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A Multiresolution Analysis Assisted Reinforcement
Learning Approach to Run-by-Run Control

Rajesh Ganesan, Tapas K. Das, and Kandethody M Ramachandran

Abstract—In recent years, run-by run (RbR) control mecha-
nism has emerged as an useful tool for keeping complex semicon-
ductor manufacturing processes on target during repeated short
production runs. Many types of RbR controllers exist in the
literature of which the exponentially weighted moving average
(EWMA) controller is widely used in the industry. However,
EWMA controllers are known to have several limitations. For
example, in the presence of multiscale disturbances and lack of
accurate process models, the performance of EWMA controller
deteriorates and often fails to control the process. Also control
of complex manufacturing processes requires sensing of multi-
ple parameters that may be spatially distributed. New control
strategies that can successfully use spatially distributed sensor
data are required. This paper presents a new multiresolution
analysis (wavelet) assisted reinforcement learning (RL) based
control strategy that can effectively deal with both multiscale dis-
turbances in processes and the lack of process models. The novel
idea of wavelet aided RL based controller represents a paradigm
shift in the control of large scale stochastic dynamic systems of
which the control problem is a subset. Henceforth, we refer our
new control strategy as WRL-RbR controller. The WRL-RbR
controller is tested on a multiple-input-multiple-output (MIMO)
Chemical Mechanical Planarization (CMP) process of wafer
fabrication for which process model is available. Results show
that the RL controller outperforms EWMA based controllers
for low autocorrelation. The new controller also performs quite
well for strongly autocorrelated processes for which the EWMA
controllers are known to fail. Convergence analysis of the new
breed of WRL-RDbR controller is presented. Further enhancement
of the controller to deal with model free processes and for
inputs coming from spatially distributed environments are also
discussed.

Note to Practitioners- This work was motivated by the need
to develop an intelligent and efficient RbR process controller,
especially for the control of processes with short production
runs as in the case of semiconductor manufacturing industry.
A novel controller that is presented here is capable of generating
optimal control actions in the presence of multiple time-frequency
disturbances, and allows the use of realistic (often complex)
process models without sacrificing robustness and speed of
execution. Performance measures such as reduction of variability
in process output and control recipe, minimization of initial bias,
and ability to control processes with high autocorrelations are
shown to be superior in comparison to the commercially available
EWMA controllers. The WRL-RbR controller is very generic,
and can be easily extended to processes with drifts and sudden
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shifts in the mean and variance. The viability of extending the
controller to distributed input parameter sensing environments
including those for which process models are not available is also
discussed.

Index Terms— CMP, EWMA, multiresolution, reinforcement
learning, run-by-run control, wavelet, WRL-RbR.

I. INTRODUCTION

Run-by-Run (RbR) process control is a combination of
Statistical Process Control (SPC) and Engineering Process
Control (EPC). The set points of the automatic PID controllers,
which control a process during a run, generally change from
one run to the other to account for process disturbances.
RDR controllers perform the critical function of obtaining the
set point for each new run. The design of a RbR control
system primarily consists of two steps - process modeling, and
online model tuning and control. Process modeling is done
offline using techniques like response surface methods and
ordinary least squares estimation. Online model tuning and
control is achieved by the combination of offset prediction
using a filter, and recipe generation based on a process model
(control law). This approach to RbR process control has many
limitations that need to be addressed in order to increase its
viability to distributed sensing environments. For example,
many process controllers rely on good process models that
are seldom available for large scale nonlinear systems made
up of many interacting subsystems. Even when good (often
complex) models are available, the issue becomes the speed of
execution of the control algorithms during online applications,
which ultimately forces model simplification and resultant
suboptimal control. Also the processes are often plagued
with multiscale (multiple freq.) noise, which, if not precisely
removed, leads to serious lack of controller efficiency. The
above limitations can be addressed through a multiresolution
analysis (wavelet) assisted learning based controller, which is
built on strong mathematical foundations of wavelet analysis
and approximate dynamic programming (ADP), and is an
excellent way to obtain optimal or near-optimal control of
many complex systems. This wavelet intertwined learning
approach has certain unique advantages. One of the advantages
is their flexibility in choosing optimal or near-optimal control
action from a large action space. Other advantages include
faster convergence of the expected value of the process on to
target, and lower variance of the process outputs. Moreover,
unlike traditional process controllers, they are capable of
performing in the absence of process models and are thus
suitable for large scale systems.
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In this paper a novel approach is presented that for the
first time combines and harnesses the power of wavelet based
multiresolution analysis and reinforcement learning (RL) (a
variant of ADP) algorithm to develop a new breed of RbR pro-
cess controller. The methodological contribution include the
design and development of both the multiresolution analysis
and RL approaches suitable for a process control problem and
innovatively intertwining them to achieve the desired impact.
The multiresolution analysis helps to extract the significant
features from noisy signal data. These significant features are
used by the learning agent to learn superior control strategies.
Another significant contribution is the theoretical treatment
involving the convergence analysis of the newly developed
WRL-RbR controller.

The wavelet assisted learning based controller, is then
tested on a model based single-input-single-output (SISO)
autoregressive moving average (ARMA) process, and also on
a MIMO process. Thereafter, we discuss the extensions of the
controller to a model free and distributed sensing scenarios.
In what follows, a brief description of the commonly used
RDbR controllers is presented. This discussion also serves to
introduce the notation, which will be used in our discussion
of the WRL-RDbR controller. Also, discussed in this section are
the primary drawbacks of the existing RbR controllers, which
serve to motivate the need for a learning based controller.

II. EXISTING EWMA CONTROLLERS

Among the process control literature for stochastic systems
with short production runs, a commonly used control is the
RbR controller. Some of the major RbR algorithms include
EWMA control [1], which is a minimum variance controller
for linear and autoregressive processes, optimizing adaptive
quality control (OAQC) [2] which uses Kalman filtering, and
model predictive R2R control (MPR2RC) [3] in which the
control action is based on minimizing an objective function
such as mean square deviation from target. Comparative
studies between the above types of controllers indicate that in
the absence of measurement time delays, EWMA, OAQC and
MPR2RC algorithms perform nearly identically [4] and [5].
Also, among the above controllers, the EWMA controller has
been most extensively researched and widely used to perform
RbR control [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], and [17]. The foundations of the EWMA based RbR
controller is presented next.

Consider a SISO process

Yyt = v + nug + noise, )

where ¢ is the index denoting the run number, y; is the process
output after run ¢ , v denotes the offset, n represents the gain,
and wu, represents the input before run . To account for process
dynamics, the RbR controllers assume that the intercept +y
varies with time [1]. This is incorporated by considering the
prediction model for the process to be

G =a; 1 +buy =T, )
for which the corresponding control action is given by

T—a; 1

T ®

Uy =

where a;_; is considered to be the one step ahead prediction
of the process offset v, i.e., a;_1 = ;. The estimated value b
of the process gain 7 is obtained offline. It is considered that
E(b) = n, which implies that it is an unbiased estimate. The
model offset after run ¢, a;, is updated by the EWMA method
as

a; = A(yt — but,l) + (1 — )\)at,l. (4)

Some of the primary drawbacks of controllers listed above
include 1) dependence on good process models, 2) control
actions limited by fixed filtering parameters as in EWMA,
3) inability to handle large perturbations of the system, 4)
dependence on multiple filtering steps to compensate for drifts
and autocorrelation, 5) inability to deal with the presence of
multiscale noise, and 6) inability to scale up to large real world
systems. All of the above difficulties are addressed through the
new WRL-RbR control strategy that is presented in this paper.
In what follows, we motivate the need for a multiresolution
assisted learning based RbR control.

III. MOTIVATION FOR MULTIRSOLUTION ASSISTED
LEARNING BASED CONTROL

A control strategy is basically the prediction of forecast
error a;, which in turn decides the value of the recipe usy1
as per the predicted model (2). Hence, the performance of a
control strategy greatly depends on its ability to accurately
predict a;. At every step of the RbR control, the number of
possible choices for forecast error a; could be infinite. The
key is to develop a strategy for predicting the best value of a;
for the given process output. The accuracy of the prediction
process in conventional controllers such as the EWMA suffers
from two aspects. These include 1) multiscale noises that mask
the true process deviations, which are used in the prediction
process, and 2) the use of a fixed filtering strategy as given
by (4) limits the action choices. A wavelet interfaced machine
learning based approach for predicting a; could provide the
ability to extract the true process, and thus predict the correct
offset, and also evaluate a wide range of control choices in
order to adopt the best one as explained below.

In most real world applications, inherent process variations,
instead of being white noise with single scale (frequency), are
often multiscale with different features localized in time and
frequency. Thus, the true process outputs y; could be masked
by the presence of these multiscale noises. Some examples
of multiscale noise include vibrations and other disturbances
captured by the sensors, noise added by the sensing circuit,
measurement noise, and radio-frequency interference noise.
It is beneficial if a controller could be presented with a
true process output with only its significant features and
without the multiscale noise. This could be accomplished
through denoising of multiscale noise via a wavelet based
multiresolution thresholding approach. The wavelet methods
provide excellent time-frequency localized information, i.e.
they analyze time and frequency localized features of the
sensor data simultaneously with high resolution. They also
posses the unique capability of representing long signals in
relatively few wavelet coefficients (data compression). The
wavelet based multiresolution approach has the ability to
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Fig. 1. (a) STFT with fixed aspect ratio. (b) Wavelet Transform with variable
aspect ratio.

eliminate noise from the process output signal while retaining
significant process features arising from disturbances such
as trends, shifts, and autocorrelation [18]. Other denoising
techniques such as short time Fourier transform (STFT) and
other time or frequency only based approaches are well known
to be inferior to the wavelet based approach in dealing with
multiscale signals due to following reasons. The conventional
time domain analysis methods, which are sensitive to im-
pulsive oscillations, have limited utility in extracting hidden
patterns and frequency related information in these signals
[19] and [20]. This problem is partially overcome by spectral
(frequency) analysis such as Fourier transform, the power
spectral density, and the coherence function analysis. However,
many spectral methods rely on the implicit fundamental as-
sumption of signals being periodic and stationary, and are also
inefficient in extracting time related features. This problem
has been addressed to a large extent through the use of time-
frequency based STFT methods. However, this method uses
a fixed tiling scheme, i.c., it maintains a constant aspect ratio
(the width of the time window to the width of the frequency
band) throughout the analysis (Fig. la). As a result, one
must choose multiple window widths to analyze different data
features localized in time and frequency domains in order to
determine the suitable width of the time window. STFT is
also inefficient in resolving short time phenomena associated
with high frequencies since it has a limited choice of wave
forms [21]. In recent years, another time-frequency (or time-
scale) method known as wavelet based multiresolution analysis
have gained popularity in the analysis of both stationary and
nonstationary signals. These methods provide excellent time-
frequency localized information, which is achieved by varying
the aspect ratio as shown in Fig. 1b. This means that multiple
frequency bands can be analyzed simultaneously in the form of
details and approximations plotted over time, as described in
the next section. Hence, different time and frequency localized
features are revealed simultaneously with high resolution. This
scheme is more adaptable (compared to STFT) to signals with
short time features occurring at higher frequencies.

Though an exact mathematical analysis of the effects of
multiscale noise on performance of EWMA controllers is not
available, some experimental studies conducted by us show
that EWMA controllers attempt to compensate for multiscale
noise through higher variations of the control recipe (ug).
However, this in turn results in higher variations of the process
output. We also note that, if the expected value of the process
is on target and the process is subjected to variations, for
which there are no assignable causes, the controller need not

compensate for such variations, and hence the recipe should
remain constant. In fact, an attempt to compensate for such
variations from chance causes (noise) not only increases the
variations of u; but also increases the variations of the process
output y;. A controller is maintained in place in anticipation
of disturbances, such as mean and variance shift, trend, and
autocorrelation, resulting from assignable causes. As a result,
in the absence of disturbances, controllers continue to unduly
compensate for process dynamics due to noise. Also EWMA
is a static control strategy where the control is guided by the
chosen A value as shown in (4). Thus EWMA controllers do
not offer the flexibility of a having a wide variety of control
choices. The above difficulties can be well addressed by a
learning based intelligent control approach. Such an approach
is developed in this research and is presented next.

In what follows, we present a new control strategy, named
wavelet modulated reinforcement learning run by run control
(WRL-RbR), that benefits from both wavelet based multires-
olution denoising and reinforcement learning, as discussed
above, and thus alleviates many of the shortcomings of EWMA
controllers.

IV. WRL-RBR: A WAVELET MODULATED
REINFORCEMENT LEARNING CONTROL

Figure 2 shows a schematic of the WRL-RDbR controller. The
controller consists of four elements: the wavelet modulator,
process model, error predictor, and recipe generator. The pro-
cess output signal g, is first wavelet decomposed, thresholded
and reconstructed to extract the significant features of the
signal. As explained above, this step eliminates the multiscale
stationary noise for which the controller need not compensate.
The second step involves forecast offset a; prediction which
is accomplished via the RL based stochastic approximation
scheme. The input to this step is F; = f; — 9, where f; is
the wavelet reconstructed signal and g is the predicted model
output for the run ¢. Finally, a control recipe w41 is generated
based on the forecast error prediction, which is then passed
on as set-point for the PID controller and also to the process
model to predict the next process output at run ¢ + 1. In the
following subsections, we describe each element of the WRL-
RbR controller.

A. Wavelet Assisted Multiscale Denoising

The wavelet based multiscale denoising renders many ad-
vantages that a controller can benefit from. One of these
advantages is the detection of deterministic trends in the
original signal. This can be achieved by monitoring the
slope information in the approximation coefficients of the
decomposition step. This information on the trend can be
used as additional information for the controller to develop
trend compensation strategies. Another advantage of wavelet
analysis is the protection it offers against sudden spikes in the
original signal which can result in oscillations in the control.

Conceptually, multiscale denoising can be explained using
the analogy of nonparametric regression in which a signal f;
is extracted from a noisy data y; as

)

y: = f+ + noiseq,



4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. XX, NOVEMBER 200X

Altomatic PID = Wy
Controllers rocess
’,‘ ------------------------------------------------------------- ‘x\
Wavelet Multi-
Scale Denoising
~

i

L]

i

£ i

Process t 1
Model i
1

i

1

i

H

Uty Recipe
Seneration

2 RL Based E
T Error Prediction

\ Target T /

e ———

Fig. 2. Structure of the WRL-RbR controller.

where noise; is the noise removed by the wavelet analysis
procedure described below. The wavelet analysis consists of
three steps: 1) decomposition of the signal using orthogonal
wavelets into wavelet coefficients, 2) thresholding of the
wavelet coefficients, and 3) reconstruction of the signal into
the time domain. The basic idea behind signal decomposition
with wavelets is that the signal can be separated into its
constituent elements through fast wavelet transform (FWT). A
more detailed theory on multiresolution analysis can be found
in [22]. In our method we used Daubechies [23] 4*" order
wavelet basis function. Our choice of the basis function was
motivated by the following properties. 1) It has orthogonal
basis with a compact support. 2) The coefficients of the
basis function add up to /2, and their sum of squares is
unity; this property is critical for perfect reconstruction. 3)
The coefficients are orthogonal to their double shifts. 4) The
frequency responses has a double zero (produces 2 vanishing
moments) at the highest frequency w = m, which provides
maximum flatness. 5) With downsampling by 2, this basis
function yields a halfband filter. It is to be noted that the choice
of the basis function is dependent on the nature of the signal
arising from a given application.

Thresholding of the wavelet coefficients d; , (j is the scale
and k is the translation index) help to extract the significant
coefficients. This is accomplished by using the Donoho’s
threshold rule [24]. This threshold rule is also called visual
shrink or ‘VisuShrink’ method, in which a universal scale-
dependent threshold ¢; is proposed. The significant wavelet
coefficients that fall outside of the threshold limits are then
extracted by applying either soft or hard thresholding. WRL-
RbR controller developed here uses soft thresholding. It is
important to select the number of levels of decomposition
and the thresholding values in such as way that excessive
smoothing of the features of the original signal is prevented. A
good review of various thresholding methods and a guideline
for choosing the best method is available in [25] and [26].
Reconstruction of the signal in the time domain from the
thresholded wavelet coefficients is achieved through inverse
wavelet transforms. The reconstructed signal is denoted as f;.

B. Process Model

Process models relate the controllable inputs w; to the
quality characteristic of interest g;. Primarily, the prediction
models are obtained from offline analysis through least squares
regression, response surface methods, or through a design of
experiments method. It is to be noted that, real world systems
requiring distributed sensing are often complex and have large
number of response and input variables. Models of such
systems are highly non-linear. However, in practice complex
non-linear models are not used in actual process control. This
is because complex models often lack speed of execution
during on-line model evaluation, and also introduce additional
measurement delays since many of the response factors can
only be measured off-line. This retards the feedback needed
in generating control recipes for the next run. In essence,
execution speed is emphasized over model accuracy, which
promotes the use of simplified linear models [27]. The WRL-
RbR strategy that is presented in this paper allows the use of
more accurate complex models. This is because the control
strategy is developed offline and hence requires no online
model evaluation during its application.

C. RL Based Error Prediction

In this section we show how a novel machine learning
approach is used for the task of offset (a;) prediction. The
evolution of error E; = f; — ¢, (a random variable) during
the process runs is modeled as a Markov chain. The decision
to predict the process offset a; after each process run based on
the error process F; is modeled as a Markov decision process
(MDP). For the purpose of solving the MDP, it is necessary
to discretize E; and a;. Due to the large number of state and
action combinations tuple (E¢, a;), the Markov decision model
is solved using a machine learning (reinforcement learning, in
particular) approach. We first present a formal description of
the MDP model and then discuss the RL approach to solve
the model.

1) MDP Model of the RbR Control: Assume that all random
variables and processes are defined on the probability space
(9, F,P). The system state at the end of the #** run is defined
as the difference between the process output and the model
predicted output (Ey = fy — ). Let E = {E, : t =
0,1,2,3...} be the system state process. Since, it can be easily
argued that E; is dependent only on E;, the random process
E is a Markov chain.

Since the state transitions are guided by a decision process,
where a decision maker selects an action (offset) from a finite
set of actions at the end of each run, the combined system
state process and the decision process becomes a Markov
decision process. The transition probability in a MDP can be
represented as p(z,d,q), for transition from state z to state
g under action d. Let £ denote the system state space, i.e.,
the set of all possible values of FE;. Then the control system
can be stated as follows. For any given z € £ at run ¢,
there is an action selected such that the expected value of
the process y;4+1 at run ¢ + 1 is maintained at target 7'. In
the context of RbR control, the action at run ¢ is to predict
the offset a; which is then used to obtain the value of recipe
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uyy1. Theoretically, the action space for the predicted offset
could range from a large negative number to a large positive
number. However, in practice, for a non-diverging process, the
action space is quite small, which can be discretized to a finite
number of actions. We denote the action space as A. Several
measures of performance such as discounted reward, average
reward, and total reward can be used to solve a MDP. We
define reward r(z, d, q) for taking action d in state x at any
run ¢ + 1 that results in a transition to state g, as the actual
error Fyy1 = fiy1 — Ggq1 resulting from the action. Since
the objective of the MDP is to develop an action strategy that
minimizes the actual error, we have adopted average reward as
the measure of performance. In the next subsection, we provide
the specifics of the offset prediction methodology using a RL
based stochastic approximation scheme.

2) Reinforcement Learning: RL is a simulation-based
method for solving MDPs, which is rooted in the Bellman
[28] equation, and uses the principle of stochastic approxima-
tion (e.g. Robbins-Monro method [29]). Bellman’s optimality
equation for average reward says that there exists a p* and R*
that satisfies the following equation:

R'(z) = min |r(z,d) - p" + > _plz,d. )R ()|  (6)
qe€

where p* is the optimal gain and R* is the optimal bias. The
gain p and bias R are defined as follows:

1 N
p=lim CE{} r(X,)} @)
R=E{)_[r(X;) - pl} ®)

where N is the total number of transition periods, and X; :
t=1,2,3, ... is the Markov Chain. From the above definitions
it follows that the gain represents the long run average reward
per period for a system and is also referred as the stationary
reward. Bias is interpreted as the expected total difference
between the reward r and the stationary reward p.

The above optimality equation can be solved using the
relative value iteration (RVI) algorithm as given in [30].
However, the RVI needs the transition probabilities p(z, d, q),
which are often, for real life problems, impossible to ob-
tain. An alternative to RVI is asynchronous updating of the
R-values through Robbins-Monro (RM) stochastic approxi-
mation approach, in which the expected value component
> geeP(@,d,q)R*(g) in (6) can be replaced by a sample
value of R(q) obtained through simulation. The WRL-RbR
algorithm is a two-time scale version of the above learning
based stochastic approximation scheme, which learns p* and
uses it to learn R*(z,d) for all z € £ and d € A. Convergent
average reward RL algorithms (R-learning) can be found in
[31], and [32]. The strategy adopted in R-Learning is to
obtain the R-values, one for each state-action pair. After
the learning is complete, the action with the highest (for
maximization) or lowest (for minimization) R-value for a
state constitutes the optimal action. Particularly in control

problems, reinforcement learning has significant advantages as
follows: 1) it can learn arbitrary objective functions, 2) there
is no requirement to provide training examples, 3) they are
more robust for naturally distributed system because multiple
RL agents can be made to work together toward a common
objective, 4) it can deal with the ‘curse of modeling’ in
complex systems by using simulation models instead of exact
analytical models that are often difficult to obtain, and 5)
can incorporate function approximation techniques in order
to further alleviate the ‘curse of dimensionality’ issues.

The Bellman’s equation given in (6) can be rewritten in
terms of values for every state-action combination as follows.
At the end of the t** run (decision epoch) the system state
is By = x € &£. Bellman’s theory of stochastic dynamic
programming says that the optimal values for each state-action
pair (z,d) can be obtained by solving the average reward
optimality equation

R*(.’L',d) = [Zp(xa da q)T(iE,d, q)] - p*

qe€
+[Zp(w,d,3)gggR (j.d)] Vz, Vd.
JjEE
)

A two-time scale version of the learning based approach
that we have adopted to solve the optimal values for each
state-action combination R*(x,d) is as follows.

Riy1(z,d) « (1 — ay)Re(z,d) + au[r(z,d, q)

—pt + 11;%1‘2 Rt(Qa b)} V.Z', Vda
(10)
Ty + r(x,d,
pir1 = (1= Bi)pt + Be [pttT—(q)} . (1
t4+1

In the above equations, ¢ denotes the step index in the learning
process (run number in the context of control), a; and j3; are
learning parameters, which take values (0,1), and T} is the
cumulative time till the #** learning step.

The learning parameters a; and (3; are both decayed by the
following rule.

t2
M’ . , (12)
1+2 K+t
where K is a very large number. The learning process is con-
tinued until the absolute difference between successive R(z, d)

for every state-action combination is below a predetermined
small number € > 0,

|Rt+1 (:L.Jd) - Rt(xad” <e¢ Vz.

at:ﬂt =

(13)

At the beginning of the learning process, the R-values are
initialized to zeros. When the process enters a state for the
first time, the action is chosen randomly since the R-values
for all actions are zero initially. In order to allow for effective
learning in the early learning stages, instead of the greedy
action the decision maker with probability p; chooses from
other actions. The choice among the other actions is made
by generating a random number from a uniform distribution.
The above procedure is commonly referred to in literature as
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exploration. The value of p; (called the exploration proba-
bility) is decayed faster than the learning parameters using
equation (12). Storing of the R-values for each state-action
combination often presents a computational challenge for large
scale systems with numerous state-action combinations. One
approach is to represent the R-values of subsets of state-
action space as functions instead of storing R-values for
each individual state-action combination, a method known as
function approximation. Recently, a diffusion wavelet based
function approximation scheme has been presented to the
literature [33], [34], and [35].

D. Recipe Generation

Once learning is completed, the R-values provide the opti-
mal action choice for each state. At any run ¢, as the process
enters a state, the action d corresponding to the lowest non-
zero absolute R-value indicates the predicted forecast offset
a;. This is used in the calculation of the recipe u;y1. In what
follows we present the steps of the WRL-RbR algorithm in
the implementation phase.

V. WRL-RBR ALGORITHM

o Step 1: The process is started at time ¢ = 0 with the
assumption that the predicted offset ag = 0. The recipe
for the first run is obtained from the control law given
by (3).

o Step 2: At the end of first run at ¢ = 1, the output y; is
measured and the algorithm proceeds to Step 3. However,
for time ¢ > 2 wavelet decomposition is performed using
a moving window concept as presented in [36]. Wavelet
decomposition is done for the data in the window and
the resulting wavelet coefficients at each scale are soft
thresholded. Next, the signal in time domain is recon-
structed from the thresholded wavelet coefficients. The
decomposition strategy works as follows. As shown in
Figure 3, the first window will contain only 2 data points
y1 and yo. At time ¢t = 3, the window is moved to include
the next data point. However, the first data point of the
window is dropped to maintain a dyadic window length
(2%), where k = 1. Wavelet decomposition, thresholding
and reconstruction is done for the data in the new window
and only the last reconstructed value of f; is used in
the calculation of the process deviation E; in Step 3.
This process of moving the window of a dyadic length
(2%), continues in every run until the total data length
starting from the beginning reaches a length of (2F+1).
At this time the window length is increased to (2%+1) and
wavelet analysis is performed. Upgrading of the window
length is carried out until a desired length, depending on
the required depth of decomposition, is reached. From
this point on, the window length is kept constant. This
method is called integer or uniform discretization [37].

o Step 3: At any given run ¢+ 1, calculate process deviation
Eiy1 = fev1 — Gt

o Step 4: Learning Stage: Using E;, identify the state =
of the process. Eyy; obtained in Step 3 represents both
the state of the system at run ¢ + 1 and the immediate
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B [4]s]E]7] z l

7 [1]2]a3]4]s]e]7]8] 3

|:| Indicates new data in the window
Fig. 3.  Moving window concept.

reward r(Fy,a;, Fy41) obtained by taking action a; in
state F;. The R-value for the state-action combination
(E},ay) is updated as follows.
Rip1(Ey,a) < (1 — ) Ri(Ey, aq) + ay[r(Ey, ar, By yq)
—ps + Enljtl Ri(Eyy1,b) : b=argmin.ca
€

{|R¢(E¢11,¢)| : Ri(Eyq1,¢) #0}  VE;, Vay,
(14)

where

%Iéijll Ri(Ei41,b) : b= argmince a{|Rit(Ety1,0)] :

Ry(Et41,¢) # 0}
(15)
indicates that at for any state Fy;1, the greedy action b
for which the absolute non-zero R-value that is closest to
zero should be chosen. The optimal average reward p;41
is updated as follows.

piTy +r(Ey,a¢, Eyi1)
Ty

prr1 = (1= Be)pe + B . (16)

Learnt Stage: Using Ey,q identify the state x of the
process. The forecast offset a; for this state is now
obtained from the R-value matrix by choosing the action
that corresponds to the minimum of the absolute non-zero
R-value for that state.

o Step 5: Obtain the control recipe u¢41 using (3). Generate
the process output for the next run ¢ + 1 and go to Step
2.

VI. ANALYSIS FOR CONVERGENCE OF THE WRL-RBR
CONTROLLER

In this section the major conclusions of the convergence
analysis is provided. The complete proof of convergence of
the RL scheme adopted for WRL-RDR is not presented here in
order to reduce the mathematical complexity of the paper. The
numerical results presented in Section VII provide additional
evidence of the controller’s convergence in terms of the
boundedness of the process output and its expected value being
on target. These conditions are necessary to ensure stability of
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the controller. In what follows, it is shown that the WRL-RbR
algorithm converges, and yields R(-, -) values that give optimal
process control strategy. The optimal control strategy ensures
that the expected value of the process output y; coincide with
the target 7', and also that the y;’s are bounded.

It is first shown that the approximation schemes in the
algorithm use transformation that are of the form presented
in [38] and track ordinary differential equations (ODEs). The
ODE framework based convergence analysis presented in [39]
is then used to show the convergence of the WRL-RbR
algorithm.

Define the transformations as follows.

(1 (R0)(0,0) = 3 p(0,0.0) [ (2. doa) = p° + iy a1

qe€
a7
(R0, d) = [r(.d.0) = "+ i Relan)] . 19
_ ptTt + Ir(mada q)
Fi(p:) = q;p(x’d’ q) [T] ; (19)
Fa(pr) = [’W} . (20)

Also define errors w! and w} as:

wi = (Ha(Ry))(z,d) — (Hi(Ry))(,d), 21

wy = Fy(pt) — Fi(pt)- (22)

The first of the two-time scale approximation equation (10)
can now be written as:

Rt+1(!L’,d) = Rt(.'E,d) + oy [h(Rt(:c, d),pt) + LUH , (23)

where:

h(R;) = Hi(R:) — Ry. (24)

As in [39], it can be shown that (23) yields an ODE of the

form:
R,

dr

In a similar manner as above, the second of the two-time scale
approximation equation (11) can be written as:

= h(Bs, p). (25)

pre1 = pr + Be [9(pe) + wh] (26)
where
9(pt) = Fi(pe) = pe- @27)
Once again it can be shown that (26) track the ODE:
W= gio0) e8)

It was shown from [39] that the above ODE framework
converges under a set of assumptions. The assumptions are
presented below in the context of a WRL-RbR controller
wherever applicable. Also a brief explanation of the purpose
of the assumptions and how they are ensured is provided.

A. Assumptions

1) Assumption 1: The functions h and g, defined in (25)
and (28), are Lipschitz continuous. This is true because the
mappings (Hy(R;)) and Fi(p;) are linear everywhere as can
be see from (17) and (19).

2) Assumption 2: Each state-action pair is visited after a

finite time interval. This assumption is satisfied by running
simulation for an arbitrarily long period of time until the con-
dition |Ry41(z,d) — Ry(x,d)| < € is ensured for every state-
action pair that is visited. However, some remote state-action
pairs are rarely visited or none at all even after substantial
exploration. Such state-action pairs that are not visited too
often do not impact quality of the decision.
v 3) Assumption 3: The step size a; and [; are small,
which can be ensured by appropriately selecting the parameter
values. The nature of R-learning is such that the reward values
are updated asynchronously (one state-action pair updated in
each iteration of the learning process). In order to obtain
convergence to the same reward values as in the case of
synchronous algorithms (where rewards for all states are
updated simultaneously, i.e., in dynamic programming using
transition probabilities), it is necessary to maintain small
values of learning parameters o, and 3;. The a; and (; values
are chosen very small in order to allow slow learning and
corresponding convergence. Large values of a; and (3; could
cause R-values to oscillate and not converge.

4) Assumption 4: The learning parameters must satisfy the
following condition:

lim sup& =0.
t—o0 at

(29)

The interpretation of this assumption is that the rate of decay
for learning parameter f; is faster than oy. This is achieved
by fixing the starting values of both a; and 3; as 0.01 and
0.001 respectively (Section VII A). This assumption is very
crucial for these schemes to work. It says that the second
iteration (Equation 16) is much slower than the first (Equation
14) because of its smaller step-size. This implies that the fast
iteration in R sees the slower iteration in p as a constant and
hence converges, while the slower iteration sees the faster
iteration as having converged [38] and [40]. The limiting
behavior of the slower iteration is given by the ODE in
Assumption 8 while that of the faster one is given by that
in Assumption 7. Assumptions 2, 3, and 4 place restrictions
on the learning process.

5) Assumption 5: The iterates R; and p; are bounded. From
the definition of the gain (7) it implies that the expected value
of r(-) is also bounded. Since at any time ¢ the expected reward
r(:) = E; = fir — §: (see definition of E; in Section IV), it
implies that the process output y; is bounded. This implies
that both R; and p; are bounded.

6) Assumption 6: The expected value of the error terms in
Equation (21) and (22) are 0 and their variances are bounded.
This condition is satisfied because it can be seen from the
definition of these terms that the error represents the difference
between the sample and a conditional mean. By martingale
convergence theory, the conditional mean tends to 0 as the
number of samples tends to infinity. As per Assumption 5,
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iterates are bounded. This implies that the right side of (23) A. WRL-RbR Controller Performance for a SISO Process

and (26) are bounded, which ensures that the variance of the
error terms w} and w are bounded.
7) Assumption 7. The ODE:

dR
d—t =h(R¢,p) Vp
-

has an asymptotically stable critical point G(p), which is
unique such that the map G is Lipschitz continuous. This
assumption is satisfied because of the following reason. For a
fixed p, the mapping Hy(R) (17) is non-expansive with respect
to the max norm [39]. Borkar and Soumyanath [40] show that
for non-expansive mappings that does not need a contraction
property, the above ODE converges to an asymptotically stable
critical point R,. The Lipschitz continuity of R, can be proved
by the fact that the components of the R vector (8) are
Lipschitz continuous in p [41].

8) Assumption 8: The ODE:

dpy _
e 9(pt)

(30)

31

has a global asymptotically stable critical point p*, which is
unique. This is due to the fact that as the R-values stabilize,
the policy becomes stationary. For a given stationary policy,
the average reward is a finite constant and is also Lipschitz
continous [41]. Thus, the solution to the above ODE converges
to the average reward, which is the global asymptotically stable
critical point p*.

In the case of the WRL-RbR controller, the long run average
reward value p* converges to 0. This can be verified from the
definition of the gain in (7) and the fact that 7(-) = E; =
ft — 9. This implies that the expected value of r(-) = 0,
since by definition, they are process deviations from target.
The above convergence result of p* = 0 and Equation (2)
together show that E(y;) converges to target 7T'.

B. Optimality of the Control Policies

In the context of WRL-RbR controller, it is necessary to
show that the control policy to which the algorithm converges
is indeed optimal. To do this it is sufficient to show that the R-
values converge to their optimal values. This is accomplished
in two stages. First, for the MDP case, it is shown that the
Bellman’s transformation for value iteration and the relative
value iteration (RVI) lead to the same policy. Since the value
iteration has been demonstrated to yield optimal policies, it is
concluded that the policies of the RVI are also optimal.

It is argued in [39] the approximations (23) and (26)
converge to optimal values. Since this discussion on optimality
is general and independent of the problem context, it is not
reproduced here. The R-values obtained from (14) is the same
as that obtained from (23). Thus, the WRL-RbR controller is
optimal.

VII. PERFORMANCE ANALYSIS

The performance of WRL-RbR controller was tested on
both SISO and MIMO processes. Processes with varying de-
grees of autocorrelation were studied as numerical examples.
The results obtained from the WRL-RbR based strategies were
compared with the EWMA based strategies.

We consider an autocorrelated process as given in [8].

Yt = Pyt + 7+ nug + Ny, (32)
where N; = wN;y_1 +€;—ces—1 is the ARMAC(L,1) process for
the error, and €; is white noise with U (—1, 1) distribution. The
autocorrelation parameters are ¢ for the process output, and
¢ and w for the noise. The initial process parameter values
used are as follows: v = 2.0, n = 2.0, vy = 5.0, w =
1.0, ¢ = 0.7. This means that N; follows an IMA(1,1) process
(i.e. an ARMA(1,1) process with w = 1.0). The output
autocorrelation parameter ¢ was varied between 0.1 and 0.96.
The smoothing constant for the EWMA equation () was fixed
at 0.1. This value of ()\) is the same as those used in [8] and
[1]. The process target value was fixed at 7' = 10. The above
process with its parameters was simulated using MATLAB for
200 runs and 50 replications.

For the wavelet analysis, we chose Daubechies [23]
order wavelet because of its well known stability properties
[36]. Also, we chose a dyadic window length of sixteen, which
allows up to four levels of decomposition. The number of
levels was fixed based on the application at hand and the speed
of execution of the online algorithm. The learning parameters
ag and By were initialized at 0.01 and 0.001 respectively.
The exploration parameter was initialized at 0.5. The constant
K in the decay equations for the learning parameters was
maintained at 5 x 108 and for the exploration parameter was
kept at 1 x 108. The error state space had 4001 states, each
having a range of 0.1, starting at -200 until 200. The action
space consisted of values from -5 to 15 in steps of 0.1. This
resulted in 201 possible actions for each state.

The process was first simulated as is with no additional
changes to either its mean or its variance. The R-values were
learnt for all state and action combinations. Once learning
was completed offline, the learnt phase was implemented
online. The WRL-RbR and EWMA controllers were applied
to assess their abilities in bringing the process from start to a
stable operating condition. The mean square deviation (MSD)
from target of the process under both control strategies were
obtained for the first 200 runs.

Figures 4 and 5 show the initial performances of the strate-
gies for an autocorrelation value of 0.1 and 0.9, respectively.
As shown in Fig. 4, the initial bias in the WRL-RbR strategy
is significantly reduced as shown. As depicted in Fig. 5,
even under very high autocorrelation the RL based strategy
performs very well. As for EWMA, it is well to perform poorly
at high autocorrelations, which is evident from the figure.

A comparison of the mean square deviation (MSD) from
target is presented in Table 1. The MSD is calculated as
follows.

4th

Y(y; — T)?
MSD = M, t=0,1,2,3,..n, (33)
n
where n is the total number of runs. The WRL-RDbR strategy
has the lowest MSD values for both levels of autocorrelation

considered.
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Fig. 4. SISO process with low autocorrelation, ¢ = 0.1.
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Fig. 5. SISO process with high autocorrelation, ¢ = 0.9.

TABLE I

MEAN SQUARE DEVIATION FORM TARGET (SISO PROCESS)

Autocorrelation | EWVWMWA WEL-RBR| % Decrease in MsD
0.1 063 0.42 33
0.9 332 1.8 a5

Detectar
DAQ
Model AE-5 UMT
025 5 MHz e 20KHz Software

Suspension

Sample
carrier

Carrier rotation Spindle rotation

hiniature AE Sensor (0.5-4.50Hz)

Fig. 6. Schematic diagram of the CMP process.

B. WRL-RbR Controller Performance for a MIMO Process

The sample MIMO process adopted for study in this section
is a CMP process, which is an essential step in semiconductor
wafer fabrication [10], [11]. Wafer polishing that is accom-
plished using CMP is a nanoscale manufacturing process. The
CMP task has been made more challenging in recent years
due to the complex wafer topographies, and the introduction
of copper (instead of aluminum) and low-k dielectrics. Fig. 6
shows the schematic of a CMP setup, which synergistically
combines both tribological (abrasion) and chemical (etching)
effects to achieve planarization.

1) CMP Modeling: As with any manufacturing operation,
the CMP process falls victim to many known and unknown
disturbances that affect its controlled operation. Variations
among incoming wafers, process temperatures, polishing by-
products on the pad, mechanical tolerances caused by wear,
and polishing consumables (slurry and pads) contribute to
disturbances in the polishing process. Virtually all CMP pro-
cesses, therefore, update polishing tool recipes either automat-
ically or manually to compensate for such disturbances.

The CMP process used is a linear model consisting of two-
output and four-input CMP process. The two outputs are the
material removal rate (Y7) and, within-wafer non-uniformity
(Y3). The four controllable inputs are: plate speed (U;), back
pressure (Us), polishing downforce (Us), and the profile of the
conditioning system (Uy). The process equations are:

Y; = 1563.5+159.3(U;)—38.2(U2)+178.9(Us)+24.9(Us) +e€1,
(34)
Yy =254+ 32.6(Uy) +113.2(Us) +32.6(Us) +37.1(Us) + €2,
(35)
where €, ~ N(0,60%) and e ~ N(0,30%). The control
equation in a matrix form for a MIMO system consisting of
p outputs, m inputs (m > p) is

Ui = (B'B+ul)7'B'(T — Ay), (36)

where B is the estimate of the true process gain 7, I is
a (p x p) identity matrix, 4 > 0 is a Lagrange multi-
plier (¢ = 0 for MIMO systems where m = p), T is
a (p x 1) vector of targets for the responses in Y, A; is
the online estimates of the forecast offset v obtained from
the reward matrix. The parameter values used in the test
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TABLE 11
MEAN SQUARE DEVIATION FORM TARGET (MIMO PROCESS) (x 104) - Process Target T= 2000
- 2100 .
Cutput Ewha [WWRL-RbR| % Decrease in M3D
¥y 052 | 022 56 _200m T
¥, 012 | 0045 53 7 re00 1
WRL-RbR
1800 t .
TABLE I1I 1700 . . . .
STANDARD DEVIATIONS (MIMO PROCESS) 0 A 40 Run t Bl e oo
2200
Output EvithdA [ WEL-RhR| % Decrease in Std. Dev 2100 +
'y 71.23 352 51
2000
'z 34.89 16.91 52 =
1900
1800 +
2000 1700 . . , .
are T = 100 = target values for the responses Y, o 0 40 gyt B0 80 100
. . 150 —40 180 25
estimated gain B = , 4 = 0.001,
30 100 30 35 Fig. 7. Output Y1 of a MIMO process.
1600
and forecast error values Ag = 250
The above process was simulated using MATLAB for 100 . Tareet T2 100
runs and 50 replications. The error in both ¥; and Y, were 200 roress TAmel 17
discretized into 21 states, each having a range of 10.0, starting WRL-RbR

at -100 until 100. Hence, the state space had (212) 441 states.
The action space consisted of values from 0.5 to 1.5 in steps
of 0.1 for Uy, -2.5 to -1.5 in steps of 0.1 for Us, 0.85 to
1.85 in steps of 0.1 for Us and -0.55 to -0.05 in steps of 0.05
for Uy. This resulted in (11%) 14641 possible actions for each 0 ' ' ' '
state. Performance of both EWMA and RL strategies were Run t

compared. Similar to the SISO case, we chose the Daubechies
fourth order wavelet and, the decomposition level up to four
levels for the WRL-RbR strategies. Mean square deviation and
standard deviation performances are shown in Table II and
Table III for both types of controllers. Figures 7 and 8 show
the output plots for ¥; and Y> for both EWMA and WRL-RbR
strategies. Clearly, performance of WRL-RbR is far superior
to that of EWMA controller.

200

g

VIII. LEARNING BASED CONTROLLER IN A MODEL FREE

ENVIRONMENT Fig. 8. Output Y5 of a MIMO process.

In this Section, we present a strategy for extending the
WRL-RbR controller to work in a model free environment, H
Process

which is critical for systems requiring distributed sensing. Automatic PID t
Controllers
Most real world systems are complex and large, and they
seldom have models that accurately describe the relationship
between output parameters and the controllable inputs. A
conceptual framework of a model free RbR control is given in Wavelet Multiscale ’
Figure 9. The control laws are learnt through simulation and Ugq Denoising
are continuously improved during real time implementation. f,

. . - Plant T
The unique advantage of model free approaches is the ability Target
to factor into the study many other parameters some of
which could be nonstationary, for which it is very difficult RL Agent for ’ =

. . Recipe Generation

to develop a mathematical model. In what follows we discuss ’
the application of model free WRL-RbR control in a CMP
process which could serve as a test bed for a distributed iz 9. Schematic of a model free WRL-RbR controller.

sensing application.
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A. Design of a Controller for Distributed Sensing

The CMP process is influenced by various factors such as
plate speed, back pressure, polishing downforce, the profile of
the conditioning system, slurry properties (abrasive concen-
tration, and size), incoming wafer thickness, pattern density
of circuits, and dynamic wear of the polishing pad. Several
outputs that are monitored are the material removal rate,
within-wafer non-uniformity, between wafer non-uniformity,
acoustic emission (AE), coefficient of friction (CoF), and
thickness of the wafer. Ideally, one would like to monitor all
the above inputs and outputs via distributed sensors. However,
due to lack of accurate process models that link the outputs to
the controllable inputs, and also due to speed of execution
issues, simple linear models are often used. A model free
learning approach would make it viable to control the CMP
process using the above parameters. The wavelet analysis
also provides a means of using nonstationary signals like
the AE and CoF in control. This is due to the fact that
wavelet analysis produces detail coefficients that are stationary
surrogates of nonstationary signals. Also the pattern recogni-
tion feature of wavelet can be used to obtain information on
trend/shift/variance of the process, which can be used by the
RL controller to provide accurate compensation. Our research
in fully developing a WRL-RbR controller for a large scale
distributed environment is on going and preliminary results
have shown unprecedented potential to extend this technology
to other distributed systems. The results presented in this paper
serve as a proof of concept for the new breed of learning based
WRL-RbR strategy.

IX. CONCLUSIONS

RDR controllers have been applied to processes where online
parameter estimation and control are necessary due to the
short and repetitive nature of those processes. This paper
presents a novel control strategy, which has high potential in
controlling many process applications. The control problem
is cast in the framework of probabilistic dynamic decision
making problems for which the solution strategy is built
on the mathematical foundations of multiresolution analysis,
dynamic programming, and machine learning. The strategy
was tested on problems that were studied before using the
EWMA strategy for autocorrelated SISO and MIMO systems,
and the results obtained in this paper were compared with
them. It is observed that RL based strategy outperforms the
EWMA based strategies by providing better convergence and
stability in terms of lower error variances, and lower initial
bias for a wide range of autocorrelation values. The wavelet
filtering of the process output enhances the quality of the data
through denoising and results in extraction of the significant
features of the data on which the controllers take action.
Further research is underway in developing other WRL-RbR
control strategies, which incorporates wavelet based analysis
to detect drifts and sudden shifts in the process, and scale up
the controller for large scale distributed sensing environments
with hierarchical structures.
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