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ABSTRACT

Reliability demonstration tests have important applications in reliability assurance activities to
demonstrate product quality over time and safeguard companies’ market positions and competitive-
ness. With greatly increasing global market competition, conventional binomial reliability demonstra-
tion tests based on binary test outcomes (success or failure) at a single time point become insufficient
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for meeting consumers’ diverse requirements. This article proposes multi-state reliability demonstra-
tion tests (MSRDTs) for demonstrating reliability at multiple time periods or involving multiple failure
modes. The design strategy for MSRDTs employs a Bayesian approach to allow incorporation of prior
knowledge, which has the potential to reduce the test sample size. Simultaneous demonstration of
multiple objectives can be achieved and critical requirements specified to avoid early/critical failures
can be explicitly demonstrated to ensure high customer satisfaction. Two case studies are explored to

demonstrate the proposed test plans for different objectives.

Introduction

Reliability of a product is the probability that the prod-
uct can perform its required function at a given time
point. As a time-dependent characteristic, reliability
is an important measure of the product quality and
safety over time, which has a great impact on the satis-
faction of customers and can influence their purchase
decisions linked with the revenue of manufacturers. In
order to succeed in the market competition, manufac-
turers need to produce products with high reliability
over their expected lifetime. Reliability demonstration
tests (RDTs) are often conducted by manufacturers to
demonstrate the capability of their products to meet the
requirements from customers for achieving good qual-
ity and performance over time. Given the budget and
time constraints, manufacturers need to determine the
number of test units, the time duration of the test, and
the maximum number of failures allowed to pass the
test. These choices are usually made to ensure the con-
sumer’s risk (CR) on having a product that has passed
the test but fails to meet the reliability requirement is
controlled. Controlling the CR at an acceptable level
can take the burden off the customers on bearing a high
risk of receiving inferior products which are claimed to

have met the requirements on reliability, and hence can
help improve customers’ satisfaction.

Different categories of RDTs have been studied in
the literature based on different types of reliability
data, such as failure counts data (Guo et al., 2011; Li
et al., 2016; Lu et al., 2016), failure time data (Guo
et al,, 2012; McKane et al., 2005) and degradation data
(Yang, 2009). Failure counts data report the number of
failures that occur during a fixed test period. The RDTs
based on failure counts data (Wasserman, 2002, pp.
208-210) are also called binomial RDTs (BRDTs) since
failure counts are modeled with binomial distributions.

In a BRDT, within a given testing period, if the num-
ber of failures does not exceed the maximum num-
ber of allowable failures, the test is passed. The maxi-
mum number of allowable failures ¢ and the minimum
number of test units # are determined to ensure a cer-
tain minimum acceptable reliability requirement, R, is
met with the controlled CR at or below B by the end
of the test duration. The BRDTs are broadly applied
in reliability engineering practices because (i) they
require less monitoring efforts in the middle of the test
duration; and (ii) they are simple and straightforward
to be implemented and analyzed. However, with the
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increasing needs from customers, the BRDTs are no
longer able to meet all requirements in many applica-
tions. For example, customers may have varied require-
ments on reliability performance over different time
periods. It is common that many customers have little
tolerance of early failures and hence require high relia-
bility during early lifetime and lower reliability for later
time. In this case, a BRDT for demonstrating reliabil-
ity within a single time period is inadequate to meet all
requirements.

Consider a scenario when two companies run
BRDTs with the same testing period of 5 years and use
the maximum number of allowable failures as ¢ = 5.
Products from company I had 1 failure in the first two
years and 3 failures in the last three years. Products
from company II had 3 failures in the first two years
and 1 failure in the last three years. Even though the
products from both companies can pass the demon-
stration tests, their underlying reliability performance
indicated from the failure counts data can be different.
If a customer needs products with high reliability in
early lifetime (corresponding to allowing no more than
2 failures during the first two years), the risk of the
products from company II failing to meet the require-
ment can be much higher than that of the product
from company I. A typical BRDT with five-year testing
period cannot demonstrate the performance over the
early two years, and hence raises the CR on accepting
an inferior product that fails to meet all requirements.

Another limitation of the BRDTs is that they are
often used for pass/failure testing of a product without
distinguishing the causes and consequences of differ-
ent failure modes. A product with a complex system
is often composed of multiple key components which
may have different failure modes associated with var-
ied consequences. Their failures can have different neg-
ative effects on the functionality of the entire product.
For instance, the failure of the central processing unit
(CPU) of a computer is much more crucial than the
failure of a video card. Customers may also have dif-
ferent expectations for different components accord-
ing to their values or costs of replacement. The cost of
replacing a CPU or a motherboard is much higher than
replacing a keyboard or a mouse. As a result, customers
can have much higher expectation on the reliability of
the more valuable and critical parts than the reliability
of other parts or accessories. A typical BRDT cannot
demonstrate separate reliability requirements for mul-
tiple failure modes.

To meet the ever-increasing demands of customers,
more versatile RDTs with more tailored plans for test-
ing multiple reliability requirements can better serve
the customers with enriched information on product
reliability. This article proposes RDT strategies for two
categories of reliability demonstration tests over multi-
ple time periods and for multiple failure modes, both
of which are referred to as multi-state RDTs (MSRDTs)
throughout the rest of the article. Alternative test plans
within each category are also explored and compared
with the conventional BRDTs for demonstrating mul-
tiple reliability requirements. Bayesian analysis is used
for quantifying the CR associated with various test
plans. The Bayesian method offers more flexibilities on
incorporating prior information of product reliability
from either subject matter expertise or historical data
(Pintar et al., 2012; Weaver et al., 2008; Wilson et al.,
2016). The impacts of different test strategies and dif-
ferent prior elicitations on the minimum test sample
size (i.e., the number of test units required) will be stud-
ied to provide more insights on guiding decisions on
demonstration test plans. If there exists historical data
which supports higher reliabilities compared to the
requirements, then using Bayesian method to incorpo-
rate prior information has the potential to reduce the
minimum test sample size required for the MSRDTs.

The remaining of the article is organized as fol-
lows. In the next section, the conventional BRDT plans
are reviewed with discussions of their benefits and
limitations. Then the new MSRDTs for demonstrat-
ing reliability requirements over multiple time peri-
ods are proposed. Two different design strategies are
proposed and compared under different prior elicita-
tion settings. In the following section, another category
of new MSRDT designs for demonstrating reliability
requirements involving multiple failure modes are pro-
posed and their performances are evaluated and com-
pared with the conventional BRDTs. Case studies on
two categories of MSRDTs for multiple time periods
and multiple failure modes are provided to illustrate
the proposed test plans and demonstrate their perfor-
mances. Conclusions and discussions are provided in
the end.

Binomial RDTs

For many single use or “one-shot” product units, the
test procedure can be destructive. In this case, bino-
mial RDTs (BRDTs) are the common choices to obtain



the failure counts data at the end of a predetermined
test period (Kececioglu et al., 2002, pp. 759-768). Let
7 denote the probability of failure over the test period,
and R denote the minimum acceptable reliability at the
end of the test duration. In Bayesian analysis, for a cho-
sen number of test units, 7, and a maximum number of
allowable failures, ¢, the CR is measured by the poste-
rior probability of the product failing to meet the reli-
ability requirement given that the product has passed
the test, which can be calculated as

CRypinomial = P(Failure probability fails to meet the
reliability requirement|Test is passed)
=Pt >1-R|y<c)
=1-P(rx <1-Rly=<o
£ [2 () e ]eni

=1- 1
B (3) 771 = w1 perd

(1]

Note that in Eq. [1], p(7) denotes the prior distribu-
tion of r which can be specified based on subject mat-
ter expert knowledge or historical data and y denotes
the number of failures observed in the test period. Let
B denote the maximum acceptable value for the CR,
thena BRDT is determined by choosing the (#, ¢) com-
bination such that the corresponding CRyinomial < B-
According to (Lu et al., 2016), for any fixed choice of c,
CRypinomial increases as the test sample size n increases.
We use ny, to denote the minimum test sample size that
is required to control the CR within an acceptable range
CRbinomial = :3

In Bayesian analysis, the CRpinomial in Eq. [1] can be
calculated using Monte Carlo integration (Robert et al.,
2004, pp. 71-131), where samples of 7 with a large
size M = 15000 are generated from the specified prior
distribution p(7r), and CRpinomial is calculated approx-
imately by

CRbinomial ~1-—

Y [Z;=o <y> (Y- n(f))"‘y] I(m?) <1—R)
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Table 1. Minimum sample sizes required by BRDTs with different
choices on ¢ and prior distributions of 7.

7 ~ Beta 1,1 (2,18) (4,16) (10, 15) (10, 10)
Mean(rr) 0.5 0.1 0.2 0.4 0.5
SD(rr) 0.2893 0.0647 0.0873 0.0965 0.1086
c ny

0 13 4 18 45 53

1 18 7 23 51 58

2 24 n 28 57 64

3 29 15 34 62 69

4 34 19 39 68 74

5 39 22 44 74 80

6 44 26 49 80 85

Settings: M = 15000, R = 0.8, B = 0.05

and the spread of the prior distributions. For example,
m ~ Beta(1, 1) is centered at 0.5 but has large stan-
dard deviation at 0.2893. While = ~ Beta(2, 18) has
the mean failure probability of 0.1 but much smaller
standard deviation (0.0647) around its mean. The
minimum acceptable reliability from the consumers
requirement was set at R = 0.8 and the maximum tol-
erable CR is chosen to be 8 = 0.05. When no his-
torical data or prior information is available, a non-
informative prior  ~ Beta(1, 1) can be used. For any
assumed prior distribution of 7, manufacturers can
choose a test plan determined by (#y, ¢) using the min-
imum sample size 1, for any chosen maximum number
of allowable failures c. For instance, when ¢ = 0 and a
non-informative prior = ~ Beta(1, 1) is assumed, the
minimum sample size which can ensure the CR calcu-
lated in Eq. [2] to be no more than § = 0.05 is calcu-
lated as n, = 13. Hence, at least 13 units need to be
tested if the test can only be passed when no failure
is observed. However, as larger maximum number of
allowable failures being set for passing the test, the CR
increases as it becomes easier to pass the test for a given
sample size n. Hence, to control the CR at or below
B = 0.05, more units need to be tested as more failures
are allowed to pass the test.

where 7 /) is the jth generated sample of failure prob-
ability for the specified prior distribution.

Table 1 shows an example of BRDT plans with differ-
ent choices of prior distributions of 7. The mean and
standard deviation (i.e., the square of variance) values
are provided to give some intuitions about the center

M [Z;=o (y) (Y (1 — n(j))n—y}

: (2]

When more informative priors are available from
historical data or expertise, they can affect the selec-
tion of test plans. Table 1 has explored the impacts of
different prior distributions p(;r) on the selected test
plan for different tolerances on the maximum number
of allowable failures, c. Figure 1 shows the five prior
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Beta(2,18)

Beta(4,16)
Beta(10,15)

Beta(10,10)

Beta(1,1)

T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Density curves of different prior distributions explored in
Table 1.

distributions explored in Table 1. The flat density curve
corresponds to the non-informative prior Beta(1, 1)
which assumes that all possible values for 7 € (0, 1)
have equal probability. Other prior distributions from
Beta(10, 10) to Beta(2, 18) become more informa-
tive with reduced spread (corresponding to smaller
standard deviation in Table 1) and provide stronger
support for smaller failure probability 7. For any given
¢, the minimum sample size required can be reduced if
the prior distribution from historical data supports the
reliability requirement. For example, when a prior dis-
tribution w ~ Beta(2, 18) is used, which supports high
reliability around 1—2/(2+418)=0.9 > R=10.8,
fewer units need to be tested to demonstrate the relia-
bility requirement (e.g., 4 < 13 when ¢ = 0). However,
if the specified prior distribution is not in favor of the
reliability requirement, as illustrated with prior distri-
butions Beta(4, 16), Beta(10, 15), and Beta(10, 10),
which favor incrementally lower reliability, more units
are required to be tested to demonstrate the same
reliability requirement.

On the other hand, Table 2 demonstrates the impact
of different requirements on reliability. For a given
choice on the prior distribution, as R decreases cor-
responding to reduced requirement on reliability, the
minimum sample size, ny,, decreases for a fixed choice
on c. This matches our intuition that fewer units need
to be tested for demonstrating lower requirement on
reliability.

The BRDTs are useful for demonstrating reliability
requirements for binary tests. For example, a test plan
(n, = 81,c=5) for a predetermined test period of
5 years can demonstrate no less than 0.9 reliability in
5 years with the CR controlled by 0.05. However, it

Table 2. Minimum sample sizes required by BRDTs with different
choices on ¢ and reliability requirements.

Ny
[4 R=0.9 R=0.8 R=0.6
0 28 13 5
1 39 18 8
2 50 23 n
3 61 28 13
4 v 33 16
5 81 38 18
6 91 43 20

Settings: M = 15000, 8 = 0.05

m ~ Beta(1, 1)

offers no capability of demonstrating reliability at any
time before the end of the test period. For example,
if the customers are particularly concerned about
the reliability in the first two years in addition to the
reliability by the end of the five years, the conventional
BRDTs are unable to demonstrate all requirements
over multiple time periods. In addition, BRDTs are
unable to differentiate and demonstrate reliability
requirements involving multiple failure modes asso-
ciated with different consequences. In the next two
sections, two categories of new MSRDTs are pro-
posed to demonstrate reliability requirements over
multiple time periods and for multiple failure modes,
respectively. Alternative designs are also proposed and
their performances are evaluated and compared under
different prior elicitations.

MSRDTs over multiple time periods

Conventional BRDTs often demonstrate the product
reliability within a single time period, such as dur-
ing the mission time or the service life, to meet with
the customers’ requirements. However, customers’ sat-
isfaction in different time periods may differ. For
instance, upon the purchase of products, customers
may expect higher reliability during the early lifetime.
The occurrence of early failures may have stronger neg-
ative impact on customers’ satisfaction and company’s
reputation than failures occurred in the later stage of
the service period. To explicitly demonstrate differ-
ent product reliability requirements over multiple time
periods rather than a single time period, the strategies
of MSRDTs, i.e., multi-state RDTs, are proposed in this
section to meet customers’ expectation on reliability
over multiple time periods.

Consider a finite testing period with the start
time at f, and the end time at tx. The testing time
duration (%, tx] is exclusively partitioned into K
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Figure 2. lllustration of the multiple time periods in a K-period
MSDRT between (t,, t,].

non-overlapping time periods, (ti_;,t],i=1,..., K,
as illustrated in Figure 2. Let m; and y; denote the
probability of failure and the number of observed
failures within the ith time period (t;_i, t;], respec-
tively. Then the number of units that survive the entire
test duration (right-censored at the end of the test
duration fx) can be expressed as n — Zfil ¥i» where
n is the total number of test units. The probability of
surviving the test is given by mx4; = 1 — Zfil ;. The
objective of a MSRDT over multiple time periods is to
simultaneously demonstrate the product reliability at
multiple time points satisfying a set of lower reliability
requirements, R;,i=1,...,K, with the assurance
level controlled at (1 — B). Here, R; is the minimum
acceptable reliability in the first i cumulative time peri-
ods, (%, t;], B is the maximum acceptable consumer’s
risk and assurance level can be explained as the min-
imum probability that the reliability requirements are
not met all given the test is passed (Hamada et al., 2008,
pp. 343-347). Two different scenarios of acceptance
criteria are proposed as follows.

Scenario I. The MSRDT will be passed if the cumu-
lative number of observed failures Z;zl ¥k at each
cumulative time period (t, ] is no more than
its corresponding cumulative maximum number of
allowable failures 2;21 ¢k for all cumulative time
periods (ty, ], at i=1, ..., K. For example, con-
sider a two-period MSRDT with tests conducted at
the end of the second and fifth year. For 100 test
units, the MSRDT will be passed if the number of
observed failures in first two years do not exceed 1
and the number of observed failures at the end of the
fifth year do not exceed 5.

Scenario II. The MSRDT will be passed if the number
of observed failures y; at each non-overlapping time
period (ti_1, t;] is no greater than its corresponding
maximum number of allowable failures c; for all time
periods (ti_1, t;],ati =1, ..., K. For the same two-
period test, the MSRDT will be passed if the number
of observed failures in first two years do not exceed
1 and the number of observed failures in the next
three years do not exceed 4. It is noticed that the
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major difference between the two scenarios is that
Scenario II plans the tests for non-overlapping time
periods while Scenario I considers the cumulative
time-periods instead.

For each acceptance criterion, the design of MSRDT
over multiple time periods aims to determine (i)
the minimum sample size, denoted by n; and ny; for
Scenarios I and II, respectively, and (ii) the cumula-
tive maximum number of allowable failures at time
ti, Z;(:l ¢k, for Scenario I and the maximum num-
ber of allowable failures within i® time period, c¢;,
i=1,..., K for Scenario II. For either scenario, the
MSRDT is selected by choosing the test plans which
control the CR at or below . It is noticed that the
proposed MSRDT strategies are suitable for demon-
stration tests that generate failure counts data (Li et al.,
2016; Guo et al., 2011) over multiple time periods,
and do not make any assumptions on the failure time
distribution. The advantages of the proposed methods
are to fulfill the reliability requirements of customers
over different testing periods (e.g., either cumulative
time periods from Scenario I or the non-overlapping
periods from Scenario II) simultaneously and provide
different testing strategies that require different min-
imum test sample sizes based on different maximum
numbers of allowable failures. Assuming a certain
failure time distribution over multiple time periods
or for multiple failure modes may limit the use of the
proposed strategies because the lifetime distribution
assumption has to be valid for the whole test period and
only the expected number of failures can be obtained,
which is not commensurate with the objectives of
proposed strategies as mentioned above. Alternative
RDT designs such as Weibull testing which is more
suitable for failure time data, is out of the scope of this
article, but is of interest for future work.

To illustrate the proposed MSRDTs over multi-
ple time periods and further investigate the differ-
ence between two scenarios of acceptance criteria, the
MSRDTs over two time periods (i.e., K = 2) are consid-
ered without loss of generality. Let R; and R, denote the
minimum acceptable reliabilities over the time peri-
ods (ty, t1] and (f, t,] with R, < Ry. The probabili-
ties of failure for each cumulative time period meet
the requirements if 7; <1—R; and 7 +m, <1 —
R,. For acceptance criterion in Scenario I, the test
of MSRDT is to determine {ny, ¢, ¢; + ¢;}, and the
probability of accepting the test for any given (i, 73),
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denoted by Hi(n, c¢1,c;), can be explicitly written
as

c cate—y al
Hl(n,CI»C2)=Z Z [( )

jowr St niyln =y = y)!

Yi__Y2 n—y;—
Xmmy, (1 —m —m)"™" y2:|

and the corresponding CRy is controlled at or below S
by

“1—R,—m,

1-R
Jo o

f3 Jo Hi(n, c1, 02) p(y, 702)dmadm

Hi(n, ¢y, ¢ 1, T2)dmodm
CRi=1— 1( 1, ©2) p(my, m2)dm, 1

3

3]

where p(m;, ;) denotes the joint prior distribution of
(my, mp, 1 — 1y — ).

For the acceptance criterion in Scenario II, the
MSRDT plan can be determined by specifying
{n1, c1, ¢}, and the probability of accepting the test for
any combination of (7, 7;), denoted by Hy;(n, ¢y, ¢;)
is given by

1 2

Hu(n, cl,Cz)=ZZ[< & )
y

Zommo L\t =y =)t

x )y’ (1 — 7y — ﬂz)”ylyz],

and the corresponding CRyj is controlled by

CRy

-1 f017R| f;ier Hy(n, ¢y, ¢2) p(y, m3)dmpdmy <
fol f;)I Hy(n, c1, ¢2) p(y, m2)dmadmy

(4]

A case study is shown below for illustrating the pro-
posed MSRDT strategies for a two-period test. The
reliability requirements are set as R; = 0.8 and R, =
0.6 over the time periods (ty, t;] and (ty, t,] with
t, < 2t; , which indicates longer time interval of (%,
t1] than (t;, t,]. A higher reliability requirement R,
is desired for the early cumulative time period (t,,
t1] because the customers are averse to early failures.
The CR is controlled at 8 = 0.05, indicating that the
probability of accepting the test when the actual reli-
ability requirements are not met is controlled at or
below 0.05. To evaluate the complex integration in
either Eq. [3] or Eq. [4], Monte Carlo sampling is
performed with the sample size of M = 15,000 to
maintain the evaluation accuracy. The Dirichlet dis-
tribution, denoted by Dirichlet (c;, a2, a3), is used as

Table 3. Comparison between Scenarios | and Il and BRDT, with
non-informative prior.

Scenario | Scenario ll BRDT
G G+6 n G G n ¢ Ny
0 0 12 0 0 12 0 5
0 1 13 0 1 13 1 8
1 1 15 1 0 7
0 2 14 0 2 14 2 n
1 2 17 1 1 18
2 2 19 2 0 22
0 5 20 0 5 20 5 18
1 5 22 1 4 21
2 5 24 2 3 23
3 5 26 3 2 28
4 5 28 4 1 33
5 5 30 5 0 37
0 6 22 0 6 22 6 20
1 6 24 1 5 23
2 6 26 2 4 24
3 6 28 3 3 28
4 6 30 4 2 33
5 6 32 5 1 37
6 6 34 6 0 42

Settings: p(my, m2) ~ Dirichlet(1, 1, 1)
R; = 0.8, R, = 0.6, M = 15000, 8 = 0.05

the prior distribution for (7, m;, 1 — 77 — 7,), where
a1, 02, 3 are hyper-parameters to be elicited based
on the prior knowledge. The Dirichlet distribution is
a family of continuous multivariate probability distri-
bution parametrized by the vector of positive hyper-
parameters «;, i = 1,..., K for K categories of out-
comes. The advantage of using Dirichlet distribution
is two folded. First of all, it is the conjugate prior for
the multinomial distribution, and hence allows an easy
update of knowledge as new data are observed because
the posterior distribution of the failure probabilities
also follow a Dirichlet distribution. Second, the hyper-
parameters in the Dirichlet distribution are associated
with more intuitive practical implications as they are
directly connected with the failure probabilities for
each outcome category based on the prior knowledge
in the form of «;/ Zfil ;. A few different settings of
hyper-parameters will be explored later to investigate
the impact of prior knowledge on the performance of
the proposed test plan.

When no prior information is available, a non-
informative prior distribution, given by (m;, 75,1 —
7y — 1) ~ Dirichlet(1, 1, 1) can be used for indicat-
ing the lack of prior knowledge. The selected test plans
under the acceptance criteria of two scenarios with
different choices on the maximum number of allow-
able failures are illustrated in Table 3. The test plans are
grouped based on the total number of failures allowed
during the entire test duration. Several features are
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Figure 3. Comparison between Scenarios | and Il based on the min-
imum sample size as ¢, increases for some fixed c, values.

observed. First of all, under both Scenarios I and II,
given a fixed choice of ¢, the minimum sample size
np or ny increases as c; increases. Similarly, given a
fixed ¢y, n; and nyp also increase with ¢,. As for a given
fixed number of test units, allowing more failures (i.e.,
increasing c) can make it easier to pass the test and thus
increase the CR. Hence, it requires to test more units to
control the CR at a predetermined maximum accept-
able level. The patterns of minimum sample sizes can
be observed more clearly in Figures 3 and 4.

Figure 3 shows the change in the minimum sam-
ple size as ¢, increases for a few selected ¢, values
under both scenarios. Solid lines are used for showing
Scenario I and dash lines are used for Scenario II.
Different symbols are used for displaying different
c; values. For a fixed ¢; value, the minimum sample
sizes under both Scenarios I and II increase as c,
increases. For example, when ¢; = 0, two scenarios are
essentially the same in terms of the acceptance criteria.
Hence, the same minimum sample size is required

60
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Figure 4. Comparison between Scenarios | and Il based on the
minimum sample size as c, increases for some fixed c, values.
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for both scenarios, which is shown with the solid
line with the triangles and increases as ¢, increases.
When ¢; > 0, the minimum sample size still generally
increases as c, increases. However, the trend is slightly
different between the two scenarios. The n; increases
monotonically with ¢,, while the ny; starts off with sim-
ilar sample sizes for small ¢, values to a certain point
and then starts to increase more quickly as ¢, increases.
For example, when ¢; = 4, the minimum sample size
for Scenario I (shown with a dotted line with the open
circles) is relatively flat for ¢, < 4 and then increases
for ¢, > 4. This is because under Scenario II, the max-
imum number of allowable failures for the two non-
overlapping periods determines their corresponding
minimum required test units, which then jointly deter-
mine the overall minimum sample size for the entire
test. Therefore, the overall sample size can be domi-
nated by the maximum number of allowable failures
for one of the test periods if one of the c; is considerably
larger compared to its failure probability under the reli-
ability requirements to be demonstrated. Thus, when
¢, is small, ¢; plays an dominating role in determining
the overall sample size for the entire test, which corre-
sponds to the flat portion of the minimum sample size
curve for ¢; = 4. However, as ¢, becomes larger than
c1, the overall minimum sample size is dominated by
the requirement from period 2 and hence resumes an
increasing pattern as ¢, increases. To compare the two
scenarios, it appears that n; is usually larger than ny; for
small ¢, values, but becomes smaller than n; when ¢,
becomes larger than a certain value. This is because for
the same required ¢; values, the test plans in Scenario I
generally can allow larger maximum number of allow-
able failures for period 2 (when the maximum number
of allowable failure is not reached during period 1) and
hence request to test more units when ¢, has dominat-
ing impact on the overall minimum sample size.
Figure 4 shows how the minimum sample size
changes with ¢, for fixed ¢, values under both scenar-
ios. Generally, for any fixed c,, the minimum sample
size increases as ¢; increases under Scenario I. Also,
a larger ¢, value requires to test more units and the
difference in n; among different ¢, values are simi-
lar across different ¢, values, which is evidenced by
the almost parallel lines observed for Scenario I in
Figure 4. However, for Scenario II, even though ny
increases monotonically with ¢;, there are diminishing
differences in ny at different ¢, values as ¢; increases.
This is because under Scenario II, increasing c; will
affect ny; by increasing the minimum sample size
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Figure5. Comparison between Scenarios | and Il based on the min-
imum sample size for fixed ¢, + ¢, values.

needed to demonstrate the reliability requirement in
period 1 and hence leads to a dominating effect on the
size of ny; (which is equivalent to a diminishing impact
of the difference in ¢, values). While under Scenario I,
increasing ¢; will result in increases in the minimum
sample sizes needed for demonstrating both reliability
requirements at the end of the two non-overlapping
time periods, and hence has a consistent impact on the
overall minimum sample size n;.

It is also interesting to compare the two scenarios
given the same total maximum number of allowable
failures ¢; + ¢, in the entire test duration. Figure 5
compares the minimum sample sizes for both scenar-
ios given a fixed total maximum number of allowable
failures ¢; + ¢;. Two cases with ¢; + ¢, = 15 and
c1 +c; =20 are investigated, which are shown in
Figure 5 with the solid and dotted lines, respectively.
The bottom and the top axes display all combinations
of ¢; and ¢, values. A few patterns can be observed.

First, both n; and ny; increase as ¢; + ¢, increases.
This matches with the pattern for the conventional
BRDTs in that it generally requires to test more units to
ensure the same assurance level if a more relaxed crite-
rion has been used for passing the test by allowing more
failures to be observed during the entire test duration.
Second, increasing ¢; (at the same time reducing c;)
will consistently increase nj but reduce ny; first for small
¢, values and then increase nyj after ¢, reaches a certain
value. Third, in terms of the relative performance of
the two strategies, Scenario I is associated with smaller
overall minimum sample size for large ¢; and small ¢,
values. As ¢, increasing to about the same size as cy,

Scenario I starts to have a smaller minimum sample
size and the difference becomes larger as ¢; continues
to increase. This can be evidenced by the crossing pat-
tern between the monotonically increasing line with
the squares for Scenario I and the U-shaped curve with
the open circles for Scenario II. Brief analytical expla-
nations can also be found in the Appendix to improve
the understanding of the observed differences between
two scenarios.

Under the same maximum number of allowable fail-
ures c¢; + ¢, for the entire test duration, Scenario II
is expected to have more strict requirements (y; <
c1,¥2 < ¢3) than Scenario I (y; <cj,y1+y2 <+
c2), meaning that any tests that pass in Scenario II will
also pass in Scenario I. Intuitively, Scenario II will be
preferred if minimizing the CR is the only criterion of
interest, which on the other hand generally requires
larger minimum sample size. However, smaller test
sample is also generally preferred in RDT plan from
the manufacturer’s point of view. Hence, the tests with
minimum sample size after controlling the CR are gen-
erally preferred. As illustrated in Figure 5, the two test
scenarios may have varied performance in the required
minimum sample size for different settings and Sce-
nario II does not consistently outperform Scenario I
based on the minimum sample size. It is also noticed
in Table 3 that the difference between the two scenar-
ios when ¢; is small becomes smaller for small ¢; + ¢,
values, and is almost negligible for ¢; + ¢, < 6. On
the other hand, Scenario I can be preferred for rela-
tively large ¢; values when ¢; + ¢, is large or when only
small ¢; + ¢, is allowed. It is also noticed that for tests
using more strict passing conditions, they are gener-
ally associated with smaller probabilities of passing the
test (i.e., low acceptance probability) and often higher
probabilities for manufacturers to reject the products
that actually have met the reliability requirements (Lu
et al., 2016). Hence, a decision on the selection of
scenarios should be catered for a particular applica-
tion to meet the objectives of a specific demonstration
test.

In addition, Table 3 also shows the comparison
between the MSRDT strategies over two time periods
with the conventional BRDTs when non-informative
prior is used. The last two columns in Table 3 give
the maximum number of allowable failures and the
minimum sample size for demonstrating the reliability
requirement at the end of test duration (i.e., the end
of period 2). For any given total maximum number of



allowable failures over the entire test duration, ¢ = ¢; +
¢, the conventional BRDTs require to test fewer units
for demonstrating only a single reliability at the end
of the test. The MSRDTs, on the other hand, gain the
capability of demonstrating multiple reliability require-
ments at different time points at the expense of testing
a few more units. However, as ¢ = ¢; + ¢, increases,
fewer extra units are required to be tested for demon-
strating more reliability requirements at multiple time
points. For example, for ¢ = 5, the conventional BRDT
requires to test 18 units to demonstrate reliability at the
end of the two-year period as 0.6. To demonstrate an
additional higher reliability at the end of the first year
at 0.8, both MSRDT strategies require to test at least
20 units with no failure allowed to be observed during
the first year. More units need to be tested if more
failures are allowed to be observed during the first
year.

It is well known that incorporating different prior
information may have large impacts on the results
in Bayesian analysis. Next, we explore the impact of
different prior elicitations on the selected MSRDT
plans under both scenarios. Tables 4 and 5 summarize
the required minimum sample sizes for the MSRDT
plans over two test periods with different choices of
prior distributions for Scenarios I and II, respectively.
Seven different prior distributions including the non-
informative prior, Dirichlet(1, 1, 1), are explored.
The patterns are rather consistent across Tables 4 and
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5. Under both scenarios, when the prior distribu-
tion supports higher reliabilities than the minimum
requirements, such as Dirichlet(3, 3, 24) shown in the
fourth column in both tables, the minimum sample size
can be substantially reduced for any given combina-
tion of ¢; and ¢, values than using the non-informative
prior (shown in the third column in both tables).

On the other hand, if the prior distribution supports
reliabilities at or below the requirements, more units
need to be tested to demonstrate the requirements
than using the non-informative prior. This can be
observed in Figures 6 and 7 which show the mini-
mum sample size for fixed ¢; + ¢, under Scenario I
and II, respectively. In both figures, the solid lines
with triangles represent the sample sizes for different
(¢1, c2) combinations using a non-informative prior.
The dash lines with squares show the sample sizes for
a prior distribution Dirichlet(3, 3, 24) that supports
higher reliabilities than the requirements, which are
consistently below the line of non-informative prior.
All other prior distributions support reliabilities at
or below the requirements, and hence all require to
test more units with the corresponding lines located
above the line of non-informative prior. The farther
the specified prior distribution is to the reliability
requirements, the more test units are needed in the
MSRDTs over multiple time periods. One special
case is the dash line with open circles observed in
Figure 7 for a prior distribution Dirichlet(3, 12, 15),

Table 4. Minimum sample sizes required by the two-period MSRDT using the acceptance criterion in Scenario | for different prior

distributions.

Dirichlet ™11 (3.3,24) (6,6,18) (12,3,15) (3,12,15) (6,12,12) (12,6,12)

G G + G n,

0 0 12 1 22 58 22 30 67
0 1 13 1 22 58 25 32 66
1 1 15 2 24 62 25 33 69
0 2 14 2 23 58 28 35 65
1 2 17 3 26 62 28 35 69
2 2 19 4 27 66 28 36 72
0 5 20 5 27 60 35 42 66
1 5 22 5 29 65 36 43 69
2 5 24 5 32 69 36 43 73
3 5 26 8 34 73 36 44 76
4 5 28 n 36 76 36 44 79
5 5 30 13 37 79 37 44 81
0 6 22 6 28 60 38 45 67
1 6 24 6 31 65 39 45 70
2 6 26 6 33 70 39 46 73
3 6 28 8 36 74 39 46 77
4 6 30 n 38 77 39 47 80
5 6 32 14 39 81 39 47 82
6 6 34 16 40 83 39 47 84

Settings: M = 15000, R; = 0.8, R, = 0.6, 8 = 0.05
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Table 5. Minimum sample sizes required by the two-period MSRDT using the acceptance criterion in Scenario Il for different prior

distributions.

Dirichlet a,1,1 (3,3,24) (6, 6,18) (12,3,15) (3,12,15) 6,12,12) 12,6,12)

G G n

0 0 12 1 22 58 22 30 67
0 1 13 1 22 58 25 32 66
1 0 17 2 27 64 24 33 73
0 2 14 2 23 58 28 35 65
1 1 18 2 27 63 27 35 v
2 0 22 5 32 69 27 37 79
0 5 20 5 27 60 35 42 66
1 4 21 5 29 65 35 42 70
2 3 23 5 33 69 34 43 74
3 2 28 7 38 74 34 44 80
4 1 33 10 43 79 34 45 87
5 0 37 14 48 86 34 47 97
0 6 22 6 28 60 38 45 67
1 5 23 6 30 65 37 45 v
2 4 24 6 34 70 37 45 74
3 3 28 7 38 74 36 46 79
4 2 33 9 43 79 36 47 85
5 1 37 13 48 84 36 49 93
6 0 42 18 54 92 36 51 104

Settings: M = 15000, Ry = 0.8, R, = 0.6, 8 = 0.05

which is consistently below the non-informative line
indicating smaller minimum sample sizes are required
for all (cy, ¢;) combinations. Since the prior distribu-
tion regarding period 1 supports higher reliabilities
than the requirements, while the prior distribution
regarding period 2 supports reliabilities below the
requirements, the effects of sample size reduction from
period 1 and sample size increase from period 2 may
jointly determine the overall minimum sample size,
and hence lead to slightly different pattern than what
has been observed for other prior distributions.
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Figure 6. Minimum sample sizes required in Scenario | with fixed
¢, + ¢, = 6 for different prior distributions.

MSRDTs for multiple failure modes

In the previous section, the MSRDT strategies con-
sider each time period as an individual state for demon-
strating specific reliability requirement within the time
period. This section proposes a different category of
MSRDTs which considers different failure modes as
individual states that are often associated with different
consequences of failures and different costs of replace-
ment. The conventional BRDTs report dichotomous
outcomes (i.e., success and failure) for each test unit,
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Figure 7. Minimum sample sizes required in Scenario Il with fixed
¢, + ¢, = 6 for different prior distributions.



in which case different failure modes of the product
are not differentiated and the severity levels of different
consequences associated with different failures modes
are overlooked. In real applications, a product often
has multiple failure modes in varied levels of sever-
ity, which can lead to different impacts on customers’
dissatisfaction.

For instance, the failure of a CPU or a hard drive of
a computer system is much more critical than the fail-
ures of some accessory parts such as a keyboard or a
microphone, since the former can lead to a complete
break down of the system, a loss of valuable informa-
tion and/or a high repair/replacement cost while the
latter usually only results in system under-performance
and a low repair/replacement cost. Consequently, the
failures of critical or valuable parts will lead to stronger
dissatisfaction of customers, and hence result in higher
expectation on reliability for these components. It is
desirable to develop test strategies that allow demon-
strating separate reliability requirements for multiple
failure modes.

The product with ] independent failure modes
is considered. For each test unit, it will either have
failed in mode j, j =1, ...,] or remain working by
the end of the testing period. Let ; and y; denote
the probability of failure and the number of observed
failures in failure mode j within the test period (or an
equivalent mission time period), respectively. Then,
T4 =1— Zé:l mj and n— Zi’:l)’j denote the
probability of success and the number of survived
units by the end of the test. The MSRDTs for multiple
failure modes aim to demonstrate at an assurance level
at (1 — B) that the product reliability will meet multi-
ple minimum reliability requirements for each of the
different failure modes, denoted by R;, j=1,...,].
Here, B is the CR on having a product that has passed
the demonstration test but fails to meet all reliability
requirements for different failure modes. Note that
all failure modes are defined in the same test period.
For any specified reliability requirements R;’s and the
maximum acceptable CR controlled at or below 8, the
MSRDTs for multiple failure modes are designed to
determine the minimum sample size ny, as well as the
maximum number of allowable failures ¢; in the jth
failure mode for j =1, ..., J.

Without loss of generality, considering two failure
modes with J = 2 for illustrating the proposed MSRDT
strategy. Let R; and R, denote the minimum accept-
able reliabilities for failure modes 1 and 2, respectively.
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The test is passed if the number of observed failures y;
is less or equal to the maximum number of allowable
failures ¢ f for both failure modes, and the test plan is to
determine the choice on {ny,, 1, ¢;}. For independent
failure modes, the acceptance probability Hy, (n, ¢1, ¢2)
for certain (711, 71, ) values can be written as

c |
Hp(n,c1,6) = ) [(w(nn_yl)l) m' (1= m)“”]

n=0
& n! 3 _ i|
X —— |1 (1 — )"
2 [(mn —yz)!) o)
and the corresponding CR, denoted by CRy,, is calcu-
lated by
fo(l_Rl) fo(l_RZ) Hy(n, ¢y, Cz)P(JTl, my)dm,dm,
fol fol Hp(n, c1, ¢2) p(mry, m2)dmadmy

CRnp=1-

[5]

where p(my, ;) is the joint prior distribution of
(1, ). For independent failure modes, there is
p(my, m3) = p(my) p(2). The minimum sample size is
determined by controlling the CR,, obtained in Eq. [5]
to be at or below 8. Simulation case studies are con-
ducted for exploring different reliability requirements,
maximum numbers of allowable failures for different
failure modes, as well as different prior elicitations and
their impacts on the required minimum sample size
for the MSRDTs for two failure modes. The results are
summarized in Tables 6 and 7 for two cases with simi-
lar or different reliability requirements for the two fail-
ure modes. In Table 6, identical minimum reliability
requirements are assumed for the two failure modes,
where R; = R, = 0.8 indicates that the customers have
the same expectation on reliability for both failure
modes. Table 7 assumes different reliability require-
ments with R; = 0.8 and R, = 0.6. Here, failure mode
1 is considered more critical and/or have more severe
consequences associated with its failure, and hence is
required for a higher reliability. The CRy, is still con-
trolled at 8 = 0.05 and the sample size for Monte Carlo
sampling is chosen as M = 15000 to maintain the sim-
ulation accuracy. Beta distributions are used for speci-
fying the prior distributions for both 7, and m, for the
two failure modes.

When two failure modes have the same reliability
requirements at R; = R, = 0.8, Table 6 summarizes
the minimum sample size with different choices of the
maximum number of allowable failures and different
prior settings. When no prior information is available,
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Table 6. Multiple failure modes with the same reliability require-
ments for different prior distributions.

A 1,1 (2,18) (4,16) (10,15) (2,18) (2,18) (4,16)

Beta T, 1,1 (2,18) (4,16) (10,15) (4,16) (10,15) (10,15)
G 4 M

0 0 16 7 22 70 18 48 60
0 1 20 9 25 75 23 55 66
1 0 20 9 25 Vi 19 45 57
0 2 25 12 29 81 29 61 73
1 1 22 n 28 75 24 52 62
2 0 25 12 30 74 20 45 56
0 5 40 22 43 103 44 81 94
1 4 35 19 39 93 39 70 79
2 3 31 18 36 84 34 62 72
3 2 31 19 36 80 30 56 67
4 1 35 20 40 82 27 50 61
5 0 40 23 45 88 27 45 57
0 6 45 25 47 12 49 88 102
1 5 40 22 43 100 44 76 85
2 4 35 21 40 90 39 68 77
3 3 34 21 39 84 34 61 72
4 2 35 21 40 83 31 55 66
5 1 40 23 45 86 29 50 62
6 0 45 27 50 94 30 46 59

Settings: M = 15000, R; = 0.8, R, = 0.8, 8 = 0.05

a non-informative prior distribution of Beta(1, 1) is
assigned for both m; and m,. Similar patterns can be
observed as for the MSRDTs over multiple time peri-
ods. When ¢ is fixed, the minimum sample size n,,
increases as ¢, increases; when ¢, is fixed, #,, increases
with ¢;. This is intuitive as having more allowable fail-
ures makes it easier to pass the test and thus increases

Table 7. Multiple failure modes with different reliability require-
ments for different prior distributions.

7 (1,1 (2,18) (10,10) (4,16) (2,18) (10,10)

Beta T, (1,1 (2,18) (10,10) (10,15) (10,10) (2,18)
G G Ny

0 0 13 3 105 19 17 59
0 1 14 3 101 20 20 63
1 0 19 7 16 25 18 64
0 2 14 3 97 21 23 66
1 1 19 7 m 24 20 68
2 0 24 10 126 31 18 68
0 5 19 5 85 26 31 70
1 4 20 7 99 27 28 74
2 3 24 n n3 30 26 77
3 2 29 14 128 35 24 79
4 1 34 18 143 44 23 80
5 0 38 21 158 56 22 80
0 6 21 6 82 28 33 69
1 5 21 7 95 28 31 75
2 4 24 n 109 30 28 79
3 3 29 14 123 35 26 82
4 2 34 18 138 42 25 84
5 1 39 22 154 52 24 85
6 0 43 25 169 65 24 84

Settings: M = 15000, Ry = 0.8, R = 0.6, 8 = 0.05

the CR. To control a reasonable CR, a larger number
of units need to be tested by allowing more failures
to be observed during the test. When ¢; + ¢, is fixed,
the minimum sample size n,, exhibits a symmetric
pattern under the non-informative prior setting due to
the identical reliability requirements for both failure
modes. For example, when ¢; + ¢; = 6, the minimum
sample sizes for ¢; =0,c, =6, and ¢; =6,¢c, =0
are identical. In addition, when ¢; and ¢, become
more similar in size (e.g., c; = 2, c; = 4 compared to
c1 =0, c; = 6), it requires smaller minimum sample
size to remain the same assurance level for demon-
strating the requirements on both failure modes. This
makes sense as when the maximum number of allow-
able failures is considerably larger for one failure mode
given the same reliability requirement, it requires to test
more units for demonstrating the requirement for this
failure mode, which then inflates the overall minimum
sample size needed in the MSRDT for demonstrating
reliability requirements for both failure modes.

Different prior elicitations also have large impacts
on the selected test plan, as shown in Table 6. When
prior knowledge supports higher reliabilities than the
requirements to be demonstrated, fewer units need to
be tested and vice versa. For instance, the prior dis-
tributions of 7r; ~ Beta(2, 18) and 7, ~ Beta(2, 18)
indicate that there is a strong belief of lower fail-
ure probabilities than the requirements within the test
period for both failure modes. Thus, the corresponding
minimum sample size is smaller than what is needed
for using the non-informative prior. On the other hand,
when the prior distributions of 77; ~ Beta(10, 15) and
7, ~ Beta(10, 15) are used, which indicates a moder-
ately strong belief in larger failure probabilities than
the requirements for both failure modes, more units
need to be tested to demonstrate the higher reliabil-
ity requirements compared to what is needed when no
prior information is available.

When ¢; + ¢; is fixed, the required minimum sam-
ple size is also sensitive to the specified prior distri-
bution. Figure 8 illustrates the change in the n,, for
different (c;, ¢;) combinations given fixed ¢; + ¢, =
6. When the non-informative priors are assumed, the
curve for n,, (the solid line with the triangles) shows
a symmetric pattern with the minimum sample size
achieved at c; = ¢, = 3. When informative priors indi-
cating lower failure probabilities than requirements for
both failure modes (such as m; ~ Beta(2, 18), 7, ~
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Figure 8. Multiple failure modes with the same reliability require-
ments for fixed ¢, 4 ¢, and different prior distributions.

Beta(2, 18) corresponding to the dash line with the
open circles) are assumed, the minimum sample size
curve is below the non-informative curve. As the prior
belief indicates higher failure probability for at least one
of the failure modes (such as 7; ~ Beta(2, 18), m, ~
Beta(10, 15) corresponding to the dotted line with the
solid circles or mr; ~ Beta(10, 15), 7, ~ Beta(10, 15)
corresponding to the dash-dotted line with the open
circles), the corresponding minimum sample size curve
shifts upwards on at least one side of tails or on both
sides.

Table 7 shows the test plans when different reliability
requirements are used for the two failure modes with
R; =0.8 and R, = 0.6. When the non-informative
priors are used, the symmetric pattern is no longer
observed due to different requirements on reliability for
the two failure modes. Particularly, ny, is larger when
c1 is large since more units need to be tested to demon-
strate higher reliability requirement for failure model 1
while allowing more failures to be observed during the
test period. Also, for the same ¢; and ¢, settings, the
minimum sample size for demonstrating Ry = R, =
0.8 is smaller than what is required for demonstrat-
ing Ry = 0.8 and R, = 0.6 since fewer units can be
tested to demonstrate a lower reliability requirement
for failure mode 2. When more informative priors are
used, similar patterns are observed from both Table 7
and Figure 9. A potential sample size reduction can be
achieved when the prior knowledge supports higher
reliability than what is required to be demonstrated by
the MSRDT.
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Figure 9. Multiple failure modes with different reliability require-
ments for fixed ¢; + ¢, and different prior distributions.

Conclusions

Conventional binomial RDTs, which focus on demon-
strating a single reliability requirement within a single
test period, have limited use when multiple reliability
requirements need to be met. This article proposes
two types of RDTs for demonstrating reliabilities over
multiple time periods and for multiple failure modes.
These RDTs with multiple reliability requirements are
all referred to as multi-state RDTs (MSRDTs).

In the MSRDTs over multiple time periods, every
time period of interest is treated as a state, and the joint
distribution of failure counts over the non-overlapping
time periods can be modeled by a multinomial distri-
bution. Two different test strategies are proposed for
demonstrating multiple requirements over different
time periods. One strategy uses the cumulative failure
counts at the end of each cumulative time period peri-
ods as the criteria for passing the test; while the other
uses separate failure counts over non-overlapping time
intervals as the criteria for passing the test. Simula-
tion studies were conducted for comparing the two
strategies by considering two-period MSRDTs. It was
founded that the strategy based on cumulative failure
counts (Scenario I) is generally preferred for cases that
allow fewer total failure counts over all time periods or
when a larger maximum number of allowable failures
is allowed for the early cumulative time period. The
strategy using separate failure counts (Scenario II) is
only preferred for requiring smaller minimum sample
size when a smaller maximum number of allowable
failures is allowed for the early separate time period.
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In the MSRDTs for multiple failure modes, each
failure mode is treated as a state and all reliability
requirements for the multiple failure modes that may
be associated with different consequences in varied lev-
els of severity and/or costs of repair/replacement can be
simultaneously demonstrated. The required minimum
sample size is usually determined mainly by the fail-
ure mode that has the highest reliability requirement
and/or least stringent criterion for passing the test (i.e.,
allowing a larger maximum number of allowable fail-
ures for a particular failure mode).

The impacts of incorporating different prior dis-
tributions are also explored for both categories of
MSRDTs. The patterns are consistent regardless of
which test strategy is considered. When the prior
knowledge supports higher reliabilities than the
requirements to be demonstrated, fewer units can be
tested compared to using the non-informative priors
for demonstrating the same reliability requirements.
However, if the historical data supports lower relia-
bilities than what are required to be demonstrated,
then more units need to be tested to override the
effects of the prior distribution for demonstrating
higher reliabilities than what has been indicated from
existing data. For future work, it is expected to develop
thorough mathematical justifications with theoritical
formulations and derivations to validate the discussed
patterns using both non-informative and informative
prior distributions.
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Appendix

To analytically show the difference between Scenar-
ios I and II in the proposed MSRDTs over multiple
time periods when ¢; + ¢; is fixed, let AH(n, ¢, c;) =
Hi(n, c1, ¢2) — Hu(n, c1, ¢2), which can be explicitly

written as
— 0 )! )

C1 1=
n!
sHane) =3 3 (
xnl 712 A —m —m)" )’1_)’2]

=0 yr=c,+1 yilyal(n =y

When ¢; =0, AH(n, ¢1, ¢c;) = 0 and both scenarios
become equivalent, as shown in Tables 3-5. When ¢; >
0, AH(n, c1, ¢;) > 0, which indicates that the proba-
bility of accepting test plan under Scenario II is always
smaller than the probability calculated under Scenario
I. However, this finding does not imply that for a
fixed n, one scenario will always give a consistently
higher/lower CR than the other. To justify this, let A =
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1-R, 1-R,—
o fo T Hu(n, ¢, ) p(my, mp)dmydm and B =
1 o1
fo Jo Hu(n, c1, c) p(mry, m2)dmpdry, CRy and CR; can
be written as

A
CRp=1- 3
A+ AA
CRI —_— 1 - + )
B+ AB
where fl R 1 —femm AH(n, ¢y, c2)p(mry, m2)
dm,dm and AB = /01 /01 AH(n, c1, ¢) p(ry, m2)

dm,dm,. Then CRyp — CR is given by
BAA — AAB

B(B+ AB)
Although B > A, as n,c; and ¢, vary, AA can be
larger/smaller than AB. Thus, for a fixed sample size n,
neither CRy; > CRy nor CRy; < CR; will hold consis-

tently. It also explains results in Figure 5, and Tables 4
and 5 that when controlling CR, one scenario cannot

CR — CR; =

give a consistently larger/smaller minimum sample size
than the other scenario.
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