1, a2) = 1

n(s,a1,a2)
and β = 1

t
(for Nash-R only). We define a training

(learning) episode as a process that starts when the players are assigned random positions
(except goal positions) and ends when either player reaches her goal position. During
the experiments, we found that one run with 5000 episodes usually takes 40,000 steps (
t = 40, 000) (same as in Hu and Wellman (2003)). The total number of state-action tuples
in this grid game is 424, and each tuple on average is visited 95 times.

The success rates were calculated for each of the three benchmarking algorithms along
with Nash-R. Note that the success rates are binomial proportions obtained from 200
Bernoulli trials consisting of 5000 training episodes followed by one testing episode. We
obtained a 95% confidence intervals on the success rates using a normal approximation.
Several observations are made from the results.

1. The single player learning scheme (MDP-RL) which ignores the existence of the other
player achieved a 16% success rate in attaining equilibrium strategy. This is quite
expected, since it is well known that in a game, considering other players as part of
the stationary environment yields poor result.

2. In the MMDP-RL scheme, the players observe other’s actions and use that information
in their single player learning schemes. With more information than MDP-RL, this
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algorithm performed much better than MDP-RL and obtained a success rate of around
30%.

3. For the Nash-R algorithm that uses possibly different stage Nash-equilibria for up-
dating, the success rate was significantly lower than the Nash-R scheme that uses the
same Nash equilibrium value for updating. When the players, at any stage of learn-
ing, use different equilibrium policies to update their matrices, the final form of the
matrices learned by the players are unlikely to be the same. As a result, the policies
learned by each player may not constitute a Nash equilibrium, which is evident from
the result. This validates, for the convergence of Nash-R algorithm, the need for the
necessary condition of having a unique Nash equilibrium value.

4. An arbitrary Nash-R scheme that violates the uniqueness condition may not perform
significantly better than the MMDP-RL approximation.

8. Concluding Remarks

In this paper, from the perspective of developing solution methodologies for obtaining Nash
equilibrium strategies for average reward irreducible stochastic games, we have first dis-
cussed the existence of series of equivalent matrix games. To construct these equivalent
matrix games, we have developed efficient simulation based two time scale stochastic ap-
proximation algorithm using reinforcement learning. An ODE convergence analysis for this
two time scale stochastic approximation algorithm is presented. The scheme is benchmarked
and tested using a grid game.

The convergence analysis requires a strict assumption for the matrix games (i.e., unique-
ness of the Nash equilibrium value for the matrix games). For many problems, it may be
difficult to meet the above assumption. But our experimental results suggest that, even
when there are multiple Nash equilibrium values for matrix games, optimal policies can
be attained almost all of the times by ensuring that the players use identical matrix Nash
equilibrium value in updating their R-matrices. The proposed method enjoys excellent gen-
eralization capabilities inherent in the reinforcement learning and combines the relative ease
in computation of Nash equilibrium in the matrix games.
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