
19

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in
Microblog Post Streams

NARGIS PERVIN, FANG FANG, ANINDYA DATTA, and KAUSHIK DUTTA,
National University of Singapore
DEBRA VANDERMEER, Florida International University

Social networks, such as Twitter, can quickly and broadly disseminate news and memes across both real-
world events and cultural trends. Such networks are often the best sources of up-to-the-minute information,
and are therefore of considerable commercial and consumer interest. The trending topics that appear first
on these networks represent an answer to the age-old query “what are people talking about?” Given the
incredible volume of posts (on the order of 45,000 or more per minute), and the vast number of stories about
which users are posting at any given time, it is a formidable problem to extract trending stories in real
time. In this article, we describe a method and implementation for extracting trending topics from a high-
velocity real-time stream of microblog posts. We describe our approach and implementation, and a set of
experimental results that show that our system can accurately find “hot” stories from high-rate Twitter-
scale text streams.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and Software

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Trending topics, microblogs, Twitter, scalability

ACM Reference Format:
Pervin, N., Fang, F., Datta, A., Dutta, K., and Vandermeer, D. 2013. Fast, scalable, and context-sensitive de-
tection of trending topics in microblog post streams. ACM Trans. Manage. Inf. Syst. 3, 4, Article 19 (January
2013), 24 pages.
DOI:http://dx.doi.org/10.1145/2407740.2407743

1. INTRODUCTION

Real-time social networks such as Twitter have become a powerful means of dissemi-
nating emerging news [Kwak et al. 2010], often well before traditional media can con-
firm and report on the events. When a post of widespread interest arrives on Twitter,
recipients react in any number of ways, including reposting the original post or creat-
ing a new post with added commentary. As the news travels across the “Twittersphere,”
more and more people post on the same topic, making it trending [Johnson 2009;
Popescu and Pennacchiott 2011]. The greater the interest in the topic, the stronger the
trending topic will be in the Twitter stream. These trending topics represent an answer
to the age-old query “what are people talking about?”, and have been well discussed in
the literature [Cataldi et al. 2010; Hotho et al. 2006; Mathioudakis and Koudas 2010].

Given the level of interest in “what’s new,” many content publishers have trending
topic segments. Recent impactful examples include The Washington Post, CNN.com,
and The Los Angeles Times. However, they are, (a) limited to the coverage of that
particular publication, and (b) not timely—topics show up long after they have become

Author’s address: K. Dutta; email: duttak@nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 2158-656X/2013/01-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2407740.2407743

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:2 N. Pervin et al.

Table I. Twitter Trending Topics vs TrendMiner Trending Topics

Trending Topics Reported
by Twitter

Trending Topics Reported by TrendMiner

Harry Redknapp [Harry, Redknapp, cleared, tax, evasion]
#syria [russia, china, veto, u.n., security, council, resolution, syria]
Ahmadinejad [iran, parliament, summons, president, Ahmadinejad, economy, policy]
super bowl [giants, win, super, bowl]
#Aleppo [suicide, bombings, aleppo, syria, wound, 200, kill, 28]
#syria [syria, rejects, arab, peace, mission, proposal]

popular. For example, we consider the recent CNN News pulse feature, which attempts
to provide trending topics. While this feature does present trending topics, it is still
only of limited scope, in that it covers only topics drawn from stories appearing on
CNN.com, which publishes approximately 10–15 new stories per hour [Jay Sandhaus
Lead Architect, CNN 2010 personal conversation].

Twitter, as a microblogging service, also attempts to provide trending topics. This
feature considers all posts to the service, a massive-scale problem indeed, but provides
only very high-level topics. Consider, for example, the first column of Table I, which
presents a set of trending topics identified by Twitter’s trending topics feature in Jan-
uary, 2012. While these trending topics do identify important and timely subjects, they
are consistent in their lack of context—there is virtually no sense of what is important
about the trending topics. Consider, for example, the “super bowl” trending topic iden-
tified by Twitter. Clearly, the championship game is important, but it would be much
more helpful to know which team won the game.

In this article, we propose TrendMiner, a new and context-sensitive method of de-
tecting trending topics in a microblog post stream. Our system is designed to iden-
tify trending topics with a higher level of contextual meaning than current trending
topic-detection methods. Let us compare the the first column of Table I, which shows
Twitter-generated trends, to the second column, which shows a corresponding set of
trending topics detected by TrendMiner. Clearly, TrendMiner’s detected trending top-
ics provide higher context, and overall a better sense of what is currently important
and why it is important—for example, TrendMiner was able to identify the winner of
the Super Bowl.

What is it about the phrases in the second column that characterizes greater context
than those in the first in the first column? It is well known that noun-verb phrases
provide greater context than just noun or noun phrases alone [Khader et al. 2003] (like
those topics provided by Twitter’s trend feature, which contains only noun phrases).
The identification of such meaningful high-context word clusters to describe trending
topics is our focus in this work; specifically, in this article, we propose a system for
detecting trending topics from Twitter posts with greater context than existing trend-
detection systems.

At this point, it is worth considering the question of why current solutions provide
so little context. In fact, the scale and timeliness constraints imposed by the Twitter
scenario represent key impediments to workable practical solutions to detecting
trending topics with higher context. Of these constraints, the scale of the Twitter
trending topic detection problem is paramount. The volume of streaming Twitter
posts to process is massive—Twitter post activity currently generates on average
340 million posts per day (or one billion posts every three days) [Twitter, Inc. 2012].
The volume of posts can spike to more than double this rate during special events
and breaking news stories. For instance, during the August, 2011, MTV Video Music
Awards, the post rate to Twitter rose to 8,868 posts per second (when adjusted to a
daily post rate, this works out to more than 766 million posts per day) [Twitter, Inc.
2011]. While simply analyzing the incoming stream of posts represents a formidable

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:3

challenge, the Twitter scenario also imposes a significant time constraint—it is
important to be able to detect a trending topic while it is still trending.

In the context of this massive scale problem, it is worth considering user expec-
tations for online responsiveness. Recent reports [Forrester 2012; Rui and Whinston
2012] note that online systems need to provide responses within 2 seconds to meet
user expectations for application responsiveness.

Our proposed system provides such online responsiveness for user queries for trend-
ing topics. Under a variety of operating conditions (described in detail in Section 7),
our system is consistently proven to be fast (i.e., sub-2-second responses times for user
queries) and scalable, capable of identifying trending topics within 2–3 seconds of the
associated posts arriving at the system. Most importantly, our approach is demon-
strated to be substantially (150%) more efficient than the current state of the art,
while still providing strong accuracy (high recall overall, and high precision when the
number of words in the trending topic is relatively small). In summary, our implemen-
tation represents one of the first systems capable of scalable, high-context trending
topic detection from microblogging social networks.

The rest of this article is organized as follows. Section 2 places our work in the con-
text of related work. Sections 3 and 4 describe the intuition and details of our approach,
respectively. Section 5 describes an analysis of the time and space complexity of our
approach, while Section 6 discusses an analysis of the expected scalability of our sys-
tem. Section 7 presents a set of experimental results describing the performance and
scalability of our implementation. Section 8 concludes the article.

2. RELATED WORK

Work related to our focus in this article falls into two categories. We first consider the
broad area of mining data streams, and then consider the specific area of detecting
trending topics in microblogging data streams.

Broadly, mining frequent word clusters from a text stream can be viewed as
a variant of mining frequent itemsets from a data stream—posts can be viewed as
transactions, and words within posts can be viewed as items. Based on the stream data
processing model [Zhu and Shasha 2002], itemset-mining approaches fall into three
categories [Li and Lee 2009]: landmark-window based mining, damped-window based
mining, [Giannella et al. 2004] and sliding-window based mining. In the landmark-
window model [Manku and Motwani 2002], mining methods consider an interval
between a landmark and the current time. In the damped-window model [Chang
and Lee 2003; Giannella et al. 2004], windows are assigned weights, such that newer
data is weighted more heavily than older data. Methods in the sliding-window model
[Chang and Lee 2004; Chi et al. 2004; Li et al. 2009] consider a fixed-size time window
of the most recently streamed data. Our work follows the sliding-window approach in
general, where the window size for clustering is specified by the user’s desired query
timeframe.

At a high level, our strategy is similar to the Apriori approach [Agrawal and Srikant
1994], which was designed to derive association rules from a dataset. The similarity
is limited to the method used for generating potential candidates; our method differs
significantly from the Apriori approach in pruning the potential cluster set—in filter-
ing out infrequent clusters. In the Apriori approach, the database must be scanned
to count the newly generated clusters. It is impossible to apply this in the Twitter
scenario, due to the high rate of arrival of incoming posts that require processing—
it would require significant time to simply count the frequency of clusters. Further,
the volume of posts is so massive that we do not store the posts received after ini-
tial processing, making it impossible to count the frequency of sets of terms at a

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:4 N. Pervin et al.

later time. In order to handle this, we store only the frequencies of two-word clus-
ters. Based on these frequencies, we approximate the frequencies of larger clusters.
This approximation increases the efficiency dramatically, while still retaining high
accuracy.

We now move on to consider work specifically in the area of detecting trending
topics in microblogging data streams. Such work may be found in three recent papers
[Benhardus 2010; Cataldi et al. 2010; Mathioudakis and Koudas 2010]—all three
propose methods for identifying trending topics on Twitter. We consider each in turn,
and then consider a few more distantly related works.

Benhardus [2010] proposes a method to determine the trending topics using an ap-
proach based on TF-IDF scores. This method considers only unigram and bigram word
clusters as potential trending topics, and therefore is limited in scope. In contrast,
our approach, which can determine topics containing more than two grams, provides
more flexibility in the result set. Further, our approach provides online trending topic
querying capabilities, which Benhardus’ approach does not.

Mathioudakis and Koudas [2010] present TwitterMonitor, a system to detect trend-
ing topics in Twitter. This system detects bursty keywords and then groups these key-
words to form clusters. While we would like to compare our work with this short paper,
it lacks detail, both algorithmic as well as experimental. However, what is made clear
in this paper is that a single pass over the Twitter stream is not enough—to extract
bursty keywords, one pass is made over incoming posts to identify bursty singleton
words and then, for each identified bursty keyword, a second pass is made over re-
cent posting history to group keywords together. Given that there may be many bursty
words even in small time periods, this could prove to be extremely computationally
expensive.

Cataldi et al. [2010] have developed metrics to individually identify each word that
might indicate a trending topic. Their method applies these metrics, then groups the
words by computing correlations across them. This correlation computation is highly
compute-intensive; performing such computations for each pair of potentially trending
words requires significant effort. Although this approach may generate results of rea-
sonable quality, it is not suitable for scenarios requiring real-time performance, which
is our focus in this research. Instead of utilizing exact statistical correlation, as is the
case in Cataldi et al. [2010], we rely on heuristics to develop an approach that can oper-
ate online in near real time. In Section 7, we describe a set of experimental results that
demonstrate the scalability differences between the two approaches—the differences
are substantial.

Asur and Huberman [2010] took a slightly different approach to trending topic de-
tection using a stochastic model to find the growth of trending topics. They collected
the topics from Twitter using the search API and examined the factors associated with
trending topics. They showed that the distribution of trending topics is lognormal,
and found that the trending topics are primarily posts that are reposted frequently
by others. This work is complementary to ours, and represents a potential avenue for
improvement in our work.

Kannan et al. [2010] propose the TrendTracker system, which implements real-time
visualization to display emerging trending topics collected from Twitter. Varying win-
dow sizes indicate trendiness, where trendier topics are shown in larger windows, al-
lowing users to check current trending topics easily. This work is primarily focused on
displaying the output of a trending topic detection method, and thus is also comple-
mentary to our work here.

Other works in microblog analysis consider predicting movie revenues using social
media [Asur and Huberman 2010; Rui and Whinston 2012], and sentiment analysis of
Twitter posts, to model emotive trends and economic indicators [Bollen et al. 2011].

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:5

3. INTUITION AND OVERVIEW

We are interested in identifying and quantifying trending topics in popular microblog-
ging social networks, such as Twitter, with online responsiveness. A trending topic
constitutes a set of words or word phrases that is experiencing an increase in usage
with respect to its long-term usage [Benhardus 2010]. Following the lead of recent re-
search with similar goals [Cataldi et al. 2010; Mathioudakis and Koudas 2010], we
model a topic as a cluster of keywords, and the notion of trending via the concept of
burstiness [Glance et al. 2004; Liang et al. 2010]. As a result, identifying trending
topics reduces to a two-step process: (1) finding word clusters that capture topics dis-
cussed in the stream of incoming posts; and (2) identifying bursty clusters, i.e., those
that occur more frequently than usual within a particular time period.

Our approach is more generic than currently proposed methods, in that we sup-
port the ability to perform general trending topics queries, given any user-specified
time interval. In other words, our method can support the identification and display of
current hot topics, but it can also identify the trending topics from an arbitrary time
period in the past. We model Step (2) the identification and display of hot topics, as
a general query of the following form: retrieve trending topics in a time interval [be-
gin time, end time]. Identifying current trending topics is a special case of this query
with end time set to the current time. This introduces significant additional time and
space complexity with respect to the extant solutions: (a) substantial additional pro-
cessing is required to answer the historical queries, and, (b) historical data will need to
be stored in secondary storage, making data access expensive. Under these constraints,
a straightforward implementation of this two-step process would not be scalable or re-
sponsive enough.

The crux of our approach is based on the observation that the rate of Twitter posts
arriving at the system is likely to be several orders of magnitude larger than the rate
at which queries arrive at the system. Thus, the key to online scaling of the system
is to reduce the stream-processing work as much as possible. This insight is the foun-
dation of the TrendMiner approach: we have implemented a lazy evaluation strategy
in which the incoming stream is minimally processed, and much of the cluster com-
putation occurs in conjunction with burstiness identification when a query to identify
a trending topic is processed. This is very different from existing solutions, which at-
tempt to create the clusters as posts stream in, resulting in nonoptimal scaling.

By minimally processing, we mean that we simply identify the two-word clusters
that occur frequently within a particular time interval in the stream, and record the
occurrence counts for these two-word clusters across time intervals in a database. This
is straightforward. The novelty of our approach lies in our heuristic algorithm for com-
puting multi-word clusters across multiple time intervals using these base two-word
clusters. The heuristic algorithm has four characteristics.

— The heuristic provides very high recall, i.e., nearly all high-frequency multiword
clusters will be identified by our heuristic.

— The heuristic provides good precision when the number of words required to denote
the topic is relatively low (up to 5–6 words). Given that microblog posts are limited
to 140 characters, and not all words in a post will be required to characterize a
trending topic, this is more than sufficient for trending topic analysis in microblogs.

— The algorithm filters out word clusters that frequently occur, since these word clus-
ters represent known important topics. We are particularly interested in the word
clusters for which there is a sudden upward change in the frequency. For this, we
develop a measure of burstiness as a filtering mechanism.

— The algorithm is fast and scalable, with online responsiveness under heavy post
input and query arrival rates.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:6 N. Pervin et al.

Table II. Notation

Notation Meaning
S i word cluster set consisting of word clusters each of size i
S ∪i>=2Si

C i word cluster consisting of i words
C ∪i>=2Ci

C i
j jth word cluster consisting of i words

W jn the nth word in cluster j

thresholdsupport user specified threshold value for support when identifying frequent word clusters
thresholdburstiness user specified threshold value for burstiness
Sup(A,B) support of words A and B
BT,C burstiness of cluster C in time period T
UStartTime start time of user entered query time range
UEndTime end time of user entered query time range
<Table>.<col> field value ‘col’ of table ‘Table”
w number of words in a post
c average number of words in a cluster repressing a trending topic
L maximum number of frequent clusters
r number of posts received per second
ρ<Q> standard Traffic Intensity in a queue Q
λ<Q> poisson arrival rate queue elements of queue Q

In this research, we make two specific contributions:

(1) We develop a heuristic to identify frequently occurring multiword clusters based
on two-word item-sets.

(2) We develop a measure of burstiness for these frequently occurring multiword clus-
ters to identify trending topics.

Before detailing our approach, we first define the notation we will use throughout
the remainder of this article in Table II.

4. SOLUTION DETAILS

In this section, we describe the architecture of our TrendMiner system, and the details
of each component in the architecture.

4.1. Architecture

At a high level, TrendMiner consists of two parts: (a) an input text stream handler,
and (b) an online query processor, as depicted in Figure 1. The input stream handler is
responsible for processing the incoming stream of posts and identifying the frequency
of word-pairs occurring within a time interval. The online query processor is responsi-
ble for accepting user queries for trending topics within a set time interval, identifying
the frequently-occurring multiword clusters from the stored two-word clusters, and
identifying the burstiness of frequently-occurring clusters. We describe each of these
modules in detail.

4.2. Input Text Stream Handler

The input text stream handler takes as input, a stream of posts containing text and
processes them through a set of modules: a Receiver, a Parser, a Processor, an In-
memory Hash Table Data Store, an Updater, and a Database. We describe each of
these modules in the following.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:7

Fig. 1. TrendMiner architecture.

Receiver. Within the stream handler, the Receiver component receives the text of
a post to the stream, and runs a heuristic to identify whether the text of the post is
written in English. (It is possible to extend our approach for other languages using
different dictionaries, however, for this research we focus only on English posts.)

The heuristic to identify whether a post is written in English is based on a scoring
metric that considers (1) the number of English words in the post that match words in a
well-defined English dictionary, (2) the origin of the post (posts from English-speaking
countries are more likely to be in English), and (3) the language settings of the person
who posted it. First, we compute the percentage of valid English words out of the total
number of words in the post. Next, based on the origin of the post and the language
settings of the person who posted it, a threshold percentage value is selected for the
number of English words required in the posted text in order to consider it to be an
English-language post. If the origin of the post is an English-speaking country and the
language setting is found to be English, then the threshold percentage is set at a lower
value than if the origin is a not associated with English-language speakers, or if the
language setting is not English. The exact values for the thresholds were determined
by experimental observation. For posts with an English-speaking origin and English
as the language setting, the threshold value is 50%. If one of them is non-English, then
the threshold value is 80%. If both of them are non-English, the threshold value is set
at 90%. If the post is in English, the Receiver passes the text of the post to the Parser.

Parser. The Parser divides the content of posts into sentences, and the sentences
into words. It then assigns part-of-speech tags to those words by applying OpenNLP.1
The parser eliminates stop words (e.g., “a,” “the,” “I,” “we”), as well as any word that
is not a noun or a verb. The parser then stems each word to its canonical form. The
result of the parser step is a document word list of all the words that might be relevant
for trending topic analysis. To demonstrate the result of the parsing step, consider the
following sample post.

Rupert Murdoch attacked in Parliament during testimony.

For this post, the parser generates the following list: “Rupert,” “Murdoch,” “attack,”
“Parliament,” “testimony.” Note that stemming reduces “attacked” to “attack,” and
part-of-speech filtering removes the prepositions “in” and “during.” When the Parser
is finished, it places the resulting word-list in a queue for the Processor, which we
describe next.

1http://incubator.apache.org/opennlp/

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:8 N. Pervin et al.

Table III. TimeID Table

Tid time id of update period
StartTime start TimeStamp of an update period
EndTime end TimeStamp of an update period
DocFreq number of documents processed in that update period

Table IV. Cooccurrence Table

ID unique number to represent (WordId1, WordId2)
WordId1 1st WordId of the cluster (WordId1, WordId2)
WordId2 2nd WordId of the cluster (WordId1, WordId2)
Support Sup(WordId1, WordId2)
Tid time id of update period

Processor. The Processor module fetches each word-list from the parser’s result
queue and generates all pairs of cooccurring words. For instance, in the context
of our example post, the processor would generate word-pairs including (“Rupert,”
“Murdoch”), (“Rupert,” “attack”) and several others.

In-memory Hash Table Data Store. When the Processor is finished creating cooc-
curring word pairs, it then updates cooccurrence information for each word-pair in a
memory-resident hash table.

Database. A database stores all the frequently occurring word-pairs in each time
interval. The database consists of two tables, TimeID (Table III) and Cooccurrence
(Table IV).

The TimeID table stores the start and end times for each trending topic analysis
interval, as well as a count of the documents processed in the period. The Cooccurrence
table stores frequently-occurring word-clusters within each time interval.

Updater. The Updater runs at regular intervals and computes the support,
Sup(Wi, Wj), for each word-pair, (Wi, Wj), within that interval. Conceptually, Sup(Wi,
Wj) is the probability that two words Wi and Wj occur together in a post. We define
Sup(Wi, Wj) as follows.

Sup
(
Wi, Wj

)
=

|Dij|
|D| , (1)

where Dij is the set of documents within that interval that contain both the words Wi
and Wj, and D is the total set of documents within that interval. The Updater then
identifies all the word pairs that meet a minimum threshold support value within
this interval. For instance, the word pair (“Rupert,” “Murdoch”) would likely meet the
threshold.

Finally, the updater updates the database tables Cooccurrence (Table IV) and TimeID
(Table III) with the word pairs and the time interval details respectively. In the
Cooccurrence table, the WordId for a word is a unique integer identifier for the word
(we use the integer identifiers associated with words in the Wordnet corpus for this
purpose).

Having described input stream processing, we now move on to the online query pro-
cessing module.

4.3. Online Query Processing

In this section, we describe our heuristics for identifying trending topics within a user-
specified time range [UStartTime, UEndTime], i.e., identifying the word clusters that
have relatively higher frequency within the specified time range than in earlier time
periods.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:9

We first describe our heuristic for identifying frequently-occurring word clusters of
3 or more words from the frequently occurring two-word clusters in the Cooccurrence
table. We then describe how we use this estimated frequency of each cluster of 3 or
more words to measure the burstiness of word clusters to identify trending topics. We
describe each of these steps in detail.

4.3.1. Identifying Frequent Word Clusters in a Time Range. This heuristic for identifying
frequent word clusters in a time range is composed of the following steps.

(1) Identify the relevant update periods in the TimeID table (Table III) that cover the
time range [UStartTime, UEndTime] in the user query.

(2) Identify frequently occurring two-word clusters within the time range
[UStartTime, UEndTime].

(3) Generate larger word clusters from the frequently occurring two-word clusters as
identified in Step 2.

Algorithm 1 summarizes the implementation of these steps; we describe the details
of each step in the following.

ALGORITHM 1: Finding Word Clusters
Input: Time period defined by [UStartTime, UEndTime]
Output: Frequently occurring cluster set S

1 From the table TimeID, identify set of all update periods T , that covers the time period
[UStartTime, UEndTime]

2 forall the record ∈ Cooccurrence where record.tid ∈ T do
3 Compute Sup(record.WordId1, record.WordId2) following Equation (1)
4 if Sup(record.WordId1, record.WordId2)) > thresholdsupport then
5 S2 ← S2 ∪ {(record.WordId1, record.WordId2)}
6 end
7 end
8 for i = 2; Si �= ∅ ; i + + do
9 forall the Ci

j, Ci
k ∈ Si; j �= k do

10 Ci+1
new ← ClusterGeneration(Ci

j, Ci
k)

11 if Ci+1
new �= ∅ then

12 Si+1 ← Si+1 ∪ {Ci+1
new}

13 end
14 end
15 S ← S ∪ Si+1

16 end
17 forall the Ci ∈ S, i >= 2 do
18 if B[UStartTime,UEndTime],Ci < thresholdburstiness) then
19 Remove Ci from S
20 end
21 end
22 return S

Identify the update periods. To find the update periods of interest, we first query the
database to find the update periods whose end times are after the start of the query
time range UStartTime and whose start times are before the end of the query time
range UEndTime (Algorithm 1, line 1).

Identify frequently occurring two-word clusters. This step involves first identifying
the frequently occurring two-word clusters in each of the update periods identified in

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:10 N. Pervin et al.

Step 1. These word-pairs reside in the Cooccurrence table (Table IV). For each up-
date period in the query time range [UStartTime, UEndTime], we draw word pairs
(WordId1, WordId2) from the database Cooccurrence table and compute the support,
Sup(WordId1, WordId2), as given in Equation (1) (Algorithm 1, line 3).

Next, we compute the total frequency of each two-word cluster within the time range
[UStartTime, UEndTime] by summing up the frequencies found from the database for
each relevant update period. We compute the support for each two-word cluster using
Equation (1), and retain only those two-word clusters that meet a minimum support
threshold. We check whether the Sup(WordId1, WordId2) of the fetched word-pair is
greater than a configurable thresholdsupport (Algorithm 1, line 4). If it is, the word-pair
is added into a set of two-word clusters denoted by S2 (Algorithm 1, line 5).

Generate the larger word clusters. In Algorithm 1, lines 8–15, we start with an initial
set of 2-word clusters (S2). We then merge clusters containing common words to form
larger clusters. Generically, by merging two i-word clusters, we generate a single (i+1)-
word cluster (Algorithm 1, line 10). The details of the merging algorithm are given in
Algorithm 2.

In Algorithm 2, we merge two i-word clusters if they have i – 1 common words. In
order to accelerate this process, we order each cluster based on the WordID of each
word. If words in the clusters are ordered, comparing two i-word clusters is a matter
of checking that the first i – 1 words of each cluster match, i.e., the two clusters Ci

j and

Ci
k can be merged only if Wjn = Wkn,∀n = 1, 2, ..., i – 1. (Algorithm 2, lines 4–5).
If Wjn �= Wkn for any value of n, we stop checking and return a null set. If Wjn = Wkn

for all values of n (n = 1, 2, ..., i–1), we merge the clusters to generate a new (i+1)-word
cluster Ci+1 (Algorithm 2, lines 12 and 15).

When merging clusters, we append the word with the higher WordId to the end of
the cluster that does not include that word in order to maintain ordering by increasing
WordID in the cluster (Algorithm 2, lines 11–12 and 14–15). The size of the clusters
produced by our method depends on the input, and how much wording variation oc-
curs in posts describing the same trend. In practice, the size of the cluster is typically
between two and six words.

We illustrate this cluster-merging process with an example. Consider two clusters
C: (“Rupert,” “Murdoch,” “attack”) and C′: (“Rupert,” “Murdoch,” “testimony”), in which
words are in increasing WordId order. If the WordId of “attack” is greater than “testi-
mony,” we append “attack” to the end of C′, such that the new C′ contains (“Rupert,”
“Murdoch,” “testimony,” “attack”); otherwise, “testimony” is appended to the end of C,
such that the new C contains (“Rupert,” “Murdoch,” “attack,” “testimony”).

In merging the two clusters, we want to retain only those clusters that are them-
selves frequent, i.e., whose Support value meets the minimum thresholdsupport value.
To do this, we only need to check the support of the two nonintersecting words from
the original clusters (Algorithm 2, line 10). For example, if we have two word clus-
ters (“Rupert,” “Murdoch,” “attack”) and (“Rupert,” “Murdoch,” “testimony”), we only
need to check the support of “attack” and “testimony,” because other pairs of words,
namely (“Rupert,” “Murdoch”), (“Rupert,” “attack”), (“Murdoch,” “attack”), (“Rupert,”
“testimony”), (“Murdoch,” “testimony”), have already appeared in one cluster, indicat-
ing that their support values are greater than the thresholdsupport.

PROPOSITION 4.1. The merging method of generating i + 1 word clusters from two
i-word clusters is guaranteed to capture frequently occurring clusters without false
negatives.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:11

ALGORITHM 2: ClusterGeneration

Input: Two clusters Ci
j, Ci

k of size i

Output: New word cluster Ci+1 of size i + 1 or ∅
1 Let Wjn be the nth word in the cluster Ci

j

2 Let Wkn be the nth word in the cluster Ci
k

3 Initialize flag ← true
4 forall the Wjn ∈ Ci

j and Wkn ∈ Ci
k, n ≤ i – 1 do

5 if Wjn �= Wkn then
6 flag ← false
7 break
8 end
9 end

10 if flag = true and Sup(Wji, Wki) ≥ thresholdsupport then
11 if Wji < Wki then
12 Ci+1 ← Append Wki to Ci

j
13 end
14 else
15 Ci+1 ← Append Wji to Ci

k
16 end
17 return Ci+1

18 end
19 else
20 return ∅
21 end

For an i-word cluster to be frequent, its constituent (i – 1)-word clusters must also
meet the frequency thresholdsupport. This applies recursively until the base case of
(i – 1) = 2. Since we are starting with S2, where all the 2-word clusters in S2 meet the
frequency criteria, and the method considers all possible pairings of clusters in S2, we
can guarantee that all frequent 3-word clusters are included in S3. Further, we can be
sure that all frequent 4, 5, ..., i-word clusters are included in S4, S5, ..., Si, respectively.

We demonstrate the proposition with an example. Consider the cluster (“Rupert,”
“Murdoch,” “attack,” “testimony”), which is ordered by WordID, as an example. Here,
we know that the two subclusters (“Rupert,” “Murdoch,” “attack”) and (“Rupert,” “Mur-
doch,” “testimony”) must be included in frequent 3-word clusters, since they are also
frequent clusters. By checking the first two words of (“Rupert,” “Murdoch,” “attack”)
and (“Rupert,” “Murdoch,” “testimony”), we can generate the 4-word cluster (“Rupert,”
“Murdoch,” “attack,” “testimony”). Of course, there are other pairs of 3-word subclus-
ters, say (“Rupert,” “attack,” “testimony”) and (“Murdoch,” “attack,” “testimony”). The
checking process of this pair will stop immediately when it finds that “Rupert” is not
equivalent to “Murdoch”. There is no need to check these other pairs, since this would
generate the same 4-word cluster considered by our strategy of combining based on
final words in clusters. By short-circuiting processing of redundant clusters, we can
save significant effort and time, without losing any frequent clusters.

While we guarantee that our method will not exclude frequent word-sets, it is pos-
sible that false positives may be generated. Our method takes a bottom-up approach,
assuming that an (i + 1)-word cluster that is generated from two frequent i-word clus-
ters is also frequent. This may not be the case. Consider, for example, a scenario in
which all three of the word-pairs (A,B), (B,C), and (A,C) meet the thresholdsupport.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:12 N. Pervin et al.

Our method will consider the 3-word cluster (A,B,C) to be frequent, even though those
three words may not actually cooccur frequently enough in the set of input posts to
meet thresholdsupport.

4.3.2. Identifying Trending Clusters. At this point, we have identified all frequent clusters
in the user-specified time range [UStartTime, UEndTime]. However, not all of them
represent trending topics. These clusters fall into two classes: clusters that are regu-
larly frequent (these clusters typically exceed thresholdsupport for most time ranges);
and clusters that are more frequent in the specified time range than they are on aver-
age, i.e., they are trending. We wish to identify clusters in the latter case.

Again, following the lead of existing work [Glance et al. 2004; Liang et al. 2010], we
use the concept of burstiness to measure the degree of trending of clusters. We define
a bursty cluster as follows.

Definition 4.2. A bursty cluster is one that exhibits an unusually high frequency
over a finite time window compared to its past occurrences. In other words, if there is
a significant increase in frequency over a time interval, we consider this cluster to be
bursty and trending in that time interval.

We model the average frequency of a word cluster C at the time t
(
f̄t,C

)
as the average

of the frequencies for the word cluster C
(
fn,C

)
across tprev update periods before t.

Thus,

f̄t,C =
1

tprev

t–1∑
n=(t–1–tprev)

fn,c, (2)

where fn,C is the frequency of C in the nth update period.
Using this average frequency, we model the burstiness of a word cluster C at the time

t as the ratio of the actual frequency and the expected frequency in a time interval.
Thus we define

Bt,C =
ft,C
f̄t,C

, (3)

where Bt,C is the burstiness of the word cluster C in the time interval t.
One of the challenges in measuring burstiness is knowing the frequency of each fre-

quent word cluster C for each update period. We only store 2-word clusters and their
actual frequencies for each update period in the Cooccurrence table. Thus, we devel-
oped a heuristic to estimate the frequency of any frequent word clusters C, identified
in lines 8–16 of Algorithm 1.

We use the minimum value of the frequencies of all possible 2-word clusters
(
Wj, Wk

)
within a larger cluster C as the approximate cluster frequency for C. Thus formally,

ft,C = min∀(Wj,Wk):Wj∈C&Wk∈Cft,(Wj,Wk), (4)

where ft,(Wj,Wk) is the frequency for the two word cluster (Wj, Wk) at update period t as
stored in the database table Cooccurrence.

Following the measure of burstiness in Equation (3), we use the the frequency de-
fined by Equation (4) to compute burstiness for each word cluster C ∈ S for the user-
specified time range [UStartTime, UEndTime] in Algorithm 1, line 18, as follows.

B[UStartTime,UEndTime],C =
f̄[UStartTime,UEndTime],C

f̄UStartTime,C
, (5)

where f̄[UStartTime,UEndTime],C is the average frequency per update period within the
time range [UStartTime, UEndTime].

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:13

Thus the burstiness within a query’s time range [UStartTime, UEndTime] is com-
puted as the ratio of the average frequency per update period within the queried time
range and the average frequency per update period for tprev update periods before the
query’s time range.

If the burstiness for the word cluster C within the queried time range meets a pre-
defined threshold value thresholdburstiness, the word cluster is kept in the trending set
S; otherwise, it is removed from S (Line 19, Algorithm 1).

At the end, in line 22 of Algorithm 1, the set S of word clusters is returned.
Each word cluster C ∈ S defines a trending topic for the user-queried time range
[UStartTime, UEndTime].

5. COMPLEXITY ANALYSIS

In this section, we discuss the time and space complexity of TrendMiner.

5.1. Time Complexity

TrendMiner consists of two different types of processing: handling the input text
stream and processing online user queries for trending topic detection. Since these
are two independent processes, we demonstrate the time complexity of each of these
separately.

5.1.1. Input Text Stream Handler. Let us assume that a post has w words. As described
in Section 4, first the Receiver receives a post and places it in a buffer queue, which
takes O(1) time. Next, the Parser parses the post into w words, which takes w units
of time. After that, the Processor generates 2-word clusters from the w words, which
contributes

(w
2
)

unit steps, i.e., O
(

w2
)

. Next, the Updater transfers frequent 2-word
clusters from the hash table to the database. Without loss of generality, let us assume
that all 2-word clusters are frequent. Thus, appending a

(w
2
)
-word cluster takes O

(
w2

)
insertions in the database. Therefore, the time complexity to process one post can be
expressed as

(
O(1) + w + O

(
w2

))
= O

(
w2

)
, which is quadratic to the number of words

in the incoming post.

5.1.2. Online Query Processing for Finding Trending Clusters. To find the trending clusters,
we first need to find frequent clusters (meeting thresholdsupport) and then find the
bursty clusters (meeting thresholdburstiness). To find the frequent clusters, we need to
access the cooccurrence information from the database and fetch the 2-word clusters
corresponding to the update time periods within the query time range. Let us assume
that there are M update periods within the query time range. Thus, it will require M
database fetches to gather the 2-word clusters for the M update periods.

The time required to generate an (i + 1)-word cluster from two i-word clusters is
O(i). Thus, assuming that there can be at most L clusters and each cluster can have
maximum c words, the time complexity required to find frequent clusters would be,

O

(c∑
i=3

(
L
2

)
× i

)
= O

(
c2 · L2

)
. (6)

Next, to find the bursty clusters in the current time period, we need to find the av-
erage frequency of all clusters in the previous tprev update periods and the M update
periods within the query time range [UStartTime, UEndTime]. Assuming at most L
clusters, where each cluster has a maximum of c words, the number of database op-
erations required to find the average frequencies for each cluster across all tprev + M

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:14 N. Pervin et al.

update periods is O
((c

2
)
× L

)
. Assuming the database operations take constant time,

the total time complexity in computing burstiness for L clusters would be,

O
(

c2 · L · (tprev + M)
)

. (7)

Thus, the total time complexity for processing the input query to find trending top-
ics/clusters would be,

O
(

M + c2 · L2 + c2 · L ·
(
tprev + M

))
. (8)

PROPOSITION 5.1. The time complexity of processing the input query is quadrati-
cally related to both L and c.

Note that the value of c is determined by an external system such as Twitter (the
140-character limit for microblog posts effectively limits c to a small integer value).
The value of L can be controlled by the value of the parameter thresholdsupport. If the
value of thresholdsupport is lower, the value of L would be smaller and would reduce
the overall time complexity of the system. On the other hand, a very low value for
thresholdsupport can omit some trending clusters in the final output. Therefore, the
value of the thresholdsupport needs to be judiciously chosen based on available system
resources and the desired sensitivity of the results.

PROPOSITION 5.2. The time complexity of processing the input query is linearly re-
lated to M.

If the query time range [UStartTime, UEndTime] is wider, the value of M would be
larger. So, from Equation (8), we can find that the time complexity of the system would
increase linearly along with the query time range.

5.2. Storage Complexity

The Updater module periodically transfers word cooccurrence information from the
memory-based hash table to the database. The memory consumed by the 2-word clus-
ters generated within an update period is flushed regularly, and thus does not grow
over time. However, the database maintains historic data for word cooccurrence across
update periods, and thus does grow over time. Therefore, we estimate the bound of the
database size in this analysis.

At the end of each update period, the contents in the memory-based hash table are
transferred to the database tables Coocccurrence and TimeID.

The content of TimeID is directly dependent on how much historical data we want
to store in the database and update period. For shorter update periods, the size of the
table TimeID also increases linearly. As the length of the history grows, the size of the
TimeID table also increases linearly. Each row of the TimeID table is of size 32+64×2 +
32 bits = 24 bytes. If the update period is 10 minutes, i.e., at every 10-minute interval
the 2-word clusters and their frequencies are transferred from the memory-resident
hash table to the database Cooccurrence table, and we keep a history of one week, the
total size of the data in the TimeID would be, 24 × 6 × 7× 24 bytes = 24.2 kB.

Each row of the Cooccurrence table has a size of 32+32+32+32 + 32 bits = 20 bytes.
Let us assume that posts arrive at an average rate of r posts per second, with each
post consisting of w words on average. Then each post will create

(w
2
)

2-word clusters.
Assuming only p% of the 2-word clusters meet the threshold support requirement,(w

2
)
× p

100 × r × 20× 600 bytes are added to the database at each update period. In
March 2011, Twitter received on average, 1620 posts per second [Twitter 2011], i.e.,

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:15

r = 1620. Each Twitter post is at most 140 characters in length. Assuming each word is
on average 6 characters long, we can assume the Twitter post will have on average 24
words. Assuming p = 5, i.e. only 5% of the 2-word clusters cross the support threshold
within each update period, then at each update period the database size grows by 268
MB. If we keep one week’s historical data, the data size for the Cooccurrence table
would be 268 × 6 × 24× 7 MB = 270 GB, which is manageable considering the scale of
the problem we are handling.

6. SCALABILITY ANALYSIS

In this section we demonstrate how the system scales based on a queuing theory model.
TrendMiner can be modeled as two independent queues: Q1 for the input text stream

handler, and Q2 for the query handler. The input for Q1 is incoming posts. The input
for Q2 is a stream of user queries requesting trending topics within specific intervals.
Average processing time, service time, and traffic intensity have their usual meanings
in queueing theory.

For Q1, we assume a M/D/1 model, i.e., we assume that the distribution for the in-
terarrival rate of posts follows a Poisson distribution with mean λQ1

. The processing
time for an incoming post is deterministic, and follows from our time complexity com-
putation.

Let qm be the average number of posts in the system at the moment when the pro-
cessing of the mth post finishes. Suppose that γm is the number of posts that arrive
during the service time of post m. Let ρ1 be the traffic intensity for the queue Q1.
Thus, we have the expected number of posts in the system

E[qm] = ρ1 +
ρ2

1
2 (1 – ρ1)

=
ρ1

1 – ρ1

[
1 –

1
2
ρ1

]
. (9)

The average waiting time β1 in the queue Q1 will be given by

β1 =
1

λQ1

ρ2
1

2 (1 – ρ1)
(10)

=
λQ1

c2

1 – λc

= O

⎛
⎜⎝λQ1

4

(
w2 + w + 2

)2

2 – λQ1

(
w2 + w + 2

)
⎞
⎟⎠ .

For Q2, we assume a M/D/1 model, i.e., we assume that users submit queries at
a random rate. These queries are processed by the query handler in deterministic
time as described by our time complexity analysis. As we did in the case of Q1, here
we also assume a single thread (this can easily be extended to multiple threads).
Let us denote the query of Q1 as κ1. Without loss of generality let us assume that
the arrival rate of queries is λ1. Let the arrival rate follow the Poisson distribution
function. From the complexity analysis, the time needed to process the query is
O(M + c2 · L2 + c2 · L · (tprev + M)).

The traffic intensity for the queue Q2 is given by

ρ2 = λ1O
(

M + c2 · L2 + c2 · L · (tprev + M)
)

. (11)

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:16 N. Pervin et al.

The average waiting time for queue Q2 is given by

β2 =
1
λ1

ρ2
2

2(1 – ρ2)
(12)

= O

⎛
⎝λ1

4

(
M + c2 · L2 + c2 · L · (tprev + M)

)
2 – λQ2

(
M + c2 · L2 + c2 · L · (tprev + M)

)
⎞
⎠ .

Hence the total waiting time of the system is given by the combined waiting time for
Q1 and Q2.

β1 + β2 = O

(
λQ1

4
(w2 + w + 2)2

2 – (w2 + w + 2)

)
(13)

+ O

(
λQ2

4
M + c2 · L2 + c2 · L · (tprev + M)

2 –
(
M + c2 · L2 + c2 · L · (tprev + M)

)
)

.

Therefore, the average waiting time from the time a post has arrived at the Input
Text Handler to the time that it can be recognized by a query in identifying trending
topics is given by

O
(
λQ1

w2
)

+ O
(
λQ2

)
, (14)

where λQ1
is the average interarrival rate for a post, λQ2

is the average interarrival
rate for query, and w is the average number of words in a post.

PROPOSITION 6.1. The average waiting time for each incoming user query in Trend-
Miner is quadratic to the average number of words in a twitter post (w).

Due to the linear-quadratic nature of Equation (14), TrendMiner is scalable. In the
next section, we demonstrate this scalability experimentally.

7. EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate the quality and scalability of our
approach.

7.1. Experimental Environment

We developed an experimental testbed based on the architecture depicted in Figure 1
and the algorithms described in Section 4. All modules, including not only the Trend-
Miner modules, but also all helper software and all modules representing comparison
approaches, were implemented in Java 1.6. A MySQL v5.1 DBMS was installed to store
the 2-word clusters and their frequencies. All modules and the database were installed
in the same 2.33 GHz quad-core CPU, 8 GB RAM server running Linux Ubuntu 11.04.

For the purpose of conducting the experiments, we collected a set of approximately
one million Twitter posts to serve as test input data; we call this dataset the Twit-
ter Post Bank (TPB). Further, we implemented two helper modules: (a) a Text Stream
Generator (TSG), and a Query Generator (QG). The TSG extracts posts from the TPB
and submits them to the system as a Poisson process with a configurable mean inter-
arrival time, Post Arrival Rate. The QG formulates queries for trending topics of the
form: retrieve all trending clusters in the interval [UStartTime, UEndTime], where a
cluster is a set of words representing a trending topic, and submits them to the sys-
tem. To formulate such a query, the QG first fixes the interval of interest by generating

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:17

Table V. Baseline Experimental Values

Parameter Name Baseline Value Range
thresholdsupport 0.015 N/A
thresholdburstiness 1.5 N/A
Update Period 10 minutes N/A
Post Arrival Rate 300 posts/second 100-900
Query Arrival Rate 10 queries/second 5-30

the UStartTime and UEndTime values by drawing both values from a uniform distri-
bution delimited by [experiment begin time, current time]. Two additional constraints
are imposed: first, UEndTime must be greater than UStartTime and second, 60% of
the queries are forced to have UEndTime set to current time to simulate the detec-
tion of current trending topics. Obviously, the remaining 40% are historical queries for
trending topics. Table V shows the baseline values used in our experiments.

All reported values were obtained by running each experiment ten times and report-
ing the average across all experimental runs for each reported data point.

7.2. Quality of Results

In this section, we present a set of experimental results describing the quality of re-
sults provided by TrendMiner.

We first present the results of a comparison of trending topics from Twitter and
trending topics detected by TrendMiner. Due to the limited amount of data available
from Twitter, these results are necessarily both high-level and qualitative. Currently,
Twitter only provides a maximum of 1% of the total Twitter feeds within a given time.
Within a short interval (such as a few minutes) this 1% of Twitter posts can hardly
be used to identify trending topics any better than Twitter’s current trending topic
feature. Thus, we have focused on the daily feeds and have qualitatively compared the
results of our trending topic identification method with the Twitter trending topics.

To provide a more nuanced sense of the quality of the TrendMiner results, we present
the results of a set of accuracy experiments that compare the TrendMiner results to
those discovered by an exhaustive method guaranteed to find all trending topics meet-
ing thresholdsupport and thresholdburstiness. In the exhaustive method, the 2, 3.. n-word
clusters are generated by scanning the complete post database. Since there is no ap-
proximation employed in this method, it produces all possible clusters crossing the
respective thresholds. This method serves here as a gold-standard of accuracy; how-
ever, since it requires multiple database scans, it is not appropriate for use in online
scenarios.

7.2.1. Comparison with Twitter Trending Topics. Each day, Twitter publicly releases a sub-
set of daily posts. For a week (from 22 February 2012 to 28 February 2012), we ran
these posts (roughly 12,000 per day) through TrendMiner to identify the trending word
clusters each day. For the same week, we recorded Twitter’s daily top five trending
topics, and manually mapped the top-five Twitter trending topics to the TrendMiner-
identified trending word clusters. We report the corresponding Twitter and Trend-
Miner trending topics in Table VI.

TrendMiner is clearly able to identify trending topics in the post stream. For ex-
ample, the release of a new movie, “Jump Street,” was identified as the 13th trending
topic, the news of the death of actor Erland Josephson at the age of 88 came up as
the 22nd trending topic. Of the 35 trending topics identified by Twitter, we were able
to map 33 to the trending word clusters identified by TrendMiner; specifically, items 8
and 9 were not mapped. This is due to the fact that TrendMiner currently only consid-
ers English-language posts; any post that does not contain sufficient English words is

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:18 N. Pervin et al.

Table VI. Comparison with Twitter Result

Twitter Trending Topics vs. TrendMiner Trending Topics
NO. Twitter Trending Topics TrendMiner Trending Date
1 Ash Wednesday [ash, wednesday, lenten, start, today]

22 Feb. 2012
2 lent [ash, wednesday, lenten, start, today]
3 TITANIC in 3D [titanic, april, 3d, watch]
4 Miss St. [defense, bost, dee, state, gilchrist, kidd, st,

mississippi]
5 Mississippi State [defense, bost, dee, state, gilchrist, kidd, st,

mississippi]
6 Keep Quinn Walking [walking, keep, magick, spread, quinn]

23 Feb. 2012
7 Ash Wednesday [ash, wednesday, lenten, start]
8 El Del Arte Malicioso
9 By PDN
10 Jason Terry [product, jeremy, system, terry, lin, antoni,

jason]
11 Happy Birthday Steve Jobs [steve, jobs, birthday]

24 Feb. 2012
12 Brandon Jacobs [wrestling, jacobs, tna, brandon, giants,

impact]
13 Jump Street [21, screening, street, movie, jump]
14 Gregg Jevin [rip, die, gregg, jevin]
15 Estelle Silvia Eva Mary [princess,victoria, name, estelle, silvia, eva,

daughter, mary]
16 RIP Facebook [rip, facebook, die]

25 Feb. 2012
17 Tahs [rebels, tahs, mortlock, team, clash]
18 Congrats DLSU [season, congrat, volleyball, dlsu]
19 Tom and Siva [tom, siva, cry]
20 Dom Shipperley [reds, dom, shipperley, win]
21 R.I.P Rowan Atkinson [bean, hoax, death, rowan, atkinson, r.i.p]

26 Feb. 2012
22 Erland Josephson [erland, die, age, josephson, 88]
23 Samsung Galaxy Beam [announce, beam, samsung, galaxy, projector]
24 Scott Parker [scott, england, parker, player, vote, year]
25 Arsenal 5-2 Tottenham [arsenal, beat, tottenham]
26 Bret McKenzie [mckenzie, bret, oscar, win]

27 Feb. 2012
27 The Iron Lady [meryl, streep, lady, win, oscar, iron]
28 Meryl Streep [meryl, streep, lady, win, oscar, iron]
29 Mahamadou Diarra [sign, fulham, diarra, mahamadou]
30 Photoshop Touch [launch, ipad, adobe, photoshop, touch]
31 Jaleel White [jaleel, dance, cast, star]

28 Feb. 2012
32 Dancing with the Stars [cast, donald, driver, join, dance, star]
33 Donald Driver [cast, donald, driver, join, dance, star]
34 Lucy Liu [lucy, liu, cast, watson]
35 Juan Pablo Montoya [juan, pablo, montoya, crash, dryer, daytona,

jet, 500]

omitted from consideration. This can be changed easily by adding a language identifier
and respective language-specific logic in the Parser module depicted in Figure 1.

A comparison of TrendMiner trending topics and Twitter trending topics shows that
TrendMiner is able to identify trending topics with higher contextual content than
Twitter trending topics. For example, on 25 February, Twitter identified “Congrats
DLSU” as a trending topic. If one is not familiar with DLSU, this is not a very mean-
ingful trending topic. In contrast, TrendMiner was able to identify the trending topic
as congratulating the DLSU volleyball team. In another example, Twitter reported
“RIP Rowan Atkinson,” while the additional context provided by TrendMiner was able
to identify the trending topic as actually a hoax.

A further inspection of Table VI shows that the higher context provided in Trend-
Miner trending topics helps to identify single trending topics that Twitter identifies
under multiple separate trending topic labels. For example, Twitter identified “Meryl

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:19

Fig. 2. Recall.

Streep” and “Iron Lady” as separate trending topics on 27 February, where TrendMiner
identified them as part of the same trending topic, and provided the additional context
of the actress’ Oscar win.

7.2.2. Accuracy. In this section, we aim to measure how the approximation affects
the recall and precision of our method with the increase of cluster size. As there is no
approximation in the exhaustive method, to demonstrate accuracy, we compare results
obtained by our methods to those obtained by running the exhaustive method, which
is guaranteed to produce a set of optimal clusters.

To quantify accuracy, we use the traditional precision and recall metrics, defined as
follows (where ResultTM represents the results obtained from our TrendMiner method,
and ResultE represents the results obtained from the exhaustive method):

Recall = |ResultTM
⋂

ResultE|
|ResultE|

Precision = |ResultTM
⋂

ResultE|
|ResultTM| .

These are reported in Figures 2 and 3, where we report recall and precision, respec-
tively, for varying cluster sizes.

Figure 2 shows our recall results. Clearly, our methods demonstrate high recall accu-
racy, ranging from 1.0 for 2-word clusters (for which we have actual frequency values)
to 0.83 for 12-word clusters. The decreases in recall as cluster size increases are pri-
marily due to the fact that false negatives can be introduced in the approximation
of burstiness. It is possible that the approximated average frequency f̄t,C across time
periods is greater than the actual occurrence over those time periods, resulting in an
incorrectly low burstiness value. In this case, a cluster might be incorrectly discarded,
which is reflected in reduced recall values.

Figure 3 shows our precision results, which exhibit behavior similar to the recall
graph, in that precision also decreases with increasing cluster size. As is the case with
recall, the burstiness approximation can also diminish precision. It is possible that the
expected frequency ft,C of a cluster is greater than the actual occurrence frequency,
resulting in a higher burstiness value than is actually the case. Here, a cluster might
be incorrectly included.

We note that the precision curve has a noticeably sharper decline than the recall
curve, from 1.0 for 2-word clusters (for which we have actual frequency values) to 0.42
for 12-word clusters. The cause of this is the frequency approximation in the first step.
We get exact values for 2-word clusters, as our method computes and accumulates
the frequencies of every 2-word cooccurrence for every time period. Thus, when we
compute the candidate (frequent) 2-word clusters, we get every possible candidate,

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:20 N. Pervin et al.

Fig. 3. Precision.

and no false positives. From that point on, as we generate larger clusters, we no longer
keep count—larger clusters are generated by merging smaller candidate clusters. This,
of course, is an approximation—if AB, BC, and AC are all frequent 2- word clusters,
it is very likely, but not necessarily so that ABC will be a candidate frequent cluster
as well. This approximation has the effect of introducing false positives in the system,
which compound as the cluster size increases. This manifests itself in the more-sharply
decreasing slope of the precision graph.

7.3. Scalability

We consider scalability across two dimensions: (a) post arrival rate and (b) query loads.
We are interested in three distinct metrics. First, we measure how long it takes, on av-
erage, for the system to process a post, i.e., the time elapsed from the point when a
post arrives at the system to when it has been fully processed by the Input Text Han-
dler. We refer to this as the Average Time in System (ATIS). Second, we measure the
Throughput of the system, i.e., how many posts the system can handle per second.
Finally, we measure how long it takes, on average, for the system to process a query.
We refer to this as the Average Query Response Time (AQRT). In this article, we re-
port the measurement of ATIS and Throughput for varying post arrival rates and the
measurement of AQRT for different query arrival rates.

We compare our method’s performance for ATIS and Throughput with that of the ap-
proach described by Cataldi et al. [2010] to demonstrate the scalability of our method.
The Cataldi approach does not provide for queries for trending topics within any given
time interval, as provided by ours. Since there is no query processing aspect in Cataldi
approach, we cannot compare AQRT.

We implemented the Cataldi algorithms in the experimental environment described
in Section 7.1 and ran all ATIS and Throughput comparison experiments for both
the TrendMiner and the Cataldi implementations. We note that the Cataldi approach
requires a few parameters: (a) a time slot, which is comparable to our update interval;
(b) a number of slots to consider, which is comparable to our query time frame, where
all queries are current queries; and (c) a frequency support measure similar to our own.
Since the parameters are comparable to our own, we use the same values as input to
our system and the Cataldi module for each experimental run.

7.3.1. Average Time in System. The ATIS results are shown in Figure 4. In these
experiments, we use a baseline query arrival rate of 10 queries/second. Here, we can
see that the ATIS values are relatively stable up to 300 posts/second for the Cataldi
approach, and up to 400 posts/second for our approach (labeled Online), indicating
base system capacities. Up to these rates, arriving posts do not have to wait—they
are processed immediately. Above these arrival rates, posts must wait in queues

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:21

Fig. 4. Average time in system.

Fig. 5. Throughput.

for processing. This causes the ATIS to start to increase in both cases, with ATIS
values reaching approximately 3.3 seconds for arrival rates of 900 posts/sec for the
TrendMiner case. In contrast, for the Cataldi approach, the ATIS value is 24.9 (7.5
times the ATIS of our approach) at the same rate. The overhead of computing the
correlation across all word pairs is the key bottleneck in the Cataldi approach—this
bottleneck is the primary cause of the rapid increase in ATIS.

7.3.2. Throughput. The Throughput results are shown in Figure 5. In these exper-
iments, we use a baseline post arrival rate of 10 posts/second. These results are in
concordance with those shown in the ATIS graph. For our approach, Throughput
continues to increase until the rate of incoming posts reaches 600 posts/second, after
which Throughput begins to flatten out, indicating that the system has reached its
processing capacity. In comparison, for the Cataldi approach, the throughput flattens
out at the much lower incoming post rate of roughly 400 posts/second. This suggests
that our system capacity is around 600 posts/second, and the Cataldi capacity is
approximately 400 posts/sec in the experimental testbed. From this, we can conclude
that the Cataldi approach reaches its bottleneck point roughly 200 posts/second
earlier than the TrendMiner approach. This further demonstrates the suitability of
our approach in online scenarios, as compared to the Cataldi approach.

7.3.3. Average Query Response Time. We measure the scalability of our system in
terms of AQRT performance as the query arrival rate increases. Figure 6 shows
how response time varies as the query arrival rate increases from 5 queries/second
to 30 queries/second. We show three curves here, for post arrival rates of 200, 400,
and 600 posts/second. The curves all show the same trend of increasing rate of slope
increase as the query arrival rate increases. As we would expect, the response times
are higher for the 400 and 600 posts/second curves than for the 200 posts/second

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:22 N. Pervin et al.

Fig. 6. Average query response time.

curve. Even at a high post arrival rate of 600 posts/second, a high query arrival rate
of 30 queries/second, and all modules running on a single server, our system is still
able to respond to queries within 15 seconds on average—which is within an order
of magnitude of online responsiveness. With commercial-grade equipment, we would
expect to achieve online or near-online responsiveness, even at these higher loads.

Finally, based on our ATIS and AQRT results, we consider how close to trending
topic detection we have been able to get. In order for a topic to appear as trending
in our system, there must be sufficient related posts in the update period to cross
the frequency support threshold. When the last post required to push a topic across
the threshold arrives, it must pass through the Input Text Handler, after which there
is sufficient information in the HashTable to detect the trending topic. As shown in
Figure 4, the ATIS at a post arrival rate of 600 posts/second is approximately 0.6
seconds. If a “current” query for trending topics were to arrive immediately after that
final threshold-crossing post arrived, our system would process the request and return
the corresponding trending topic in the results. As shown in Figure 6, at a query arrival
rate of 10 queries/second, the AQRT is 1.9 seconds (using the 600 posts/second curve).
If we sum these two values, we get a trending topic-detection delay of only 2.5 seconds,
which is very close to online responsiveness [Broadwell 2004].

8. CONCLUSION

This article addresses the problem of finding trending topics in microblog posts with
online responsiveness. We describe a method for handling high-volume post rates, and
describe methods for concurrently finding trending topics. We compared the output of
TrendMiner to trending topics from Twitter, and found that TrendMiner provided sig-
nificantly higher contextual content than Twitter trending topics. In order to provide
Internet-scale scalability and performance, our methods are approximate. Thus, we
compared our results with those of an exhaustive clustering method in order to quan-
tify accuracy. Our methods provide strong recall, which indicates that they are capable
of identifying most trending clusters. Precision for our results is also high for cluster
sizes in the range of 2–6 words, but accumulating errors for larger cluster sizes results
in lower precision at higher cluster sizes. A comparison of our system with the Cataldi
approach [Cataldi et al. 2010] suggests that our method scales 150% better and is ca-
pable of handling a much higher Twitter post arrival rate. We also measured the query
response time performance of our system; these results suggest that our approach is
acceptable for online applications.

This work has several limitations, which we plan to address in the future. First, the
current approach does not consider the order of the words in trending topics. However,
presenting results in an appropriate wording order would definitely result in an easier

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams 19:23

to use interpretation of the resulting trending topics. Second, when the cluster size
increases, the precision of the TrendMiner method decreases. In our future work we
intend to improve the presentation by using appropriate word ordering and improve
precision by refining our approximation strategy.

ACKNOWLEDGMENTS

We would like to gratefully acknowledge Abdur Chowdhury, Chief Scientist at Twitter, Inc., for his helpful
comments and input.

REFERENCES

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th
Very Large Database Conference. 487–499.

Asur, S. and Huberman, B. A. 2010. Predicting the future with social media. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT). 492–499.

Benhardus, J. 2010. Streaming trend detection in Twitter. UCCS REU For Artificial Intelligence, Natural
Language Processing And Information Retrieval Final Report, 1–7.

Bollen, J., Mao, H., and Pepe, A. 2011. Modeling public mood and emotion: Twitter sentiment and socio-
economic phenomena. In Proceedings of the International Conference on Weblogs and Social Media.

Broadwell, P. M. 2004. Response time as a performability metric for online services. Tech. rep. UCB/CSD-
04-1324, EECS Department, University of California, Berkeley.

Cataldi, M., Di Caro, L., and Schifanella, C. 2010. Emerging topic detection on Twitter based on temporal
and social terms evaluation. In Proceedings of the 10th International Workshop on Multimedia Data
Mining. 1–10.

Chang, J. H. and Lee, W. S. 2003. Finding recent frequent itemsets adaptively over online data streams.
In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 487–492.

Chang, J. H. and Lee, W. S. 2004. A sliding window method for finding recently frequent itemsets over online
data streams. J. Inform. Sci. Eng. 20, 4, 753–762.

Chi, Y., Wang, H., Yu, P. S., and Muntz, R. R. 2004. Moment: Maintaining closed frequent itemsets over a
stream sliding window. In Proceedings of the IEEE International Conference on Data Mining (CDM).
59–66.

Forrester. 2012. Forrester ecommerce study: The two-second rule is critical.
http://colderice.com/forrester-ecommerce-study-the-2-second-rule-is-critical/.

Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. 2004. Mining frequent patterns in data stream at
multiple time granularities. In Next Generation Data Mining, H. Kargupta, A. Joshi, K. Sivakumar, and
Y. Yesha Eds., AAAI/MIT, 191–212.

Glance, N., Hurst, M., and Tomokiyo, T. 2004. BlogPulse: Automated trend discovery for weblogs. In Pro-
ceedings of the WWW Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics.

Hotho, A., Jaschke, R., Schmitz, C., and Stumme, G. 2006. Trend detection in folksonomies. Semantic Mul-
timedia, 56–70.

Johnson, S. 2009. How Twitter will change the way we live.
http://www.time.com/time/magazine/article/0,9171,1902818,00.html.

Kannan, A., Patzer, J., and Avital, B. 2010. Trendtracker: Trending topics on Twitter.
http://vis.berkeley.edu/courses/cs294-10-sp10/wiki/images/d/d4/FinalPaper.pdf.

Khader, P., Scherag, A., Streb, J., and Roumlsler, F. 2003. Differences between noun and verb processing in
a minimal phrase context: A semantic priming study using event-related brain potentials. Cog. Brain
Res. 17, 2, 293–313.

Kwak, H., Lee, C., Park, H., and Moon, S. 2010. What is twitter, a social network or a news media? In
Proceedings of the 19th International Conference on the World Wide Web. 591–600.

Li, H.-F. and Lee, S.-Y. 2009. Mining frequent itemsets over data streams using efficient window sliding
techniques. Expert Syst. Appl. 36, 2, 1466–1477.

Li, H.-F., Ho, C.-C., and Lee, S.-Y. 2009. Incremental updates of closed frequent itemsets over continuous
data streams. Expert Syst. Appl. 36, 2, 2451–2458.

Liang, X., Chen, W., and Bu, J. 2010. Bursty feature based topic detection and summarization. In Proceedings
of the 2nd International Conference on Computer Engineering and Technology.

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

19:24 N. Pervin et al.

Manku, G. S. and Motwani, R. 2002. Approximate frequency counts over data streams. In Proceedings of the
28th Very Large Data Base Conference (VLDB). 346–357.

Mathioudakis, M. and Koudas, N. 2010. TwitterMonitor: Trend detection over the Twitter stream. In
Proceedings of the International Conference on Management of Data. 1155–1158.

Popescu, A.-M. and Pennacchiott, M. 2011. Dancing with the stars, NBA games, politics: An exploration of
Twitter users’ response to events. In Proceedings of the 5th International AAAI Conference on Weblogs
and Social Media. 594–597.

Rui, H. and Whinston, A. 2012. Designing a social-broadcasting-based business intelligence system. ACM
Trans. Manage. Inf. Syst. 2, 4, 1–19.

Twitter. Twitter posts. http://blog.twitter.com/2011/03/numbers.html.
Twitter, Inc. 2011. Year in review: Tweets per second. http://yearinreview.twitter.com/en/tps.html.
Twitter, Inc. 2012. Twitter turns six. http://blog.twitter.com/2012/03/twitter-turns-six.html.
Zhu, Y. and Shasha, D. 2002. Statstream: Statistical monitoring of thousands of data streams in real time.

In Proceedings of the 28th Very Large Data Base Conference. 358–369.

Received April 2012; revised October 2012, November 2012; accepted November 2012

ACM Transactions on Management Information Systems, Vol. 3, No. 4, Article 19, Publication date: January 2013.

