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ABSTRACT
Foreign exchange (FX) rate forecasting is a challenging area of study. Various linear and
nonlinear methods have been used to forecast FX rates. As the currency data are nonlinear
and highly correlated, forecasting through nonlinear dynamical systems is becoming more
relevant. The k-nearest neighbor (k-NN) algorithm is one of the most commonly used
nonlinear pattern recognition and forecasting methods that outperforms the available linear
forecasting methods for the high frequency foreign exchange data. As the k neighbors are
selected according to a a distance function, the choice of distance plays a key role in the
k-NN procedure.

The time series forecasting method, Auto Regressive Integrated Moving Average process
(ARIMA) is considered as one of the superior forecasting method for time series data. In
this work, we compare the performances of Mahalanobis distance based k-NN forecasting
procedure with the traditional ARIMA based forecasting algorithm. In addition, the fore-
casts were transformed into a technical trading strategy to create buy and sell signals. The
two methods were evaluated for their forecasting accuracy and trading performances.

1. INTRODUCTION

The foreign exchange (FX) market is a non-stop cash market where currencies of na-
tions are traded. Foreign currencies are constantly and simultaneously bought and sold
across local and global markets, and traders’ investments increase or decrease in value
based upon currency movements. The investors goal in FX trading is to profit from foreign
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currency movements. A preliminary global study by the Bank for International Settlements
from the 2013 Triennial Central Bank Survey of Foreign Exchange and OTC Derivatives
Markets Activity show that trading in foreign exchange markets averaged 5.3 trillion dollars
per day in April 2013. Thus, foreign exchange rates forecasting is one of the challenging
and important applications of financial time series prediction.

Foreign exchange rate forecasting is a challenging task due to the nonlinearity and the
highly correlated nature of the data [10, 25]. Nonlinear dynamical systems are becoming
more popular and relevant forecasting techniques due to these data structure. Neighbor Al-
gorithms is one of the most popular such non-linear pattern recognition algorithm, which
dates back to an unpublished report by Fix and Hodges in 1951, [6]. The basic principle of
k-nearest neighbor (k-NN) rule is to investigate the past behavior of the currency data so
that it can fully capture the dependency of the future exchange rates and that of the past.
As a pattern recognition algorithm, k-NN looks for the repetitions of specific price patterns
such as major trends, critical or turning points.

k-nearest neighbor forecasting procedure is mainly based on the similarity structure
of the past and the present. The recognized “nearest neighbors” are the only data values
used in the forecasting algorithm. The term ’nearest’ is determined by a distance metric.
Thus, it is highly important to have a distance function which captures the true nature of
the data. Among nearest neighbor methods, Mahalanobis distance proved to be more effi-
cient [19, 20]. In this paper, we will compare Mahalanobis based nearest neighbor method
of forecasting to some of the popular time series based methods.

In section 2, we will give some background material on distance measures, and error mea-
sures. In section 3 we will discuss some of our previously obtained results of choosing
embedding Dimension (m), number of nearest neighbors (k) and also present the com-
parison results of Mahalanobis distance and other popular distance choices. In section 4,
we will give some background material on times series forecasting methods and present the
comparison results of proposed Mahalanobis distance based k-NN and ARIMA forecasting
models. Conclusion will be given in section 5.

2. BACKGROUND

2.1. k-Nearest Neighbor Algorithm and the Choice of Distance.
k-nearest eighbor (k-NN) algorithm rank the data and chose the k closest of them based

on the distance between the query vector and the historical values. First, we divide the
time series data, {xt}nt=1 = {x1, x2, ..., xn} in to two separate parts; for T < n, a training
(in-sample) set {x1, x2, ..., xT} and a testing (or out-of-sample) set {xT+1, xT+2, ..., xn}.
In order to identify behavioral patterns in the data, we transform the scalar time series in to
time series vectors. We need to choose an embedding dimension (m) and delay time (τ ) to
create vectors out of the training set. After selecting m and τ , a time series vector at time t
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can be written as;

xm,τt = (xt, xt−τ , ..., xt−(m−1)τ ) for 1 + (m− 1)τ ≤ t ≤ T (2.1)

Thesem-dimensional vectors are often called asm−histories and them-dimensional
space Rm is referred to be the phase space of the time series [10].
The primary goal of k-NN method is to use the most relevant vectors out of the training set
in the forecasting. The most relevant vectors are the ones having similar dynamic behavior
as the delay vector xmT . We compare the distance between the delay vector and all the other
m-history vectors to choose the vectors with similar dynamic behavior [10]. Then we look
for the closest k vectors in the phase space Rm such that they minimize the distance func-
tion d(xmT , xi).

In k-NN algorithm, m and k are predetermined constants. In the literature, the optimal
values of m and k are quite ambiguous. There have been quite a lot argument and discus-
sions about the optimal choice of m and k since the NN rule was first officially introduced
by Cover and Hart in 1967 [7, 23]. In section 3 We will discuss the choice of m and k for
Mahalanobis distance along with other distance choices.

For the forecasting we can incorporate variety of Statistical and time series predicting
methods with NN algorithm. In the literature of k-NN forecasting, the most commonly used
forecasting method is locally weighted simple linear regression [3, 10]. Thus the future
forecasts were obtained using the following locally adjusted linear regression model [7]:

x̂T+1 =
m−1∑
n=0

ânxT−mτ + âm (2.2)

The coefficients were fitted by the linear regression of xmtj+1on xmtj = (xtj , xtj−τ , ..., xtj−(m−1)τ

for j = 1, 2, ..., k. Thus the estimated coefficients âi are the values of ai that minimize

k∑
j=1

(xtj+1 − a0xtj − a1xtj−1 − ...− am−1xtj−(m−1)τ − am)2 (2.3)

The data used in equation (2.3) are the only k(m + 1) data values obtained from the k-
neighbor vectors of size m and the corresponding next values, xmtj+1 for j = 1, 2, ..., k

chosen neighboring vectors, not the entire data.
As the forecasting is completely based on the selected k nearest neighbors, it is highly

important to use a distance function which captures the relevant behavior of the data ac-
curately. Many researchers have pointed out the difficulty of choosing a distance measure
for the NN algorithm that works well for different types of data. Over the past decades,
the most common choice of distance was Euclidean distance [7, 10]. The way it is defined,
the Euclidean distance is unable to capture the trend of the highly volatile (hence random)
and highly correlated foreign exchange data when choosing the neighbors for the NN algo-
rithm. Apart from Euclidean distance, several other distance measures such as Manhattan,
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Minkowski, and Hamming distances have been used in the algorithm for various types of
classification problems [13, 23].
Even though the asymptotic probability of error of the NN is independent of the choice
of metric, classification performance of finite sample nearest neighbor algorithm is not in-
dependent of the distance function [13, 17]. As Nearest neighbor rule is highly sensitive
to outliers, selecting irrelevant neighbors can cause increase in forecasting error. In their
work, Fukunaga & Hostetler showed that using a proper distance measure, the variance of
the finite sample estimate can be minimized [13]. Short & Fukunaga investigate the rela-
tion between the distance function in k-NN and the error measure [13]. They concluded
that the error can be minimized by using an appropriate distance metric without increasing
the number of sample vectors.

2.2. k-Nearest Neighbor and Distance Measure.
In time series pattern recognition, an appropriate distance function can categorize data

in to clusters by capturing the similarity or dissimilarity between the data. The following
distance measures are commonly used in nearest neighbor classification and forecasting
algorithm.
Consider n-dimensional vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rm.

The Euclidean distance between x and y is defined as

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.4)

Euclidean distance is a function which calculates the real straight line distance between
two points. It is the most common distance of choice in NN algorithms. Even though it
works well for low dimensional data, it performs poorly when the data are high dimen-
sional. Also, Euclidean is not the best distance choice when the data are highly correlated
as it does not account the for correlation among the vectors.

Manhattan distance gets its name from the rectangular grid patterns of the streets in
Manhattan [18]. The Manhattan distance between x and y in Rm is defined as:

d(x, y) =
n∑
i=1

|xi − yi| (2.5)

As it looks at the absolute difference between the coordinates, the most common and appro-
priate name for this distance measure is absolute value. It is also recognized as a compu-
tationally simplified version of Euclidean distance. Manhattan distance is preferred to Eu-
clidean distance in practice sometime, because the distance along each axis is not squared,
a large difference in one of the dimensions will not affect the total outcome.
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Mahalanobis distance was introduced by P. C. Mahalanobis in 1936 by considering the
possible correlation among the data [9]. It is defined between two vectors x and y as:

d(x, y) =

√
(x− y)′

∑−1
(x− y) (2.6)

Here,
∑−1 is the inverse of variance-covariance matrix

∑
between x and y and ′ denotes

the matrix transpose. The major difference in Mahalanobis to any other distance measure
is that it takes the covariance in to account. Due to this reason it is also called Statistical
distance as well.
Mahalanobis distance belongs to the class of generalized ellipsoid distance defined by

d(x, y) =
√

(x− y)′M(x− y) (2.7)

Here M is a positive definite, symmetric matrix. In the case the Mahalanobis distance,
the matrix M becomes the inverse of variance-covariance matrix. Obviously, this includes
Euclidean distances as a special case when M is the identity matrix.

When using Euclidean distance, the set of points equidistant from a given location is a
sphere. The Mahalanobis distance stretches this sphere to correct for the respective scales
of the different variables, and to account for correlation among variables [24]. As the axes
of ellipsoidal sphere can assume any direction depending upon the data, this is more ap-
plicable in the area of time series pattern recognition. Thus, unlike dimensional Euclidean
distance, it is possible to express the correlation and weight between dimensions using Ma-
halanobis distance. Due to these advantages, Mahalanobis distance captures the correlation
and the trend of the time series, better compared to other distances [7, 17].

In our earlier work, we proposed to use Mahalanobis distance in k-NN algorithm for FX
data. We compared the performance of the Mahalanobis distance based k-NN algorithm
with popular Euclidean and Manhattan distance based algorithm. Some of the earlier re-
sults are given in the next section.

The performance of the Mahalanobis distance based K-nearest neighbor algorithm was
compared with the time series forecasting technique, ARIMA in two ways:

(i) Forecast accuracy
(ii) Transforming their forecasts in to a technical trading rule

In the former case, our goal is to capture the deviation of the fitted values against the
actual observations. In the latter case, we are interested in looking at the forecasts in
financial point of view. For that we create trading signals, buy and sell using a technical
trading rule [10] and the performances were evaluated by the commonly used performance
measures in practice.
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2.3. Measures of Forecasting Accuracy.

Let xt and x̂t for t = 1, 2, ..., n be the actual and fitted values respectively. To determine
the forecast accuracy of the prediction model for number of out-of-sample predictions, the
following error measures were used.

Mean square error (MSE): Mean square error defined by

MSE =
1

n

n∑
t=1

(x̂t − xt)2 (2.8)

is the most commonly used accuracy measure in statistics to determine the difference be-
tween the actual and estimated values. It is a scale dependent measure, but gives a basis to
compare the forecasts. Due to squaring, MSE gives disproportionate weight to larger errors.

Means absolute percentage error (MAPE): Mean absolute percentage error is another
widely used accuracy measure for non-negative observations.this measure gives a forecast-
ing accuracy as a percentage, so we can compare the errors of the fitted time series that
differ in levels.

MAPE =
100

n

n∑
t=1

| x̂t − xt
xt
| (2.9)

Also, the mean absolute percentage error is not affected by larger deviations as MSE. It is
zero for a forecasting model with a perfect fit. However, there is no restriction of its upper
bound.

Theil’s U - statistic (U ): We considered the following version of Theil’s U - statistic to
compare the forecasting accuracy of our model.

U =

√
n∑
t=1

(x̂t − xt)2√
n∑
t

(x̂t)2 +

√
n∑
t

(xt)2
(2.10)

This is a measure of the degree to which the forecasted values differ from the actual values.
U statistic is independent of the scale of the variable, and constructed in such a way that it
necessarily lies between zero and one, with zero indicating a perfect fit.However, U statistic
does not provide information on forecasting bias, which is better captured by mean square
error.

Normalized Root Mean Square Error (NRMSE):Scale invariant forms of mean square
error (MSE) are useful because, often we want to compare the forecasting errors in different
scales. The non-dimensional version of MSE we adopted here is the normalized root mean
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squared error given by:

NRMSE =

n∑
t=1

e2(t)

σ
=

√
n∑
t=1

(x̂t − xt)2

σ
(2.11)

Here, σ is the standard deviation of the time series [3]. The normalized root mean squared
error is a frequently used error measure to evaluate the difference between the values pre-
dicted by a model and actual observations.

2.4. Trading Decisions.
As in any other financial market, in FX market also a trader’s main goal is to make more

money out of foreign currency fluctuations. The primary goal of foreign exchange rate
forecasting has to be making proper trading signals: buy and sell at each time step so that
the trader makes more money. To satisfy this main aspect, first we need to transform fore-
casted values in to trading signals. The forecasts were transformed into a simple technical
trading strategy using the trading rule used by Fernandez-Rodriguez, Sosvilla-Rivero, and
Andrada-Felix in their work [6, 7]. Let r̂t given by

r̂t = ln(x̂t+1)− ln(1 + i
′

t)− ln(1 + it) (2.12)

be the estimated return from a foreign currency position over the period (t, t+ 1) based on
the forecasted FX rate at time t. Here xt represents the spot exchange rate at time t, x̂t+1,
is the forecasted value for xt+1 is the domestic (US) daily interest rate and i′ is the foreign
country daily interest rate. The trading signals at time t are made based on the estimated
return t̂t. The positive returns are executed as long positions (buy) and the negative returns
are executed as short position (sell) [6, 7]. So the trading decision can be given as

ẑt =

{
1 ; if r̂t > 0

−1 ; if r̂t < 0
(2.13)

Based on estimated return, we calculate estimatedtotal(logaccess)return of the trading
strategy over the time period (1, n) as

R̂n =
n∑
t=1

ẑtrt (2.14)

Here rt is the actual return at time given by

rt = ln(xt+1)− ln(xt)− ln(1 + i
′
t)− ln(1 + it)

We also consider the popular performance measure: Sharpe ratio to compare the results
along with the estimated total return. The Sharpe ratio, SR used here is the mean daily total
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return of the trading strategy over its standard deviation,

SR =
µR̂n

σR̂n

(2.15)

Higher values of Sharpe ratio indicates that the model is performing better.

3. k-NEAREST NEIGHBOR FORECASTING WITH MAHALANOBIS
DISTANCE

3.1. Data.

The data used here are exchange rates of Euro (EUR), British pound sterling (GBP), Swiss
franc (CHF), Japanese Yen (JPY), and Canadian dollar (CAD) vis-á-vis American dollar
(USD) obtained from the ProQuest Statistical Datasets. These are the daily spot rates of the
currencies from January 2006 to December 2010. In order to make the comparison more
effective, we have considered 1250 data from each currency, and taken 1000 data values as
our training sample. The remaining 250 values were considered as the test sample. The
coefficients of the model were updated every time when new information arrived.

3.2. Embedding Dimension (m) and Number of Nearest Neighbors (k).
The choice of embedding dimension, m, and the number of nearest neighbors, k in the
k-NN forecasting procedure is a key issue need to be addressed prior to making trading
signals. Therefore, first we conducted an empirical investigation to find the optimal values
of m and k. We wanted to figure out whether the choices for m and k are data dependent,
and also distance dependent. The forecasting accuracy was compared using all the error
measures mentioned in section 2.3, by varying the value of m and k along with different
distance functions. 80% of the data was considered as the training set, and the remaining
20% was taken as the testing set. After analyzing the results, the key parameters m and k
of the algorithm were chosen as 3 and 20, respectively. The complete results of choosing
the embedding dimension (m) and neighborhood size (k) can be found in [20].

3.3. Forecasting Accuracy and Trading Performances of Mahalanobis Distance vs.
Other Distance Measures.
As discussed in section 2.2, the choice of distance plays a key role in the nearest neighbor

algorithm. in our earlier published work, we have provided sufficient evidence supporting
Mahalanobis distance as the choice of distance in k-NN procedure [19, 20]. We came to
this conclusion by comparing the forecasting accuracy as well as the trading performances
of the 5 currency data sets with Mahalanobis distance and other traditional distances such
as Euclidean and absolute distances. The Mahalanobis distance outperforms the traditional
distance functions for all the data sets with respect to the forecasting accuracy and trading
performances. The details results can be found in [19] and [20].
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4. k-NEAREST NEIGHBOR FORECASTING VERSUS TRADITIONAL TIME
SERIES FORECASTING

In this section our main goal is to compare the trading performances of Mahalanobis based
k-nearest neighbor procedure with popular time series forecasting method, autoregressive
moving average (ARIMA) in the foreign exchange market. First, we will briefly discuss
some of the most important time series forecasting methods are used in time series data
analysis. Then, we will go over the step-by-step model building procedure for the same
5 currency data sets used in the previous section. Finally, we will compare the forecast-
ing accuracy, and the trading performances of time series models with our proposed k-NN
forecasting algorithm.

The autoregressive process (AR) and the moving average process (MA) were very use-
ful representations among the time series community over the past. Both of these models
are only applicable to stationary time series data. Each method has its own pros and cons.
The ARMA model combines the AR and MA processes to have a better forecasting in time
series by taking advantages of both AR and MA methods.

4.1. The General mixed Autoregressive Moving Average (ARMA) Models.
The General ARMA(p,q) process is a combination of an autoregressive process of order,
p, and a moving average process of order, q. Herman Wold was the person who first put
together AR and MA models to create ARMA process in 1938. Since then, this method
has been used in many areas of time series. ARMA(p,q) process is defined as;

xt = α + φ1xt−1 + φ2xt−2 + ...+ φpxt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θpεt−q (4.1)

or
Φp(L)xt = α + Θq(L)εt (4.2)

where
Φp(L) = 1− φ1L− φ2L

2 − φ3L
3 − ...− φpL

p (4.3)

and

Θq(L) = 1 + θ1L+ θ2L
2 + θ3L

3 + ...+ θqL
q (4.4)

The ARMA process is invertible if the roots of Θq(L) = 0 lie outside the unit circle
and stationary if the roots of Φp(L) = 0 lie outside the unit circle [?, 16]. Note that we need
to make the assumption of Θq(L) = 0 and Φp(L) = 0 sharing no common roots [?, 16].

4.2. The General ARIMA Model.
In reality, most of the time series are non-stationary. For non-stationary time series, roots

of the AR polynomial do not lie outside the unit circle. Therefore, we are not able to use
the general mixed ARMA(p,q) model for forecasting. In such cases, the time series can
be converted to a stationary process by differencing. This is also known as the integrated
part of the algorithm., which transforms the general stationary ARMA process in to non
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stationary ARIMA(p,d,q) process. Here d is the degree of differencing. The difference
filter is normally given by

(1− L)d where Ljxt = x
t−j

(4.5)

Generally, d will be a positive integer and represents the number of times xt must be differ-
enced to achieve a stationary transformation. Typically, d ∈ {0, 1, 2, ..., d}. When d = 0,
the ARIMA process becomes stationary ARMA process. Thus the autoregressive inte-
grated moving average, ARIMA(p,d,q) can be written as

Φp(L)(1− L)dxt = α + Θq(L)εt (4.6)

where

Φp(L) = 1− φ1L− φ2L
2 − φ3L

3 − ...− φpL
p

and
Θq(L) = 1 + θ1L+ θ2L

2 + θ3L
3 + ...+ θqL

q

Consider a simple case when p, q, d all equals 1. Then the ARIMA(1,1,1) model can be
written as

Φ1(L)(1− L)xt = α + Θ1(L)εt

or we can expand the model as

(1− φ1L)(1− L)xt = α + (1 + θ1L)εt

Which reduces to

xt = α + (1 + φ1)xt−1 − φ1xt−2 + εt + θ1εt−1

Sometimes, selecting the best order of the ARIMA(p, d, q) is a challenging task. As the
forecasting is strongly depending on the order of the model, it is highly important to pick
the correct order. The procedure needs to be completed in two steps. First we need to
figure out the differencing order, of the process. To determine the correct order of differ-
encing, we continue the differencing procedure until the time series becomes stationary.
The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and Augmented Dickey-Fuller unit
root test are normally used to determine the stationarity of a time series [21].

Once the correct differencing order, d is determined, the order of AR polynomial, p,
and MA polynomial, q are determined using either Akaikes information criterion (AIC).
The AIC normally measures the quality of each model, relative to each of the other mod-
els. It is defined as

ln(L) = 2M − 2ln(L) (4.7)
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where, M is the number of parameters in the model, and ln(L) is the unconditional log-
likelihood function given by

ln(L) = −n
2
ln(2πσ2)− 1

2
σ2

n∑
i=1

(x
i
− µ)2 (4.8)

Here, µ and σ are the mean and the standard deviation of time series respectively. The AIC
is calculated by changing the values of p and q in the ARIMA model, and the model with
the smallest AIC is usually selected for forecasting.

4.3. Foreign Exchange Rates Forecasting with general ARIMA Process.
In this section, we will first introduce the data preparation procedure for the same five

currency data sets we used in section 3. Then, we will determine the appropriate ARIMA
model for each data set, and finally compare the ARIMA approach with the Mahalanobis
distance based k-NN forecasting method. In this paper also, the comparison will be per-
formed according to two main aspects of forecasting. As the primary step, we will consider
the different error measures discussed in section 2.3 to compare the forecasting accuracy.
As the secondary step, the ARIMA forecasts will be transformed in to trading signals using
the same technical trading strategy discussed in section 2.4 and compare withe the trading
performances of k-NN procedure.

As discussed in Section 4.2, the order of differencing will be determined using the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For that, we will keep on differencing
the series until the data becomes stationary. To figure out the order p of AR polynomial
and q of MA polynomial, we are considering a positive constant m = 5 with p + q = m.
Then, we will vary the values of p and q such that p+ q ≤ m and estimate the parameters;
φ1 , φ2 , ..., φp , θ1 , θ2 , ..., θq of each ARIMA(p,d,q) model. The Akaike information criterion
(AIC) was computed for each model to chose the model with the minimum AIC.

4.3.1. ARIMA Forecasting Model for EUR/USD Daily Rates.
Following the step-by-step procedure we introduced above, the forecasting model with

minimum AIC for the EUR/USD exchange rates data set was ARIIMA(1,1,1), that is a
combination of first order autoregressive (AR), and a first order moving average (MA) with
the first difference filter (d = 1) . The model can be explicitly written with the estimated
parameters as below:

(1− 0.1329L)(1− L)xt = 0.00019 + (1− 0.1323L)εt (4.9)

xt = 0.000192 + 1.132915xt−1 − 0.132915xt−2 + εt − 0.132342εt−1 (4.10)

By letting εt = 0 , we have the one day ahead forecasting time series for EUR/USD cur-
rency data as

xt = 0.000192 + 1.132915xt−1 − 0.132915xt−2 − 0.132342εt−1 (4.11)
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FIGURE 1. ARIIMA(1,1,1) Forecasts and real values for EUR/USD daily
exchange rates.

The figure 1 shows the predictions on top of the original time series for the forecasting
period.

4.3.2. ARIMA Forecasting Model for GBP/USD Daily Rates.
The forecasting model with minimum AIC for the GBP/USD exchange rates data set was

ARIIMA(1,1,2) model. This process is a combination of first order autoregressive (AR),
and a second order moving average (MA), with the first difference filter. The model can be
explicitly written with the estimated parameters as below:

(1 + 0.636309L)(1− L)xt = −0.000218556 + (1 + 0.652109L+ 0.063216L2)εt (4.12)

or

xt = −0.000218556 + 0.363691xt−1 + 0.636309xt−2 + εt + 0.652109εt−1 + 0.063216εt−2

(4.13)

By letting εt = 0 , we have the one day ahead forecasting time series for GBP/USD
currency data as

xt = −0.000218556+0.363691xt−1 +0.636309xt−2 +0.652109εt−1 +0.063216εt−2 (4.14)

The 250 out-of-sample forecast with the original time series are given in figure 2.

4.3.3. ARIMA Forecasting Model for JPY/USD Daily Rates.
After comparing AIC for JPY/USD rates data set, we came up with the following ARIMA(1,1,2)
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FIGURE 2. ARIMA(1,1,2) Forecasts and real values for GBP/USD daily
exchange rates

model, that is a combination of second order autoregressive (AR), and a first order moving
average (MA), with the first difference filter.

(1− 0.664950L)(1− L)xt = 0.00000098 + (1− 0.400612L− 0.234753L2)εt (4.15)

Expanding the autoregressive operator and the difference filter and then letting εt = 0, we
obtained one day ahead forecasting time series for JPY/USD currency data as

xt = 0.00000098+1.0.664950xt−1−0.664950xt−2−0.400612εt−1−0.234753εt−2 (4.16)

The figure 3 shows the forecasts with the actual values.

4.3.4. ARIMA Forecasting Model for CHF/USD Daily Rates.
For the CHF/USD daily rates, we found that ARIIMA(1,1,1) as the model with smallest

AIC by varying the values p and q, after deciding the deference degree as one. The ARIMA
process can be explicitly written with the estimated parameters as:

(1 + 0.0881215L)(1− L)xt = 0.000231 + (1 + 0.371622L)εt (4.17)

Expanding the autoregressive operator and the difference filter and then letting εt = 0, we
obtained following one day ahead forecasting model:

xt = 0.000231 + 0.918785xt−1 + 0.0881215xt−2 − 0.0881215εt−1 (4.18)

The figure 4 shows the forecasts with the actual values.
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FIGURE 3. ARIMA(1,1,2) Forecasts and real values for JPY/USD daily
exchange rates.

FIGURE 4. ARIMA(1,1,1) Forecasts and real values for CHE?USD daily
exchange rates.

4.3.5. ARIMA Forecasting Model for CAD/USD Daily Rates.
The forecasting model with the minimum AIC value for the CAD/USD daily rates was

a combination of first order autoregressive (AR), and a third order moving average (MA)
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FIGURE 5. ARIMA(1,1,3) Forecasts and real values for CAD/USD daily
exchange rates.

with the first difference filter, namely, ARIMA(1,1,3).

(1− 0.481798L)(1−L)xt = 0.000055 + (1− 0.182836L− 0.130882L2 + 0.067018L3)εt
(4.19)

Expanding the autoregressive operator and the difference filter and then letting εt = 0, the
following one day ahead forecasting model was obtained:

xt = 0.000055+1.481798xt−1−0.481798xt−2−0.182836εt−1−0.130882εt−2+0.067018εt−2

(4.20)

The figure 5 shows the forecasts with the actual values.

4.4. k-Nearest Neighbor Forecasting vs. ARIMA Forecasting - Forecasting Accuracy.
In section 4.3, we discussed in details the general autoregressive integrated moving average
forecasting models for the five daily exchange rates data sets. The given figures (fig.1-5 )
indicate that the ARIMA forecasts follow the actual values pretty well as similar to the
case of k-NN forecasting. In this section, our goal is to compare the forecasting accuracy
of ARIMA models with our proposed Mahalanobis distance based k-nearest neighbor fore-
casting procedure.

We considered all the accuracy measures mentioned in section 2.3 and compared the
performances of each algorithm based on how accurate their forecasts were. The following
tables give the U -statistic, mean square error, and normalized root mean square error for
the currencies EUR, GBP, JPY, CHF, and CAD with Mahalanobis distance based k-NN
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algorithm and ARIMA forecasting models.

TABLE 1. U -statistics with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.003898012 0.003456137

GBP 0.003454303 0.00318494

JPY 0.00690517 0.008302838

CHF 0.005559151 0.007286362

CAD 0.005979865 0.00731294

TABLE 2. Mean square error with k-NN and ARIMA models.

Currency k-NN ARIMA
forecasting forecasting

EUR 0.00010905 0.00008479

GBP 0.00011439 0.00009725

JPY 0.00024810 0.00035878

CHF 0.00011441 0.000196566

CAD 0.00013689 0.000199935

TABLE 3. Normalized root mean square error with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.16748184 0.14691536

GBP 0.22251281 0.20423380

JPY 0.30304086 0.35985560

CHF 0.21693213 0.28301529

CAD 0.58311581 0.65600438

As can be seen from the obtained results, given by tables 1, 2, & 3, we can see that
majority of the time (3 out of 5) Mahalanobis distance based k-NN forecasting model out
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performs the ARIMA method. In the cases of EUR and GBP, the general ARIMA process
seems to forecast relatively better compare to the nearest neighbor forecasting. Even though
our primary goal in this paper is to compare the trading performances of both methods, it
is necessary to to further analyze the data, and come up with an explanation behind this
situation. For this purpose, we calculated the following statistical measures for all the data
sets:

• Total Variation -
The total variation or the total sum of squares (SST) is a measure of the observed
values around the mean. It is comprised the sum of the squares of the differences of
each data value with the mean.

Total variation =
n∑
t=1

(xt − x̄)
2

(4.21)

• Standard Deviation -
In statistics, the standard deviation is a measure of the spread of scores within a set of
data. It is a measure that is used to quantify the amount of variation or dispersion of a
set of data values. Smaller the standard deviation, closer the data points to its mean.

Standard deviation, σ =

√√√√ n∑
t=1

(xt − x̄)2

n
(4.22)

TABLE 4. Total Variation and Standard Deviation

Currency Total Standard
variation deviation

EUR 10.99275618 0.104846346

GBP 36.55015706 0.191180954

JPY 0.000877177 0.000936577

CHF 4.313622939 0.065678177

CAD 4.193662329 0.064758492

Considering the calculated values for total variation and standard deviation (given in
table 4), we observed that the EUR and GBP daily rates have relatively higher total vari-
ation and standard deviation compare to the remaining data sets. This means that those
data are more spread out comparing to the other data, and hence more volatile. Thus, one
of the conclusions we can come up with considering forecasting accuracy is that for FX
rates withe a relatively higher total variation (or standard deviation), ARIMA(p,d,q) model
performs relatively better compare to k-NN procedure.
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One of the reasons behind ARIMA process forecasts better for a time series with a
higher volatility is having the moving average (MA) component to adjust according to the
previous forecasting errors, unlike the nearest neighbor forecasting, which is something
important specially, when the data are more volatile. The novelty of the k-nearest neighbor
forecasting is to capture the similar history and forecasts better only using the most relevant
instance. As we discussed in section 3, choosing the correct distance function can make
a huge impact on it’s performances. Even though Mahalanobis distance based k-nearest
neighbor method outperforms the popular time ARIMA process majority of the time (3 out
of 5), these results indicate that we can further improve the k-NN forecasting method by
adjusting the algorithm according to the previous forecasting errors.

As the next step, of the comparison procedure, we converted ARIMA forecasts into trad-
ing signals, buy and sell, using the technical trading strategy discussed in section 2.4, and
compared the results with Mahalanobis distance based nearest neighbor trading decisions.

4.5. k-Nearest Neighbor Forecasting vs. ARIMA Forecasting - Comparing Trading
Decisions.
As it is obvious that currency trader’s main goal is to make more money, in this section

we evaluated these two prediction models (k-NN and ARIMA) considering their trading
performances. We transformed the ARIMA forecasts in to trading signals, buy and sell
using technical trading strategy discussed in section 2.4. Then, the performance measures,
total (log access) return and Sharpe ratio were calculated and compared with those of
k-nearest neighbor forecasting technique. Higher values of these measures indicate that the
model is performing better.

The estimated total return and Sharpe ratio for the technical trading strategy under k-
NN algorithm and ARIMA process are given in tables 5 and 6. The final conclusion of
forecasting model is pretty much same as that of error measures. Proposed Mahalanobis
distance based k-NN method outperforms the ARIMA process majority of the time. Ac-
cording to the forecasting accuracy, both EUR and GBP daily exchange rates data sets sup-
port ARIMA model. However, when comparing total return and Sharpe ratio, GBP/USD
daily rates pretty much gave the same numerical values for both the models. Therefore, the
results for trading decisions also indicated that the k-nearest neighbor forecasting model
producing more accurate and profitable trading signals compared to the general ARIMA
process.

The results from section 4.4 and section 4.5 motivates to investigate more on the behavior
of time series data and the most appropriate forecasting technique. The primary goal of
the next section is to study the forecasting accuracy of simulated time series data with both
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TABLE 5. Total Return k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.52991777 0.89316418

GBP 4.16807227 4.16807227

JPY 0.67755404 0.47532224

CHF 5.42108879 5.16742874

CAD 4.38589604 4.03711714

TABLE 6. Sharpe Ratio with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.27890809 0.50803011

GBP 2.41593434 2.41593434

JPY 0.18429771 0.12818451

CHF 1.67419376 1.42328537

CAD 1.26400087 1.04713284

Mahalanobis distance based k-NN method and the general ARIMA forecasting models.

5. Simulation Data Analysis

Time series data simulation plays an important role in many areas of time series data
analysis such as economics & finance, environmental studies , and engineering. It is a
whole different area of research, where the researchers have paid much more attention in
the recent history. Generating financial time series such as exchange rates data is a chal-
lenging task compared to most of the other time series data simulation. A huge amount of
empirical contributions been made towards this topic, and variety of economical, financial
and time series models been proposed and experimented by many academic and industrial
researchers during the last two decades. As most of the traditional financial theory based
methods failed to match the features displayed by the actual data, many alternative models
were proposed to overcome the issues of these traditional theory based models [2].

The purpose of any foreign currency generating algorithm is to replicate a certain ex-
change rate by considering all the financial and economical factors related to those two
countries, which is a complicated task. In their work Bianchi, Pantanella, and Pianese
claimed that using their proposed multifractional process with random exponent, they were
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successfully able to replicate EUR/JPY and EUR/USD [2] exchange rates. Also, Oyediran
& Afieroho have worked on developing an algorithm to simulate many different FX rates
such as European euro, British pound sterling and the US dollar against the Nigeria naira
[18]. Their simulation models were also developed after analyzing the historical data of the
corresponding currency rates.

All these simulation algorithms have one main goal in common. Their goal was to
develop a procedure well capture the behavior of a given currency rate, which was not our
intension of simulation study in this work. The goal here is to capture the behavior(s) of
a time series to decide which forecasting algorithm (k-NN or ARIMA) would be more
beneficial. Even though our primary interest is forecasting and decision making in foreign
exchange market, for the simulation study we considered time series data in general.

Auto regressive (AR), moving average (MA), and general and mix ARIMA models
are the most popular time series data simulation techniques among the time series research
community. These time series processes have been used by many researchers over the
recent history to replicate time series data using different computer software such as MAT-
LAB and R [15]. For the simulation data analysis, several time series data sets were sim-
ulated in MATLAB environment with the use of the built-in MATLAB functions “arima”
and “simulate”. Since the data were simulated using ARIMA process, there is always a
possibility of having an advantage of using an ARIMA forecasting model.

The observations from section 4.4 and section 4.5 lead to the conclusion that for a time
series data with a higher volatility, ARIMA forecasting procedure works better compared
to the k-nearest neighbor method. As can be seen from the table 4, both EUR and GBP
data sets have higher volatility measures compared to the rest. Due to this reason, the time
series were simulated by varying the standard deviation. We have chosen a range from
0.00126 to 0.896 to capture the range of our data sets’ standard deviations. The simulated
9 data sets and their standard deviations listed below from highest standard deviation to
lowest standard deviation:

The model comparison was performed using the accuracy measures discussed in sec-
tion 2.3. We only focused on deviation in fit for this comparison. To compare the trading
decisions, it is necessary to simulate the interest rates, and also the time series data repli-
cating real FX data of a certain country, which is not our interest here. Also the obtained
results in section 3 and 4.5 suggest that having more accurate forecasts always lead to a
higher trading performances.

We followed the same data preparation procedure discussed in section 4.2 to build the
best model for each data set when using ARIMA process for forecasting. Even though the
data was simulated with the specified orders and parameters, we again tested them for the
appropriate differencing order and AR order, p, and MA order, q. For Mahalanobis distance
based k nearest neighbor algorithm the parameter m was set to be 3 and k was set to be 20
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TABLE 7. Standard deviations of the simulated data

Data Set Standard deviation
Simulated data set 1 0.896010158

Simulated data set 2 0.400925413

Simulated data set 3 0.283497079

Simulated data set 4 0.126783748

Simulated data set 5 0.040092541

Simulated data set 6 0.012678375

Simulated data set 7 0.004009254

Simulated data set 8 0.001267838

Simulated data set 9 0.001267838

as in section 4.4. One step ahead out of sample forecasts were created for 250 test set and
the size of the training window was 1000.

TABLE 8. U -Statistics for k-NN forecasts and ARIMA forecasts: Simu-
lated data with standard deviation between 0.00127 and 0.896

Data Set Standard k-NN ARIMA
Di deviation U -statistic U -statistic
D1 0.896010158 0.18665837 0.14858764

D2 0.400925413 0.08280900 0.07039754

D3 0.283497079 0.05881467 0.05116939

D4 0.126783748 0.02643441 0.02684713

D5 0.040092541 0.00837700 0.01733388

D6 0.012678375 0.00265053 0.01621586

D7 0.004009254 0.00083831 0.01614590

D8 0.001267838 0.00026511 0.01615349

D9 0.001267838 0.00185742 0.01614677

The comparison results of U -statistic for the simulated data are presented in Table 8
above. It can be clearly seen that for the data sets 1, 2, and 3, ARIMA based forecast-
ing models had lower U -statistic values compared to those of Mahalanobis distance based
k-NN forecasting. Those are the data sets with higher standard deviations. When the stan-
dard deviation is getting smaller and smaller, k-NN forecasting algorithm started to perform
comparatively better than general ARIMA process. For the data sets 6 trough 9, the dif-
ference between the U -statistic values are significant. This supports the claim that for a
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time series data with a lower standard deviation, the k-NN method has a higher forecasting
accuracy compared to ARIMA.

All the other error measures support the same argument. As can be seen from the table
9, when comparing mean square error (MSE) also we were able to observe that for the
data sets 1, 2, and 3, k-NN forecasting method demonstrating relatively poor performance
compared with ARIMA. Even these data were simulated using general ARIMA process,
for the time series data with a lower volatility, k-nearest neighbor forecasting method (with
Mahalanobis distance) outperforms the ARIMA method.

TABLE 9. MSE for k-NN forecasts and ARIMA forecasts: Simulated data
with standard deviation between 0.00127 and 0.896

Data Set Standard k-NN ARIMA
Di deviation MSE MSE
D1 0.896010158 0.75482502 0.620606842

D2 0.400925413 0.15148122 0.127060368

D3 0.283497079 0.07574061 0.066274057

D4 0.126783748 0.01514812 0.018027316

D5 0.040092541 0.00151481 0.007485055

D6 0.012678375 0.00015148 0.006544971

D7 0.004009254 0.00001515 0.006487096

D8 0.001267838 0.00000151 0.006492738

D9 0.001267838 0.00000151 0.000405499

We went further and tried to figure out exactly around what value of standard devia-
tion k-NN procedure starting to work better. Table 8 and 9 clearly indicate that somewhere
between the values of 0.127 & 0.283, k-NN forecasting procedure has started performing
better. To investigate this furthers, couple of more data sets were simulated with standard
deviation between 0.009 and 0.15. Then, we followed the exact same procedure and pre-
dicted 250 future values. From the given results of U -statistic values in table 10, we can
observe that for the standard deviation values below 0.13, the k-NN has a better forecasting
accuracy.

6. Concluding Remarks

In this paper, our main goal was to compare the proposed Mahalanobis distance based
k-NN forecasting with general autoregressive integrated moving average (ARIMA) pro-
cess, which is assumed to be one of the best time series forecasting technique. As all these
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TABLE 10. U -statistic for k-NN forecasts and ARIMA forecasts: Simu-
lated data with standard deviation between 0.009 and 0.15

Simulated data k-NN ARIMA
sd U -statistic U -statistic
0.15010000 0.031257268 0.030175564

0.13000000 0.02708489 0.02728483

0.12750000 0.026565797 0.026934802

0.12030000 0.0250823020 025948689

0.10540000 0.021970607 0.023958385

0.10030000 0.020912901 0.02330971

0.09100000 0.018988001 0.022171638

forecasting methods are data driven models, giving an optimal forecasting model works
with all types of data is practically a difficult task.

From our results, we can conclude that k-nearest neighbor forecasting algorithm with Ma-
halanobis distance function outperforms the popular time series forecasting technique, gen-
eral ARIMA process, majority of the time. For the data sets with a relatively higher total
variation (or highly volatile), ARIMA methods seems to work better compared to the k-
NN forecasting. Our simulation data study supported this claim as well. Considering the
accuracy measures (U -statistic and MSE), we can conclude that for time series data with a
smaller standard deviation, k-NN forecasting procedure more appropriate than the ARIMA
process.

The nearest neighbor algorithm is a nonparametric, on-line learning algorithm. Thus, it
does not require any distributional assumptions, and data preparation ahead of time. Un-
like nearest neighbor, ARIMA process requires model building procedure to select proper
differencing order (d), autoregressive order (p), and moving average order (q). The ob-
tained results proved that even with all these model building procedure, still the ARIMA
process worked better only for one currency data set according to the trading decisions.
We discussed in the previous section (section 3) that choosing an appropriate distance in
NN algorithm can improve the forecasting significantly. The results obtained in this paper
further support our earlier conclusion. Also, we noticed that the k-NN forecasting method
can be further improve by adjusting the algorithm according to the previous forecasting
errors, which will be part of our future work.
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