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 E-commerce is growing to represent an increasing share of overall sales revenue , and online sales are expected
 to continue growing for the foreseeable future. This growth translates into increased activity on the supporting
 infrastructure , leading to a corresponding need to scale the infrastructure. This is difficult in an era of
 shrinking budgets and increasing functional requirements. Increasingly , IT managers are turning to virtualized
 cloud providers, drawn by the pay-for-use business model As cloud computing becomes more popular, it is
 important for data center managers to accomplish more with fewer dollars (i.e., to increase the utilization of
 existing resources). Advanced request distribution techniques can help ensure both high utilization and smart
 request distribution, where requests are sent to the service resources best able to handle them. While such
 request distribution techniques have been applied to the web and application layers of the traditional online
 application architecture, request distribution techniques for the data layer have focused primarily on online
 transaction processing scenarios. However, online applications often have a significant read-intensive
 workload, where read operations constitute a significant percentage of workloads (up to 95 percent or higher).
 In this paper, we propose a cost-based database request distribution (C-DBRD) strategy, a policy to distribute
 requests, across a cluster of commercial, off-the-shelf databases, and discuss its implementation. We first
 develop the intuition behind our approach, and describe a high-level architecture for database request
 distribution. We then develop a theoretical model for database load computation, which we use to design a
 method for database request distribution and build a software implementation. Finally, following a design
 science methodology, we evaluate our artifacts through experimental evaluation. Our experiments, in the lab
 and in production-scale systems, show significant improvement of database layer resource utilization,
 demonstrating up to a 45 percent improvement over existing request distribution techniques.

 Keywords: Database clusters, request distribution, task allocation, design research

 Introduction

 Since the advent of Internet-enabled e-commerce, online sales
 have attracted an increasing share of overall sales revenues.

 ^1 Hever was the accepting senior editor for this paper. Samir Chatterjee
 served as the associate editor.

 Online retail sales have grown from $155.2 billion in 2009 to
 $172.9 billion in 2010, with an expected 10 percent com-
 pound annual growth rate, projected to reach nearly $250
 billion in 2014 (Mulpuru et al. 2010).

 This growth translates into significant increases in online
 activity, which can be expected to result in a corresponding
 growth of activity on the underlying information technology
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 infrastructure. Supporting such growth organically (i.e.,
 acquiring the necessary IT resources to support this commen-
 surate growth in infrastructure) is challenging in the current
 era of austerity. Yet IT managers are expected to support this
 growth while continuing to improve the user experience with
 new features and with smaller budgets (Perez 2009).

 Facing such pressures, the low up-front investment and pay-
 for-use pricing offered by cloud computing is enticing
 (Roudebush 2010). Here, IT managers deploy their applica-
 tions to virtualized platforms provided by third-party infra-
 structure companies or, potentially , an internal cloud infra-
 structure provider. Each application is deployed to a set of
 virtualized servers on the cloud infrastructure, where the
 number of virtual servers allocated to the application varies
 with the application's workload: servers can be allocated as
 workload increases, and deallocated as workload decreases.

 Gartner Research (2010) reports that the use of cloud com-
 puting is not only growing (with worldwide cloud services
 revenues of approximately $68 billion in 2010), but the rate
 of growth of cloud service deployments is increasing. As
 virtualization and cloud computing become more popular,
 data center managers and IT managers alike must accomplish
 more with fewer resources and support more applications with
 fewer dollars. Advanced request distribution techniques can
 help ensure both high utilization (Meiernd 2010), to make
 sure that the capacity of existing resources is fully utilized
 before adding more resources, and smart request distribution,
 where requests are sent to the resources best able to service
 them.

 The use of such request distribution techniques provides some
 major advantages that appeal to both data center managers as
 well as IT managers: (1) using existing resources in an opti-
 mal manner and (2) accomplishing more with fewer resources
 reduces operational costs, leading to lower costs of ownership
 for data center managers, allowing them to offer lower, more
 competitive costs to their customers (IT managers).

 In this paper, we explore request distribution techniques for
 online e-commerce applications focusing on the data layer.
 In this context, we first describe a typical online application
 architecture, and then discuss request distribution needs
 within this architecture.

 Online applications are typically organized in a three-tier
 architecture, as depicted in Figure 1.

 For most online businesses, even for small- to medium-sized
 organizations, a single instance at each layer will not suffice,
 since each of these layers can experience workloads beyond
 the capacity of a single server or software resource. The best

 practice described by vendors across all three layers of the
 typical online application architecture is to cluster multiple
 identically configured instances of hardware and software
 resources at each layer, as depicted in Figure 2 (Cherkasova
 and Karlsson 2001; Schroeder et al. 2000).

 As shown in Figure 2, there are three significant request
 distribution (RD) points. First, the web switch must distribute
 incoming requests across a cluster of web servers for HTTP
 processing. Second, these requests must be distributed across
 the application server cluster for the execution of application
 logic. Subsequently, a set of database requests emanate from
 the application server cluster that need to be distributed across
 the database cluster.

 Let us now consider the different tiers shown in Figure 2 in
 the context of request distribution.

 The objective of virtually every request distribution method
 in the first layer, the web layer, is load balancing (Cardellini
 et al. 2001). In fact, web layer load balancers, or web
 switches, constitute one of the largest and most successful
 market segments in the internet equipment space (think of
 Cisco, Juniper, and F5).

 The next layer, the application layer, consists of a cluster of
 application servers. Request distribution in the application
 layers is a relatively new area of research (see Dutta et al.
 2007).

 The third layer, the data layer - the layer of interest in this
 paper - consists of a cluster of database servers. Existing
 work in this area focuses almost entirely on online transaction

 processing (OLTP) systems. However, there is an interesting
 feature of online multitiered applications, our target applica-
 tion area, that sets it apart from a general purpose OLTP
 system: application workloads in online application systems
 tend to be read-intensive. On on average, 80 to 95 percent of
 online database workloads consist of read requests. As we
 will discuss, and demonstrate, existing transaction routing
 strategies, designed for OLTP systems, while highly effective
 for update requests, do not perform well in distributing
 requests in these read-mostly scenarios. In fact, in certain
 substantial application domains, such as retail e-commerce,
 the read requests (roughly corresponding to browsing, while
 writes would approximately correspond to buying) could be
 as much as 95 percent of the total request workload (Gurley
 2000).

 In such scenarios, replication across cluster instances is the
 primary strategy for data availability (Rahm and Marek 1 995).
 Indeed, best practices documentation from major database
 vendors supports the use of replication for read-heavy scenar-
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 ios (Microsoft Inc. 2008). For instance, an e-commerce
 company might replicate product catalog data across multiple
 database servers, or a business analysis service such as
 Hoover's might replicate public-corporation financial data.
 This allows each database server to service requests for any
 data, while simultaneously removing the scalability limits of
 a single database server.

 Current request distribution techniques for replicated database
 scenarios borrow heavily from techniques developed for the
 web and application layers. However, these techniques do not
 consider the fact that database requests can generate widely
 varying loads; they assume that each incremental request adds
 the same amount of load to a server. This is not the case for

 database requests, since two requests can impose very dif-
 ferent processing requirements on a database. Thus, any
 request distribution technique for this layer must take into
 account the effect of varying processing loads across requests
 on overall database loads. Ideally, such a request distribution
 technique would route a request to a suitable database in-
 stance that can process it with the least amount of work.
 When applied across all requests, such a technique would be
 expected to reduce overall workloads across all instances,
 resulting in improved scalability.

 The scale of workloads incident on online applications, where
 the arrival rate of database requests may be on the order of

 hundreds per second, adds to the challenge of request distribu-
 tion on the data layer. Given the dynamic nature of database
 workloads noted above and the rates of request arrival, any
 request distribution technique must be lightweight, imposing
 little additional overhead in making request distribution deci-
 sions; such a technique should provide scalability benefits that
 are far greater than the cost of making distribution decisions.

 In this paper, we propose a smart request distribution strategy
 designed to improve the scalability of the data layer in online
 applications by routing a request to a database instance that
 can process it with a minimal amount of work (see Figure 3),
 as compared to other instances in the cluster based on data-
 base workloads on each instance.

 In this context, we address the following research questions
 in this work:

 1. How can we model database workloads in online

 multitiered applications?

 2. Based on this model, how can we design an effective
 request distribution mechanism for the data layer in
 online multi-tier applications?

 3. How can we demonstrate the efficacy and utility of our
 mechanisms over existing mechanisms?
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 Our method attempts to take advantage of data structures
 cached on the database (such caching is standard in industry,
 and is implemented by virtually every major database vendor)

 by routing each incoming database request to the database
 instance most likely to have useful cached data for the
 request.

 We have implemented our strategy and evaluated it exten-
 sively experimentally. The results, reported in this paper,
 have been very encouraging, with improvements of up to 45
 percent over existing distribution mechanisms in overall
 response time. In the next section, we provide a detailed
 overview of why existing request distribution strategies are
 inadequate.

 Our work falls into the category of design science research
 (Hevner et al. 2004). In this vein, we create a set of artifacts,
 in this case describing a request distribution mechanism for
 data layers, aimed at improving IT practice. Specifically, we
 (1) propose a theoretical model of database workload that
 takes into account the effects of caching; (2) define a
 workable method for utilizing the model in practice; and
 (3) develop an implemented software instantiation , suitable
 for experimental evaluation. Finally, (4) we present the
 results of a set of analytical studies, simulation experiments ,
 and field experiments to show the practical utility of our
 method, and test its properties under various operating
 conditions.

 The remainder of this paper is organized as follows. We con-

 sider related work, and describe the managerial benefits of our

 method in the following section. Next, we provide an over-
 view of, and describe the technical details of, our approach.
 We then evaluate the performance of our proposed approach

 both analytically and experimentally by comparing it with that

 of existing approaches designed for the web and application
 layers. To further illustrate the efficacy of our approach, we

 present a brief field experiment. In this field experiment, we

 compare the performance of our approach to that of an off-

 the-shelf database clustering solution in the context of a mid-

 size e-commerce vendor's application infrastructure. Finally,
 we discuss the practical benefits and potential risks of
 adopting our scheme from an IT manager's perspective, and
 conclude our paper.

 Related Work

 The heart of our strategy is a novel request distribution
 mechanism across the cluster of databases that comprise the

 data layer of a typical multitiered software application. In this

 section, we first consider the problem of request distribution

 in the data layer in the context of the broad research literature.

 We then discuss existing distribution strategies, and consider

 their utility in the data layer of multitiered online applications.
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 Why is RD relevant for the design science community?
 Design science researchers can bring to bear hitherto unem-
 ployed solution techniques in the RD problem space. The
 design science community has a successful track record in
 applying optimization techniques to complex dynamic prob-
 lems in general, and to systems problems in particular.
 Examples of such problems include database processing (Bala
 and Martin 1997; Gopal et al. 1995, 2001; Krishnan et al.
 2001; Segev and Fang 1991), networking (Kennington and
 Whitler 1999; Laguna 1998, and caching (Datta et al. 2003;
 Dutta et al. 2006; Hosanagar et al. 2005; Mookerjee and Tan
 2002). RD falls into the same class of problems ; it is an
 optimization problem for which classical optimization tech-
 niques have not yet been applied. The problem is rendered
 even richer due to the fact that a direct application of extant
 techniques is not enough; innovation is required in both
 modeling the RD problem, as well as in solving the models.
 We elaborate below.

 Request distribution specifically falls into the area of task
 assignment (Mazzola and Neebe 1986). Here, the goal is to
 optimize the servicing of a given workload by appropriate
 assignment of tasks to cluster instances, virtually identical to
 the high-level goal of the RD problem. This problem has
 been addressed generally in the optimization community
 (Amini and Racer 1995; Haddadi and Ouzia 2004; Mazzola
 and Neebe 1986). This body of work proposes generic ap-
 proaches to the generalized assignment problem, where an
 objective function describes the optimization goal, and a set
 of constraints describe the decision-making space. In many
 problem scenarios, we can leverage these general techniques
 to develop an optimal solution if we can model the problem
 domain appropriately. The trouble is that these general opti-
 mization techniques assume problem characteristics that
 make it difficult to apply existing work directly in the case of

 request distribution.

 Traditional task assignment optimization techniques assume
 a static decision-making problem (i.e., given a set of tasks and
 resources, traditional approaches will make a single decision
 that allocates all tasks to specific resources). Optimization
 problems that arise in the RD scenario, however, are dynamic
 in nature. Here, the RD method must make a separate
 resource allocation decision for each incoming task (request),
 and each allocation decision modifies the workload of the

 resource assigned to the task. Thus, the RD solution approach
 cannot operate over a static problem frame; rather, it must
 operate over a dynamic problem frame. We note that some
 work has been published in the recent literature in dynamic
 task allocation problems (Spivey and Powell 2004); however,
 these problems assume that changes in the problem frame-
 work occur very slowly, on the order of a few times an hour.

 In contrast, an effective RD scheme must respond in real time

 to each request in a high request-rate scenario (potentially
 hundreds of requests per second), where each request changes
 the RD decision framework.

 Approaching RD as a variant of the dynamic scheduling prob-
 lem, techniques from the scheduling field (e.g., Colajanni et
 al. 1997; Menasce et al. 1995) might appear to be applicable
 here. While this is true at a high level, a straightforward
 application is difficult. Virtually all dynamic scheduling tech-
 niques (Tanenbaum 2001) presuppose some knowledge of
 either the task (e.g., duration, weight) or the resource (queue
 sizes, service times), or both. This assumption does not work
 in our case, because both the tasks and the resources are
 highly dynamic. Moreover, resources in our case are black
 boxes, providing only as much access as is allowed by query
 languages and published APIs. There are also classical
 studies of dynamic load sharing approaches (e.g., Chow and
 Kohler 1979; Wang and Morris 1985). These consider
 incoming work as purely computational from a CPU-intensive
 perspective. In contrast, database workloads are not only
 CPU-intensive; they are also memory- and I/O-intensive.
 This makes a straightforward application of these techniques
 in the database case impossible.

 We next discuss the relationship of our problem to those
 tackled in the extensive literature on load balancing in distrib-

 uted and parallel databases. There are two broad themes in
 this work. The first theme deals with load sharing in distrib-
 uted databases. A fair amount of this work is not applicable
 to our problem domain, as most research in this area considers

 partitioned databases (recall that our focus here is on online
 applications using replicated database clusters). Rather than
 citing multiple papers, we refer the reader to the paper by Yu

 and Leff (1991), which provides an excellent summary of this
 work. In the work on distributing load across replicated
 databases, most work has concentrated on online transaction

 processing (OLTP) issues, for example, efficient synchroni-
 zation maintenance and distributed concurrency control (e.g.,
 lock control) issues (Yu and Leff 1991).

 Interesting related work on request distribution in the data
 layer appears in Amza et al. (2003) and Zuikeviciûtè and
 Pedone (2008). Amza et al. suggest a request scheduling
 strategy for databases behind dynamic content applications,
 while Zuikeviciûtè and Pedone propose a generic load
 balancing technique for transactions to prevent lock conten-
 tion. These authors also consider the distribution of write

 requests in replicated database clusters.

 This work is complementary to our work in the sense that we

 assume that the write workload is handled using existing
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 schemes. Our focus here is the substantial read workload

 incident on online application databases. Although we cannot
 directly apply the work described above, much of this work
 shares a common idea: the exploitation (or avoidance) of
 reference locality to identify instances better suited to pro-
 cessing certain requests. In the context of this work, the term

 reference locality refers to the fact that different queries run
 on different database instances in the cluster will result in

 different data residing in memory in each instance. Here, a
 query might run faster on instance A as opposed to another
 instance B, if the data needed for the query already resides in

 memory on instance A, but not B. We carry this thread
 forward in our work.

 We now move on to consider related work in the area of

 clustering. Clustering has been viewed and discussed in the
 context of all three layers, with specific solutions having been

 identified at each layer.

 Clustering in the web layer is discussed in Cardellini et al.
 (2001), application layer clustering in Hwang and Jung
 (2002), and data layer clustering in Amza et al. (2003).

 Interestingly, database clustering, which is of interest in the
 context of our work, has also been researched extensively,
 particularly in the late 1980s and early 1990s. Virtually all
 extant database clustering work has looked at the problem in
 the context of classical OLTP from two perspectives:
 (1) dynamically load balancing subtasks of a parallelized
 query processing algorithm across a shared-nothing multi-
 processor framework (Hua et al. 1995; Rahm and Marek
 1995), and (2) transaction routing in distributed database
 frameworks (Yu et al. 1987; Yu and Leff 1991). In particular,
 from the work in the second area, in which write/update
 statements are sent to the appropriate distributed databases for

 processing, as well as significant amounts of work done in the

 context of concurrency, locking, and associated synchroni-
 zation maintenance techniques in distributed and parallel
 databases (Bernstein and Goodman 1981), there are well-
 known commercially viable solutions for distributing write
 requests to replicated data systems. The reader should note
 that the work in the first area, that of parallel query pro-
 cessing, is orthogonal to our work in this paper. This work
 considers queries that can be broken down into multiple sub-
 tasks and assigned to separate threads for processing. How-
 ever, the reader might wonder why the work in the second
 area, deceptively similar-sounding to our problem (i.e., trans-
 action routing sounds similar to request distribution), cannot
 be applied in our scenario. The reason is that, as noted in the
 "Introduction," read workloads could be as much as 95
 percent of the total request workload (Gurley 2000) in these
 applications. This scenario is the focus of our work here.

 One point of note is that these applications typically run in
 shared-resource enterprise data centers, where the data layer
 is composed of off-the-shelf database servers. Further, the
 primary method of distributing data across these databases is
 to replicate data across instances (Rahm and Marek 1995).
 (Cecchet et al. (2008) provide a good overview of database
 replication in commercial implementations, as well as tech-
 niques proposed in the academic literature.) The only other
 possible approach that avoids replication would utilize an
 alternative clustering framework (e.g., Oracle 10g RAC) or a
 similar framework available from other vendors. These types
 of frameworks use multiple database processes and shared
 storage. Such architectures are useful for write-heavy envi-
 ronments, but are very complex to configure and maintain.
 Thus, most web sites do not use them. (In a later section, we
 compare our approach to a clustering implementation pro-
 vided by a major database vendor, and show that our
 approach significantly outperforms it for read-mostly work-
 loads.) Since concurrency control for writes in replicated
 environments has been well-addressed in the literature

 (Bernstein and Goodman 1984; Thomas 1979), and is orthog-
 onal to our work in this paper, we assume the presence of a
 distributed update mechanism such as that described by
 Plattner and Alonso (2004) to separate the read from the write

 workload and the work described by Bernstein and Goodman
 (1984) to handle the light write workload, and maintain
 concurrency across all copies of the database. Thus, the types
 of request distribution strategies of interest to us in this work

 are such that they can operate in the context of replicated
 databases.

 Having considered the RD problem in the context of the broad

 literature, we now move on to consider specific request distri-

 bution work in the context of online applications.

 There are a number of RD policies in use today. These
 policies fall into the three general categories: (1) blind
 request distribution, (2) workload-aware request distribution,
 and (3) locality-aware request distribution. We consider each
 in turn.

 Blind policies, such as random and round-robin (RR)
 (Cardellini et al. 1999), distribute requests without regard to
 the content of the request or the workload state of the cluster

 instances. The random policy chooses a cluster instance
 based on a uniform distribution, while the RR policy distrib-
 utes requests to each cluster instance in turn. These policies
 work well when all arriving tasks require the same amount of
 work (as in HTTP processing in web servers, for example)
 and all resources have equivalent capacities, since they will
 assign roughly equal workloads to each resource and likely
 ensure uniform quality of service across tasks.
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 Workload-aware policies attempt to account for differences in
 load incident on cluster instances due to the differences in

 work required to service assigned requests. These policies
 distribute requests based on a least loaded basis, using on a
 metric called server load index (Cardellini et al. 2001 ; Qin et
 al. 2009). Polices of this type consider measures of load on
 each cluster instance in decision making. The two most com-
 mon variants of workload-aware policies are lowest CPU
 (LCPU) (Eager et al. 1986; Harchol-Balter and Downey
 1997), where each incoming request is routed to the instance
 with the lowest percentage of CPU utilization, and greatest
 free memory (FMEM) (Zhang et al. 2000), which identifies
 the instance with the greatest percentage of free memory.
 Elnikety et al. (2007) describe a memory-aware request distri-
 bution technique similar to FMEM, where the proposed
 method attempts to estimate the size of the working set for a

 request, and route requests to maximize in-memory pro-
 cessing (i.e., to avoid multiple disk reads of the same data for
 a single request). RR, LCPU, and FMEM are the most com-
 mon existing request distribution techniques in practice for
 replicated database clusters, and thus we will compare our
 method to these in our experiments.

 Locality-aware policies consider the data residing on cluster
 instances in request distribution. Such policies fall into two
 classes: (1) client/session affinity strategies and (2) content
 affinity strategies.

 Client/session affinity schemes (Cardellini et al. 2001; Hunt
 et al. 1998; Linux Virtual Server Project 2004), which are
 based on locality of session state with respect to the cluster in-

 stances, are widely used at the application layer. Respecting
 such locality in RD is critical for stateful applications, where
 a user's session state, which might include the contents of a
 shopping cart or partially completed airline reservation,
 resides on a single application instance in the cluster; sending
 a request to a cluster instance where the session state is not
 available creates a new session state on that instance. This

 work cannot be directly applied in the data layer because
 databases do not retain client-related data between requests.

 Content affinity schemes attempt to take advantage of data
 residing in memory on cluster instances due to the processing
 of prior requests. In one of the first papers to apply content
 affinity in dynamic content generation scenarios, where the
 work required to process requests is not known a priori , Pai
 et al. (1998) propose the locality-aware request distribution
 (LARD) algorithm. The LARD strategy attempts to route
 tasks to exploit the locality among the working sets of
 received requests (e.g., cache sets on different web servers).
 Our aim is similar: we extend the notion of content affinity
 to the data layer in this work.

 At a high level, application servers and database servers share
 the common property that their request workloads tend to be

 dynamic, with requests requiring widely varying computa-
 tional loads to execute. If we look more closely, however, we
 note that there is a significant difference between application

 and database requests; specifically, application requests result
 in program invocations, while database requests arrive as
 structured statements. These structured statements are inher-

 ently more amenable to analysis than program invocations,
 providing more information to leverage when making request
 distribution decisions. This motivated us to consider the fact

 that targeted request distribution strategies in the data layer
 might work particularly well. In this paper, we explore the
 possibility of taking advantage of such cached data to
 distribute load more effectively across a database cluster.

 In the next section, we describe the details of our method.

 Approach and Technical Details ■

 In this paper, we propose a cost-based database request
 distribution (C-DBRD) mechanism to distribute requests from
 the application layer to the database layer. Architecturally,
 the C-DBRD module is an application middleware component
 independent from the database layer, located between an
 application server cluster and a database cluster, as shown in
 Figure 3. The applications running in application servers
 submit database requests to the C-DBRD, which runs its
 decision logic and chooses the most appropriate database
 instance among the set of D instances (d0 . . . dD_{) in the
 database cluster to process each request. We first describe the
 intuition behind the C-DBRD logic and then provide the
 details of its decision-making mechanism.

 C-DBRD Intuition

 The goal of C-DBRD logic is as follows: route a task to a
 DB instance that can process it with the least amount of work.

 While the computational work required to process a task
 depends on a number of factors, the most significant one is
 the "similarity" of the current task to prior jobs executed at
 that instance. It is well known that the performance of a
 statement on a database instance is greatly dependent on
 which statements were run previously on it (Oracle 2009).
 Modern database systems are cognizant of the often signifi-
 cant amounts of locality (i.e., commonality of accessed data
 objects) that exist between statements, especially when they
 are coming from applications, which rarely generate arbitrary
 ad hoc database statements. These databases optimize perfor-

 ms Quarterly Vol. 36 No. 2/June 2012 485

This content downloaded from 131.247.168.104 on Thu, 22 Feb 2018 00:10:23 UTC
All use subject to http://about.jstor.org/terms



 VanderMeer et al. /Cost-Based Database Request Distribution Technique

 mance by caching multiple internal data structures to take
 advantage of this locality. In other words, they cache the
 results of work done for recently completed jobs with a goal
 of reusing those results for future tasks. In most commercial

 DBMS implementations, both data (i.e., disk blocks con-
 taining relations) and metadata (data describing where and
 how data are stored) are cached. For example, Oracle 10g
 maintains two such caches to share objects between con-
 current clients (Oracle 2009): (1) a shared pool that stores
 meta-data structures (e.g., intermediate query-processing
 related structures, parsing-related structures, SQL execution
 path calculations, and optimization calculations), and (2) a
 buffer cache that stores recently used disk blocks (including
 table spaces, data files, indexes, and other data structures).
 Other vendors may cache a slightly different set of data
 structures, but the general concept applies across all enterprise

 databases. This caching infrastructure can have a dramatic
 impact on the execution time of statements able to take advan-

 tage of cached structures. Having described the impact of
 locality and caching on task processing efficiency, we now
 proceed to outline the C-DBRD strategy.

 At a high level, C-DBRD distributes requests by performing
 a trade-off analysis across two dimensions. First, it takes
 advantage of caching in the database instance by attempting
 to route a request to an instance where similar requests have
 been executed in the recent past , and can take advantage of
 data structures cached on the instance. Second, it attempts to
 minimize load differences across instances in the cluster.

 We describe the request distribution problem generally as
 follows: At runtime, given a cluster of D database instances
 and upon receiving a statement s , the C-DBRD is responsible
 for choosing the appropriate database instance d e D to which
 5 should be routed. As discussed previously, the choice of the
 appropriate database instance to process statement s will
 depend upon (1) the marginal load that will be caused by s
 upon this instance, and (2) the current total load upon the
 instance.

 At this juncture we would like the reader to appreciate the fact

 that the load computation mechanism described below is a
 major contribution of this paper. This is because database
 load computation in particular, and dynamic system load
 computation in general, are important unsolved problems with
 wide applicability. We provide a short discussion below.

 • Consider the problem of database load computation,
 addressed directly in this paper. This problem arises in
 a vast number of research and practice areas of database
 systems, such as transaction scheduling, dynamic data
 allocation, online data backup and recovery, and virtually

 any database problem that requires decision making at
 runtime. In particular, this is a major issue in the cur-
 rently popular area of cloud computing (Birman et al.
 2009), where data and task distribution is key to all run-

 time processing. In spite of the ubiquity of the problem,
 there exists no systematic (let alone analytically tract-
 able) method to compute a metric expressing load on a
 running database (Ahmad et al. 2009). Our proposed
 method addresses this long-standing issue.

 In a broader context, load computation in unpredictable
 dynamic systems such as a computer system is a hard
 problem (Lipasti et al. 1996), but one whose solution
 would be of great value. The underlying estimation
 problem is similar to the database problem described
 above. For instance, the issues in estimating the load on
 a running computer system are very similar to trans-
 actions in a database: localities of task working sets are
 a primary determinant of the effort required to process
 them. Our mechanisms are extensible to some of these

 broader issues as well.

 To realize the strategy outlined above, we propose, in this
 paper, a method to compute a metric which dynamically
 measures load on a database system, given a specific set of
 tasks incident on it.

 We introduce the intuition behind our notion of database load

 next.

 The load on a database instance d , denoted ld , at a particular
 point in time is simply a measure of the amount of work that

 d is performing at that time. The amount of work that d is
 performing depends on the current set of statements executing

 in the database. Let us denote the quantification of the
 amount of work performed by a database system to process a
 statement s as Cs. The issue is how to compute Cs. While the
 database can produce an estimate of the statement cost (based
 on the query plan), such an estimate would likely suffer from
 high inaccuracy due to the effects of locality and caching, as
 discussed earlier. In other words, it can cost more to process
 a given statement s on some database instance dt than it might

 cost on another instance djf due to the effects of caching on
 each database instance. To make this problem even more
 complex, the workload and cache state of each instance both
 change with each request assigned to it. To estimate the load
 on each database instance in a cluster, we need a model of
 database workloads that takes into account the effects of

 caching in the cost of processing statements. We were unable
 to find such a model in the current literature. We then require

 a method that implements the model as a decision-making
 method, workable for production IT scenarios. In this section,
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 D Set of database instances

 Data instance in D

 n Number of statements for which the QHR maintains a list of data objects accessed for each database instance

 5 Statement submitted for database processing

 S Set of incoming database statements

 Cs Cost of processing a statement s

 b¡ Set of all tables accessed by statement s,

 h¡ Set of all indexes accessed by statement s¡

 Bs Set of all tables accessed by statements in S

 Hs Set of all indexes accessed by statements in S

 SF,j I S milarity factor for statements s, and s, I

 SFsdgd Similarity factor for a statement s compared to a set of statements Sd executing on a database instance d

 S Network and client connection processing overhead for a statement s

 y Processing load reduction due to caching

 a Effect of statement similarity in reducing database load

 Ed Effective load on instance d, if statement s were to be added to d

 tys Time required to process the ýh execution of s on a give database instance

 we propose such a model. We then propose a workable
 heuristic method of using our workload model to make data-
 layer request distribution decisions.

 Table 1 summarizes the notation used through the remainder
 of this paper.

 Modeling Database Workload

 The starting point for our model is an estimate of the cost of
 processing a statement, Cs. While each database instance in
 the cluster will produce the same estimate of statement cost
 based on the query plan the database generates, this estimate
 does not take into account the effects of caching, which varies
 across all instances in the cluster. To quantify the database
 workload more realistically, we need to define a way to
 estimate Cs in the presence of caching, taking into account the
 cache state of each instance in the cluster.

 Next, we need a model of total database workload that takes
 into account the costs of all statements executing on the
 instance, modulated by the effects of caching. We further

 note that each database vendor implements caching to a
 different degree, with the effect that a cluster running on a
 vendor's software that implements caching to a greater degree

 than another vendor will see a greater effect from caching.
 Our model needs to account for these differences across

 vendors.

 In the remainder of this section, we develop two important
 theoretical foundations: (1) a model of the processing cost
 savings for a statement in the presence of caching and (2) a
 model of database workload that takes into account the effects

 of caching.

 Modeling the Effects of Caching on
 Statement Processing Cost

 We model the cost of processing a database statement in a
 cache-enabled scenario using two distinct notions: (1) base
 statement cost , which represents the expected cost of pro-
 cessing a statement without considering caching effects, and
 (2) similarity factor , which measures how similar two state-
 ments are in terms of the data objects required to process them.
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 Base Statement Cost: We use the notion of the cost of a state-

 ment s , denoted Q, to represent the expected cost of processing

 s without considering the effects of cached data structures in
 the database. Cs is dependent upon the query plan (based on
 the database schema) for s, and is typically measured as the
 time required to execute the statement in an unloaded database
 system. The Cs computation in our implementation is based on
 the cost computation performed by the cost-based SQL
 optimizers in Oracle (Burleson 2009) and SQL Server
 (Microsoft Inc. 201 1). Such costs are given as the estimated
 time (in milliseconds) the statement will take to execute in an

 unloaded database, as provided by the database query
 optimizer. Since query optimizers are known to give cost
 estimates that are not particularly accurate, we use the cost
 obtained from optimizer as a relative value to indicate relative
 load of a statement on a database instance.

 Similarity Factor: Intuitively, if two similar statements run in

 sequence on the same database instance, it is likely that the
 second statement will be able to reuse work done on behalf of

 the first. Since C-DBRD attempts to identify an instance
 where the data objects needed to process a request are most
 likely to be in an instance's cache, we need a way to measure
 the extent to which two statements will access an overlapping
 set of data objects. We model this with the notion of similarity

 factor (SF). We define the Similarity factor , SFip as a number
 between [0, 1], which quantifies the similarity of a database

 statement s¡ with another database statement sf in terms of data
 object access. We note here that we are applying the notion of
 similarity to database statements for the purpose of identifying

 reusable read-oriented database objects. The notion of a
 similarity factor, however, is much more broadly useful than
 this specific application. Still within the realm of comparing
 database statements, we can use a similarity factor to estimate
 potential conflicts for two update statements. We can extend
 the utility of similarity factor further, beyond database state-

 ments, to apply it to any cache-enabled component (e.g.,
 application servers or other software components) to estimate
 workload differences due to caching effects.

 To understand how the similarity factor is computed for two
 database statements, we first present two axioms that describe
 the boundary cases for similarity factor.

 Axiom 1 : If the two statements si and s¡ are identical , then SFtJ
 = 1.

 Intuitively, if s¡ and Sj are equal, the database instances that
 process them will use the same query plan and access the same
 database structures in the course of processing. This occurs
 because query plan generation is deterministic: if two database
 instances are configured with the same version of a vendor's

 database software and the same database schema, then given
 the same query, these two database instances will generate the

 exact same query plan, referencing the same database
 structures (e.g., tables, indexes). Here, the SF¡j = 1 tells our
 request distribution logic that s¡ and Sj have high locality of
 reference, such that there is a high likelihood of cache
 utilization if they are processed by the same database
 instance.

 Axiom 2: If O i is the set of database objects accessed by
 statement sif and Oj is the set of database objects accessed by

 statement sjf and Ol n Oj = 0, then SFU = 0. That is, if there
 is no overlap in the set of database objects accessed by two
 statements s¡ and s-, then the similarity factor is 0.

 When SFhJ = 0 for st and sp the two queries will access a
 completely different set of database structures from one
 another. In other words, they have no locality of reference in

 terms of the database structures they access and, therefore,
 present no opportunity to utilize cached data structures on a
 database instance.

 The values SFUj = 0 and SFtJ = 1 represent boundary
 conditions for SFitj for s¡ and Sj. In most cases, we would
 expect that the set of database structures accessed for s i and Sj

 would only partially overlap, that is, that the value for SFU
 would be between 0 and 1 , and should represent the extent to
 which there is potential to benefit from cached data structures

 if s¡ and sf are processed on the same database instance.
 Based on the above, we define SFU as

 „„ l{s<Ms;}l+hO, flO,|
 SF' „„ ' ' iïrâ

 Here, the | {s¿} + {sj} | portion of the numerator of this expres-

 sion indicates whether or not s¡ and Sj are exactly the same; if

 so, then '{st} n {sj}' = 1, otherwise | {st} n {sj} ' = 0.

 In the above discussion, O represents a set of generic cached
 data objects. There are many different types of data objects
 that may be stored in memory, such as parsing-related
 structures, SQL execution path calculations, optimization
 calculations, low-level data blocks, table spaces, data files,
 indexes. For instance, results of intermediate join-processing
 steps (or other intermediate results) might be cached. For the
 purposes of simplicity of explanation, we consider only two
 types of database objects that are accessed by a statement s¡ in
 our discussion here (we note that this can be extended to
 describe any data structures cached by the database): data-
 base tables and indices. We define b¡ as the set of database
 tables accessed by the statement si9 and ht as the set of data-
 base indices accessed by the statement s¡. We note here that
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 some tables may be too large to store in cache. In such cases,
 it is possible to track access at the level of a disk block;
 however, considering this level of detail would unnecessarily
 complicate our explanation here. Based on our example set of
 data objects (i.e., tables and indices), we can redefine

 l{5í}n {■sy}l+l^¡ n bj'+'h¡ n hj'

 SFi'J= 1+|6,HA,I
 To illustrate the notion of the similarity factor, let us consider

 an example. Consider two database statements as described
 below:

 • Sl: Select * from EMPLOYEE WHERE
 EMPLOYEE.SSN = '888-88-8888'

 • s2: Select * from EMPLOYEE e, DEPARTMENT d,
 DEPARTMENTEMPLOYEE de WHERE e.SSN =

 '888-88-8888' AND d.DEPTID = de.DEPT ID AND

 de.EMPID = e.EMPID

 Let us also assume that indices exist for EMPLOYEE.SSN,
 EMPLOYEE. EMP_ID, DEPARTMENT. DEPT_ID,
 DEPARTMENTEMPLOYEE. DEPTID, and
 DEPARTMENTEMPLOYEE.EMPID.

 In this scenario, b1 = {EMPLOYEE} and b2 = {EMPLOYEE,
 DEPARTMENT, DEPARTMENT EMPLOYEE} . Further, hx
 = {EMPLOYEE.SSN}, and h2= {EMPLOYEE.SSN,
 DEPARTMENT.DEPTID, DEPARTMENT EMPLOYEE.
 DEPT ID, DEPARTMENT EMPLOYEE.EMP ID and
 EMPLOYEE, EMPID} .

 Thus, I bx I = 1, 1 b2 1 = 3, 1 h2 ' = 1, and | h2 1 = 5. We also have

 b2nb,= {EMPLOYEE} and h2nh{ = {EMPLOYEE.SSN}.
 Thus, SF2 l = 2/9 = 0.22. If ^ has executed in the database, it
 has accessed the table EMPLOYEE and the index

 EMPLOYEE.SSN, so these two database objects will be
 cached in the database. When s2 comes to the database, then
 these two objects do not need to be fetched from storage again;
 only the following objects need to be retrieved: tables
 DEPARTMENT and DEPARTMENT EMPLOYEE, and
 indices DEPARTMENT.DEPTID, DEPARTMENT_
 EMPLOYEE. DEPTID, DEPARTMENT_
 EMPLOYEE.EMP ID, and EMPLOYEE . EMP ID . This re-
 duces the total workload on the database required to process s2.

 This reduction in percentage workload reduction is estimated
 by the similarity factor SF2 i.

 We note that SFid provides us only with a comparison between
 two queries, szand sjm However, the contents of a database
 instance's cache represent the structures used for multiple

 recent queries. Thus, it is possible, for a database query s and
 a database instance dh that multiple recent queries on dk could

 collectively have a high locality of reference with s, where
 each of several recent queries accessed a portion of the
 database structures needed for s. To recognize this, we need
 a way to measure the similarity of s to a set of database
 statements.

 Next, we define the similarity factor of a database statement
 5 with a set of database statements S (i.e., SFsS). Let us define

 Bs = ujeS bj (i.e., the set of all tables accessed by all statements
 in the set S). Similarly, we define Hs = ujeS hr From there we
 can define

 |Sn{s,}|+|2?snòJ+|//sn^| 1 J J
 CZ7 _

 1+W.I

 At a high level, the similarity factor metric comparing a newly
 arrived statement to the currently executing statement sets
 across all database instances in a cluster is used to direct a

 statement to a particular database instance in a cluster. We
 explain this computation using an example. Consider a
 statement s arriving at the C-DBRD. Upon receiving s, the
 C-DBRD determines (based on the query plan for the state-
 ment) that processing s will require a set of tables bs and a set

 of indexes hs. Now, let us consider a target instance dr Based
 on information stored regarding prior statements executed on

 each database instance, the C-DBRD knows (1) Sp the unique
 set of the last n statements processed at dp (2) Bp the unique
 set of tables accessed by the queries represented in S-, and

 (3) Hp the unique set of indexes accessed for these last n
 queries. In this case

 IS; n {4+1^ n b,Wj n h,

 Effectively, Expression 1 models the processing cost savings
 for a statement in the presence of caching, given a set of
 queries previously run on an instance j . This fulfills the first

 part of our modeling requirements. Clearly, the value of n is
 important here; we discuss the factors impacting the value of
 this parameter at the end of this section, after describing our
 model of database workload and the details of our method.

 Modeling Database Instance Workload

 In this section, we model the estimated database workload due

 to a set of statements running in the database. We first
 present a set of axioms, which we use to form the basis of our
 estimated load computation.
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 Axiom 3: If there is a set of database statements S running in

 a database instance , such that bi n bj = 0, Vi, j eS and h¿ n hj
 = 0, Vi, j e Q, that is, there is no overlap in the objects
 accessed by any two statements in S, the total database load I
 on the database instance is computed as the sum of the
 estimated database load by each of the statement s e S, that is,
 I = Y<seS Cs, where each Cs is estimated as the statement cost
 from the database query analyzer.

 Axiom 4: If a database statement s - arrives at the database

 when another statement si is being executed, such that si = sjf
 that is, the two statements are identical, then due to various

 levels of caching deployed in the database systems, the total

 load of the database will be Ct + S, where Ô « Cj , where S
 represents the base overhead for processing the statement sjf
 even if all needed data objects are drawn from cache. For
 example, these overheads might include network and client
 connection handling.

 Axiom 5: If a database statement sj arrives at the database

 when another statement si is being executed, such that si = sJt
 that is, the two statements are not identical, and Ol n Oj = 0,
 that is, there is an overlap in the sets of objects accessed by the
 two statements, then due to various level of caching deployed
 in the database systems, the total load of the database will be

 Ci + yCj, where y is the reduction factor of load due to caching

 on the database. We estimate y to bey = (1 - SF¿j).

 So, if SFtj = 0, the total database load is Ct + Cp and Axiom 3
 follows.

 If SFU = 1, the total database load is C„ which follows from
 Axiom 4, by ignoring S. To include the overhead of network

 and client connection due to processing of statement Sj (i.e., ô),
 we modify the reduction factor as y = (1 - aSF řJ), where a e
 [0, 1] is a factor indicating the effect of similarity between si
 and s- in reducing the total database load. Intuitively, a
 represents the expected level of cache utilization on a database
 instance (i.e., the amount of work avoided), as measured by
 processing execution time, through the use of cached data
 structures (note that we cannot expect caching to completely
 mitigate the work of processing a request). If a = 0, the effect
 of similarity has zero impact on database load, and Axiom 1

 will follow. If a = 1 and SF^ =1,3 = 0.

 In reality, S can never be 0 and a can never be 1; caching
 cannot mitigate all of the work required to process a request.
 For instance, caching cannot mitigate the need for a database
 to process a request arriving over a network connection and
 determine which data objects are needed to process it.

 In real terms, a will always fall somewhere between 0 and 1 ,
 tending more toward 1 as objects needed to process requests

 can be found in cache, and more toward 0 as fewer objects
 needed to process requests can be found in cache. The value
 of a is, therefore, dependent on how effectively the database
 has implemented caching. We describe how we estimate a ,
 along with other important parameters for our method, at the
 end of the "C-DBRD Architecture and Method" section.

 We now extend the above load computation to allow for more
 than one statement. We begin with the notion of load on a
 database instance before a new statement is added to its

 workload, denoted ld. Here, the load on an instance is

 /'=l(l=«SF/A)xC, (2)
 si.Sd

 We now consider the scenario where we estimate the

 additional load that would occur on an instance if a new

 statement 5 were assigned to it, which we call the effective
 load of an instance, denoted Eds. Let us assume that a set of
 database statements S has executed in the database instance d

 such that the objects accessed by these statements are in the
 cache and the current load of the database d is ld. If a new

 statement s arrives at d , the new load Eds on the database
 instance with this new statement will be

 E? = 1* + (l-aSF/A)c, (3)
 Together, Expressions 2 and 3 represent a model of database
 workload in the presence of caching.

 C-DBRD Architecture and Method

 Now we are in a position to describe the actual C-DBRD
 algorithm. We begin our discussion with an architectural
 overview of the C-DRBD module, and then propose a specific
 method for request distribution decision-making in the context

 of database requests.

 C-DBRD Architecture

 Architecturally, the C-DBRD consists of task distribution
 logic and a set of data stores that house data useful for
 computing statement costs for incoming statements and
 estimating database workloads, as depicted in Figure 4. We
 describe each component next.

 Statement History Repository (SHR): The SHR stores a
 configurable-length history of requests processed by the
 C-DBRD. More precisely, the SHR keeps a list of the request
 statement , tables accessed , and indexes used for the last n
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 statements for each database instance di in the DB cluster.
 Since all requests for each database instance pass through the
 C-DBRD, maintaining a list of the most recent n statements
 for each database instance dt is simply a matter of recording
 these statements as they pass through the request distribution

 logic. (We describe how we estimate n , along with other
 important parameters for our method, at the end of "C-DBRD
 Architecture and Method" section.

 Query Plan Repository ( QPR ): The QPR stores, for each
 request processed by the C-DBRD, the associated query plan
 and the statement cost. The primary use of this is as a cache
 to improve the performance of request handling in the
 C-DBRD. As we will describe, the C-DBRD uses statement
 costs, estimated using a query plan, to make request distribu-
 tion decisions. Instead of computing the cost for each in-
 coming statement every time, it first checks to see whether the

 plan and cost already exist for a newly arrived statement in the
 QPR.

 This type of caching is beneficial only when there is an expec-

 tation of reuse of cached items (i.e., when calls to the database
 will consist of a finite set of SQL statements). This is actually
 the case in the online e-commerce domain. To see why, let us
 consider how database statements are typically programmed
 in applications.

 Statements may be statically coded (i.e., hard-coded into the
 application at design time). At runtime, variables are
 dynamically bound. An example of such a statement might be

 SELECT * FROM CUSTOMER WHERE

 CUSTOMERID = $customerid

 Here, the structure of the query, including table and attribute
 names, is set, and only the customerid variable changes at
 runtime. The number of statically coded statements in an

 application is clearly a finite number; changes only occur
 when the database schema or the application itself is updated.

 Statements may also be dynamically generated, where the
 structure of the statement itself is built on demand at runtime.

 Most dynamic statement generation in online e-commerce
 applications occurs in the context of object-relational map-
 ping. Here, the programmer describes the data desired from
 the database as an arbitrarily complex set logic expression
 over sets of programmatic objects. At runtime, the object-
 relational framework - for example, Hibernate (JBoss
 Community 2011) or LINQ (Microsoft .NET Developer
 Center 201 1) - follows an algorithm to convert the set logic
 expression to SQL. Given the same input expression, the
 algorithm will generate the same SQL statement (in contrast,
 two humans might convert the set logic expression into two
 different SQL statements). That is, each coded set logic
 expression in an application maps to one SQL statement
 structure at runtime (only bound variables change). Thus, the
 number of SQL statements dynamically generated in the
 context of object-relational frameworks is also finite.

 It is possible to write code that dynamically generates SQL
 statements, but this typically occurs only in very limited and
 well-bounded and controlled circumstances due to the need for

 testability. To be able to build appropriate tests for such code,
 the programmer needs to be able to define the boundaries of
 the set of SQL statements that could potentially be generated
 by a code segment. The size of this set must also be finite.

 Given that the set of statements submitted by online appli-
 cations is typically finite, at steady state the hit ratio of the
 QPR cache turns out to be quite high (often over 90 percent,
 assuming sufficient space is allocated for QPR storage), so
 caching this information significantly reduces the cost of pro-
 cessing at the C-DBRD. If the needed query plan and state-
 ment cost are not found in the QPR, the C-DBRD requests
 them from the SDB.
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 Skeleton Database (SDB): The SDB stores skeleton instances
 of the various database schémas that are present in the
 database cluster under the control of the C-DBRD. It is used

 to compute query plans and estimated costs for the requests
 arriving at the C-DBRD from the application layer.

 We note here that it would be possible to compute query plans

 on the production database instances in the cluster. However,
 that would create additional load on those instances, and
 would involve a remote call from the C-DBRD to a database

 instance for each needed query plan. In the interests of
 scalability and performance, therefore, we instead designed
 our method with the inclusion of the SDB. The logical struc-
 ture of the SDB is the same as the production database
 instances in the cluster; it is created using the same DDL (data

 definition language) script that defined the actual production
 database instances in the cluster.

 Task Distribution Logic (TDL): The TDL is the brain of the
 C-DBRD; it implements the decision logic using the infor-
 mation stored in the SDB, QHR, and QPR modules described
 above (as indicated by the arrows in Figure 4) to make request

 distribution decisions. We now present the details of the TDL.

 Since TDL is really the central task logic component of the
 C-DBRD, we shall simply use the term C-DBRD to refer to
 TDL through the remainder of the paper without loss of
 generality.

 Having described the internals of the C-DBRD module, we
 now move on to discuss our proposed request distribution
 method.

 C-DBRD Request Distribution Method

 In our proposed request distribution method, we take a
 dynamic solution approach, where each statement that arrives
 from the application layer to the clustered data layer is
 assigned to one of the instances of the database in the data
 layer by the C-DBRD module. Intuitively, upon receiving a
 statement request, the C-DBRD computes, for each target
 instance under its control, the effective load denoted Ed, as the

 sum of existing load and the additional load that would be
 introduced by the new statement modulated by the similarity
 factor of this statement at the various target instances. Note
 that this algorithm assumes that the C-DBRD keeps track of
 the currently executing requests at each instance, which can be

 done trivially as all requests and responses flow through the C-
 DBRD.

 Algorithm 1 . C-DBRD Scheduling Algorithm I

 1 . Input: A newly arrived statement s
 2. Output: Database instance ¿/.where statement s will

 be forwarded.

 3. Compute Cs from QPR and SDB
 4. Compute current load ld of each database instance d.
 5. Compute effective load of Ed of each database

 instance with the addition of statement s

 6 We select the database instance d such that

 Eds" < Ed, '/ d € D
 where D is the set of all instances in the cluster.

 7 In the case of equivalent values of Ed, C-DBRD
 follows a round-robin distribution strategy.

 In step 3, the algorithm estimates the cost of the statement s
 using the QPR and SDB. If the information for s is found in
 the QPR, the estimated cost is fetched directly from the QPR.

 If not, the C-DBRD uses SDB to compute the estimated cost
 using the SDB' s plan generator.

 In step 4, we compute the load of the presently executing
 statements in each database instance (as discussed in the
 context of Expression 1).

 In step 5, we compute the estimated load of each database if
 the newly arrived statement s is added as discussed in the
 section on "Modeling Database Instance Workload" (in the
 context of Expression 3). Here again, we use a to consider the
 realistic state in database instances, where the cost of the
 second execution of a statement is not zero, nor is it exactly
 the estimated cost modified by similarity factor effects.
 (Recall that we use the parameter a to represent the extent to
 which an RDBMS implements caching, that is, the portion of
 data objects needed for a query could potentially be found in
 cache , based on the database implementation, and to account
 for the time required to perform request processing work that

 cannot be mitigated by using cached data.)

 In step 6, the database instance with the minimum estimated
 load is chosen to process the newly arrived statement s. If the
 database instances are not homogeneous (i.e., they have dif-
 ferent memory and CPU power), we assign a weight factor
 (Wd) (between 0 and 1) to each database instance (d) such that
 highest performing database server has the highest weight 1,
 and other instances' weights are estimated in proportion to it.
 The instance with minimum load across all database instances

 is computed based on the weighted load Wd x Ed for each
 database instance d.
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 Step 7 considers the case where the estimated load on each
 cluster member is equal prior to dispatching the incoming
 request (which would occur, for example, at system startup).
 Here, the algorithm uses a type of round-robin dispatching; it
 selects the "next" cluster member, based on the cluster mem-

 ber that received the immediately prior request, regardless of
 whether that prior request was dispatched based on round-
 robin scheduling, or based on estimated load on each cluster
 member.

 If the workflow is carefully examined, it can easily be seen
 that the execution logic is lightweight: upon the receipt of
 every request, the C-DBRD performs lookups on the QPR and
 the QHR (both of which are cached in memory) and executes
 the algorithm above, which involves some simple computa-
 tions. On rare occasions (in steady state) when there is a
 cache miss in the QPR, the database optimizer is invoked. To
 validate this claim, we demonstrate the lightweight nature of
 our method experimentally in the "Experimental Study"
 section.

 Environmental and Input Parameters
 Affecting Load Estimates

 The two parameters that are important for the C-DBRD sched-

 uling algorithm are (1) n , the number of statements in history
 considered for computing similarity factor, and (2) a, the
 factor denoting the effect of similarity on database instances.

 The value of n is chosen based on the size of memory reserved
 for caching in the database versus the database size. A higher
 value of this ratio indicates that a larger number of tables,
 indexes, and statements can be kept in the cache, indicating
 that n can have a higher value. In "Experimental Study"
 section, we will experimentally demonstrate the effect of n on
 overall performance of the database cluster.

 As we discussed in section on "Modeling Database Instance
 Workload," the value of a is dependent on the extent to which
 a database vendor has implemented caching. Before pre-
 senting a procedure for estimating a for a database system, we
 present two definitions that will form the basis of our
 estimation.

 Axiom 6: If a particular database system does not have any
 caching implemented within it, a = 0.

 Axiom 7: If statement s takes 0 milliseconds for its second
 consecutive execution in a database instance, a = 1.

 Let us assume that t' is the time it takes to execute a statement

 ^ for the first time in a database system where nothing else is

 executing. Let us also assume that fs is the time it takes to
 execute the same statement s in the second consecutive time

 in the same database system without anything else executing
 in the database. For a set of statements S, the a for the
 database system can be estimated as

 f v iV

 "T~J seS tl
 seS tl

 Based on our experiments with Oracle 1 lg on Windows XP,
 we have found that Oracle 1 lg implements caching very
 effectively, and have found that a = 0.8 is an effective value
 for a for this database.

 An Analysis Comparing C-DBRD to
 Other Visualization Methods

 In this section, we compare the expected effectiveness of the
 C-DBRD method as compared to a round-robin (RR) ap-
 proach, the most common database request distribution
 method in practice, and compare the time complexity of C-
 DBRD with other request distribution approaches.

 Expected Effectiveness of C-DBRD

 We are primarily interested in utilization of capacity as a
 measure of the effectiveness of a request distribution ap-
 proach. We use processing time for a request as a proxy for
 capacity utilization, since a request distribution method that
 processes requests faster than another method will be able to
 support additional processing capacity as compared to the
 slower method and, therefore, will have better capacity
 utilization.

 Hypothesis 1: The C-DBRD approach of load
 distribution in the clustered data layer will result in
 lower or equal loads on individual database
 instances compared to the round-robin approach.

 We illustrate this with an example. Let us assume that there
 are four statements sl9 s2 , s3, and s4 and each incur an equi-
 valent cost Cs load on a database instance. Let us also assume
 that the set of database objects accessed by 5 1 is B l9 the set of
 database objects accessed by s2 is B2 , the set of database
 objects accessed by s3 is B2 , and the set of database objects
 accessed by s4 is B{. Further, let us assume that there are two
 database instances d{ and d2.

 Following a round-robin approach, sx and s3 will be delegated
 to database dx, and s2 and s4 will be delegated to database d2.
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 50 the total load on database dx and database d2 will be 2 Cs.
 In contrast, in the C-DBRD approach sl and s4 will be
 delegated to du because both of them are accessing the set of
 database objects Bv s2 and s3 will be delegated to database d2 ,
 because both of them are accessing the set of database objects

 B2. In this scenario, if SF4tl is the similarity between sx and s4
 and SF32 is the similarity between s2 and s3, we have SF4 i > 0
 and SF32 >0. So, considering the similarity factor, the total
 load of the database d{ is Cs + (1 - aSF4 l)Cs and the total load
 of the database ¿/2 is Cs + (l -aSF32)Cs. So, the total load on
 each of dx and d2 will be less than that of the round-robin
 approach. (We demonstrate this experimentally in the
 "Experimental Results" section, in the discussion surrounding
 Figures 5 and 6.)

 Hypothesis 2: The C-DBRD approach and the
 round-robin approach will be equivalent if and only
 if all incoming database statements are the same; in
 all other cases, the C-DBRD approach will give
 better request distribution decisions than the round-
 robin approach.

 To illustrate, let us assume a set of database instances D= {dp
 d2, . . ., du} and a sequence of incoming requests sl9 s2, . . ., sv.

 If s i is assigned to dp then round-robin scheduling will assign
 s i + 1 to database instance dj + 1, invariant of load on each
 database instance.

 In contrast, in C-DBRD the instance selected for the statement

 51 + 1 will be selected based on the estimated load of each
 database instance due to this s¡+ 1 , thus the selection set for
 the database instance of s¡ + 1 is much broader in C-DBRD
 than in the case of round-robin, allowing C-DBRD to select
 the instance with the lowest expected cost. In cases where
 there is no expected cost-saving advantage in deviating from
 a round-robin approach, the C-DBRD will follow round-robin
 scheduling. Thus, we can expect the C-DBRD to provide
 better load distribution than the round-robin approach. In the
 worst case, C-DBRD will provide an equivalent quality of
 request distribution decisions, when compared to the round
 robin approach. (We demonstrate proof of this experimentally
 in the "Experimental Results" section, in the discussion
 surrounding Figures 5 and 6.)

 Complexity Analysis

 In this section, we compare the time complexity of our ap-
 proach to the three most common request distribution tech-
 niques in practice: RR, LCPU, and FMEM. For each of these
 methods, we consider the cost of computing the request
 distribution decision; that is, when a request arrives, how
 much computational effort is required for each approach to

 determine which instance in a database cluster of 'D' instances
 should process the request? We consider each approach in
 turn. For round-robin, the cost of computing the target data-
 base instance is simply the cost of moving a pointer in an
 ordered list. Thus, for RR, the time complexity is constant,
 0(1).

 For LCPU, the database request distribution module needs to
 compute the CPU utilization for each database instance, and
 then search the list for the instance with the lowest CPU utili-

 zation. If tcpu is the time required to get the CPU utilization for
 one database instance, the total time complexity for the request

 distribution decision for LCPU is 0('D'tcpu + log'D').

 For FMEM, the request distribution module must retrieve the
 free database buffer size from each database instance, and then

 search the list for the greatest percentage of free memory. If
 the time required to retrieve the memory data from each
 instance is tmem , the total time complexity for FMEM is
 0('D'tmem + log'D').

 We now consider the C-DBRD case. In our approach, we
 compare the incoming statement s to the expected contents of
 each database instance's cached tables and indexes, and select

 the instance with the highest similarity, in terms of cached
 tables and indexes, to the needs of the incoming query. Archi-

 tecturally, this is supported by two caching structures in the C-

 DBRD module (1) a QPR cache of query plans and associated
 statement costs, sized to accommodate the set of unique
 statements generated by the application, and (2) an SHR cache
 of the most recent n statements processed by each instance,
 along with a list of the tables and indexes accessed by each
 statement.

 Let us denote the time cost of computing a query plan for a
 new incoming statement s as ts time, and the cost of computing

 the effective load Eds for a database instance d based on the
 addition of s as te.

 At system startup, the QPR is empty, and the cost of com-
 puting the query plan for each unique s in the application is
 paid once by the SDB (as described in section "C-DBRD
 Architecture"), after which, for each subsequent arrival of s ,
 the query plan is drawn from QPR cache. The QPR cache is
 a hash table, which stores three data items for each query:
 (1) an MD5 128 bit encoding for the SQL statement, (2) a 32
 bit integer for the estimated execution cost to execute the
 query plan, and (3) a hashed value representing a list of tables
 and indices to be accessed by the SQL statement, which varies
 in size but rarely exceeds 2 KB. Based on these numbers,
 roughly 10,000 SQL statements and their details can be cached
 in the QPR hash table that requires only 2 MB of memory.
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 At steady state, virtually all query plans are available from
 cache, making ts an 0(1) operation. Let us consider the time
 required to fill the cache. If there are about 10,000 SQL
 queries in an application and the throughput of the system is
 40 requests per second (i.e., 40 SQL queries get executed
 every second), then, if all 10,000 SQL queries are executed
 sequentially, we estimate that after about 250 seconds, all
 queries and their associated query plan data will be in the QPR

 cache. After this point, there is no need to fetch the query plan

 from the SDB. Thus, the duration of the transient state (during

 which SDB interaction is required to fetch the query plan) is
 only a few minutes (in the range of 4 to 5 minutes).

 If we assume a Zipfian distribution of user requests, where 80
 percent of requests are for 20 percent of queries, the query
 plan data for the 20 percent of highly requested queries would

 be placed into cache within a few minutes, while the data for

 the 80 percent of less-frequently requested queries would be
 placed in cache upon the first request for each query. While
 the time to fill the cache would be longer than then the sequen-

 tial case, the work done to fill the cache (i.e., the work of
 generating 10,000 query plans) is the same in both cases.

 At steady state (i.e., when the QPR cache is full), the query
 plan for s is known (drawn from cache), and the computation
 of effective load Ed is a constant time arithmetic operation for

 each of 'D' database instances.

 Based on the above, the time complexity for our C-DBRD
 approach is 0(ts + 'D'te + log'D'), where 0(log'D') is the order
 of complexity required to find the database instance with
 minimum K

 Obviously, RR has the least overhead; however, we do not
 expect it to perform well as compared to other request distri-
 bution methods, since it does not measure server workload in

 any meaningful way. Our experimental results in the next
 section demonstrate this clearly.

 Getting the CPU or memory information for LCPU or FMEM,

 respectively, requires a remote call to each database instance.

 In contrast, in the C-DBRD approach in steady state, when the
 query details are in the QPR cache, no remote calls are
 needed; all processing consists of local in-memory hash-table
 access and arithmetic computation. Thus, we can say that te <

 h nem ^^d te < tCpu'

 We can conclude that at steady state , the computational over-
 head for the C-DBRD request distribution module is greater
 than RR, but smaller than LCPU and FMEM. Next, we will
 show a comparison of these overheads for all four cases.

 Experimental Study

 In this section, we explore the effectiveness of our proposed
 approach experimentally. In our experimental results, we
 report two measures of effectiveness:

 • Application Response Time: We measure the average re-
 sponse time of requests submitted to a web application -
 based on the TPC-W benchmark specification (Transac-
 tion Processing Council 2009) - as experimental condi-
 tions vary. As in our analysis of expected effectiveness
 in the previous section, we consider statement processing
 time as a proxy measure for capacity utilization in com-
 paring different database request distribution methods.

 • Application Throughput : We measure the average
 number of requests the web application can process per
 second under different experimental conditions.

 We are specifically interested in two broad questions: first,
 comparing the performance of C-DBRD to other database
 request distribution methods, and second, measuring the
 sensitivity of C-DBRD to some key parameters.

 First, we explore the response time and throughput of our
 proposed C-DBRD approach with three other approaches,
 borrowed directly from web server and application server
 request distribution techniques, in use in industry today. Spe-
 cifically, we consider the RR, LCPU, and FMEM approaches
 that we described in our discussion of related work.

 Second, we explore the sensitivity of the C-DBRD approach
 along three important dimensions:

 • Performance and Resource Overhead Sensitivity as
 Cluster Size Increases: We describe how both response
 time performance and CPU usage on the C-DBRD
 instance vary as the number of database instances in the
 cluster increases to show how the C-DBRD algorithm
 scales. These experiments also consider the possibility
 that larger cluster sizes may require more than one C-
 DBRD to scale well; here, as cluster sizes increase, the
 number of C-DBRD instances increases as well.

 • Response Time Sensitivity as Database Buffer Size
 Increases : We consider how response time on database
 instances in the cluster varies as the database buffer size

 (i.e., the amount of available memory for caching)
 increases.

 • Response Time Sensitivity as Length of History (n)
 Increases : We consider how response time on database
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 instances in the cluster varies as n , the number of queries
 C-DBRD considers, increases.

 • Comparison of Overheads of C-DBRD , RR, LCPU, and
 F MEM: We consider the overheads associated with

 running the decision logic for all four cases, including a
 demonstration of how C-DBRD overhead decreases as it

 moves from a cache-empty state (representing system
 startup) to a steady-state scenario, with significant
 amounts of data stored in the QPR.

 Experimental Platform

 In our experimental setup, we developed a testbed environ-
 ment using off-the-shelf software as the clustered environment

 for our experiments. We configured a set of four Apache 2.2
 instances as the web server cluster. Eight instances of
 WebSphere v7 with JDK 1.6 in cluster mode serve as the
 application server layer. Three instances of Oracle database
 llg running on Windows XP serve as the database cluster.
 All three database servers are identical. Each web server,
 application server, and database server instance runs on
 separate hardware, configured with a dual-core 2.4 GHz CPU
 and 2 GB RAM on a Windows XP operating system. All
 machines are connected through a switched 100 Mbps
 Ethernet LAN.

 The C-DBRD, LCPU, FMEM, and RR algorithms are
 implemented in C++ based on the Oracle listener architecture.
 (Note that every modern client-server database system is based
 on a similar listener architecture, so this architecture general-

 izes well.) The database request distributor (which runs C-
 DBRD, LCPU, FMEM, or RR as the experimental design
 dictates) runs on a Windows XP machine with a dual-core 2.4
 GHz CPU and 2 GB of RAM. We implemented C-DBRD to
 interface with both Oracle and SQL Server databases.

 We used the TPC-W benchmark from the Transaction Pro-

 cessing Council, a standard web benchmark for e-commerce
 systems, for our experiments. This benchmark simulates a
 bookstore, and its database contains eight tables: customer,
 address, orders, order line, credit info, item, author, and
 country. The database size is determined by the number of
 items in the inventory and the size of the customer population.
 We used 100,000 items and 2.8 million customers in our
 experiments, resulting in a database of about 4 GB.

 The TPC-W benchmark specifies 14 different interactions.
 Six of the interactions are read-only, while eight cause the
 database to be updated. The read-only interactions include
 access to the home page, listings of new products and best

 sellers, requests for product detail and two interactions
 involving searches. Update transactions include user regis-
 tration, updates of the shopping cart, two order-placement
 transactions, and two for administrative tasks. Following the
 focus of this research, to concentrate on the read-only queries,

 the six read-only interactions specified in the TPC-W
 workload constitute 95 percent of the browsing mix; the eight

 update transactions make up the remaining 5 percent of the
 workload. The complexity of these interactions varies widely,
 with interactions taking between 20 and 700 milliseconds on
 an unloaded machine. The complexity of queries varies
 widely as well. In particular, the most heavyweight read
 queries are 50 times more expensive than the average read
 query.

 We used Radview's WebLoad (Radview, Inc. 2009) tool to
 simulate user behavior. In our experiments, each simulated
 WebLoad user waits for a specified think time before initiating
 the next interaction. The simulated user session time and the

 think time are generated from a distribution specified by
 TPC-W.

 Experimental Results

 In this section, we present the results of our experiments. We
 first compare our method to other possible choices of database

 request distribution methods, and then we consider the
 sensitivity of the C-DBRD method along three important
 dimensions.

 Comparing Database Request Distribution
 Methods as Workload Increases

 Figures 5 and 6 demonstrate how the response time and
 throughput (respectively) of the TPC-W application vary as
 the number of simulated users is increased for the cases of C-

 DBRD, RR, LCPU, and FMEM.

 In general, as the number of simultaneous users increases, the
 response time increases for all four cases. However, the rate
 of increase is different for each strategy. Overall, response
 time increases much more slowly with an increase in user load
 for C-DBRD as compared to all other cases. This is the result
 of taking advantage of query similarity. FMEM provides the
 next-best performance, with faster response times than both
 LCPU and RR. This is due to FMEM's strategy of providing
 as much free buffer memory as possible. RR, as a rudimentary

 technique, does not take advantage of any potential
 performance-improvement strategy, and thus does not perform
 as well as C-DBRD or FMEM.
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 The LCPU curve shows an interesting result: initially, it per-
 forms better than RR, but as user load increases, it provides
 response times higher than RR. This is because CPU represents
 only part of the performance impact of a query; database query

 processing is both CPU and I/O intensive. At low loads, when
 there is no resource constraint, LCPU performs slightly better
 than RR. However, as load increases, the curve for LCPU
 crosses that of RR, indicating worse performance than RR as
 load increases. This occurs because CPU is an indicator of only

 part of the processing requirement for executing queries. Here,

 as load increases, query processing becomes I/O-bound, leaving
 idle CPU cycles that do not actually indicate excess processing
 capacity, but rather blocked processes. At high loads, then,
 LCPU actually produces a highly non-optimal result, mistakenly

 dispatching statements to database instances that actually do not

 have any capacity to execute them.

 To summarize, C-DBRD attempts to maximize the utilization
 of structures cached in database buffers. In doing so, it
 reduces both the CPU and I/O required for query processing.
 At high loads, it reduces the response time by 45 percent
 compared to its best-performing rival, the FMEM approach,
 indicating significant improvements in resource utilization
 with the C-DBRD method.

 The throughput curves (Figure 6) for each scheme follow
 those of the response time experiments. Throughput is highest
 in case of C-DBRD - almost 50 percent more than that of its
 closest rival, the FMEM approach. Moreover, due to lower
 costs to execute queries in the C-DBRD approach, the C-
 DBRD does not reach its saturation point. In contrast, in cases
 of RR, LCPU, and FMEM, the cluster reaches saturation,
 where the throughput tends to decrease due to the effects of
 queuing on computational resources.

 Sensitivity to Cluster Size

 To demonstrate how our system performs with the number of

 database instances, we ran an experiment varying the number
 of database instances. Because a single C-DBRD system may
 not be sufficient to support the total database cluster load, we
 deployed multiple C-DBRD modules, configured to share
 common data through multicasting. Such multicasting for
 sharing data is a common architecture in web server and
 application layer cluster (Banerjee et al. 2002), with minimal
 CPU overhead, as we demonstrate in this experiment.

 To demonstrate how our C-DBRD system scales with the
 number of database instances and multiple C-DBRD systems,
 we compare the average response time for three cases. Our
 baseline is the one C-DBRD system with three database
 instances (denoted 1-C-DBRD/3-DB). We compare our
 baseline with two cases: 2-C-DBRD/4-DB; and 3 -C-DBRD/
 6-DB. We show the results of this experiment in Figure 7.
 Here, each cluster case is subjected to the same workload.
 Response times are highest for the 1-C-DBRD/3-DB cluster.
 Lower response times are provided in the case of the 2-C-
 DBRD/4-DB case; further reductions in response time are seen
 in the 3-C-DBRD/6-DB case. The reduced response times are
 a result of the availability of additional I/O and processing
 resources as the cluster size increases. Clearly, this indicates
 the horizontal scalability of our system, that is, how well our
 system handles additional workload as additional software
 resource units (C-DBRD instances) are made available, with
 the increase of both database instances and C-DBRD

 instances.

 In Figure 8 we demonstrate the average CPU required for the
 C-DBRD module as the number of simultaneous users increases
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 for three cluster size cases: 1 -C-DBRD/3-DB; 2-C-DBRD/4-
 DB; and 3-C-DBRD/6-DB. Note that we do not expect such
 C-DBRD-to-cluster size ratios in real-life scenarios; our
 resource utilization experiments show that much larger cluster

 sizes can be supported per C-DBRD instance. We include
 additional C-DBRD instances here to show that multi-C-

 DBRD scenarios scale well.

 For each case, CPU usage increases as user load increases.
 For all cases, however, the overall CPU requirement is very
 low, in the range of 1 0 to 20 percent even for 1 ,000 concurrent
 simulated users.

 Comparatively, the CPU required for the 2-C-DBRD/4-DB
 instance case is lower than that of our baseline case of 1-C-

 DBRD/3-DB instance. Although we have increased the
 number of database instances in this case, thereby increasing
 the complexity of C-DBRD algorithm, the addition of another
 C-DBRD system has reduced the average CPU requirement in
 C-DBRD systems because the two C-DBRD modules are
 sharing the request load. By similar logic, the case of 3-C-
 DBRD/6-DB instances shows even lower CPU usage than that
 of the 2-C-DBRD/4-DB instance case.

 Sensitivity to Database Buffer Size

 Figure 9 shows how the end-to-end response time performance
 of the system varies for different buffer sizes. Recall that our
 database size is 4 GB and the buffer size for baseline experi-
 ment is 500 MB. In these experiments, we consider the data-
 base buffer sizes of 250 MB and 1 GB as well. In each case,

 we ran the same TPC-W workloads. Clearly, as the buffer
 size is reduced, the database instance needs additional I/O
 processing to execute queries, which increases the average
 response time of the system; response times are almost 50
 percent higher at high loads than in the baseline case. More-
 over, reducing buffer sizes effectively reduces the advantage
 of our C-DBRD algorithm over other algorithms by limiting
 the amount of space available to cache data structures. By
 similar logic, as the buffer size is increased, database instances
 require less I/O, leading to improved end-to-end response
 times in the system.

 Sensitivity to Length of History Stored in the QPR

 Figure 10 demonstrates how our algorithm is affected by
 varying n , the number of queries to consider in computing the
 similarity factor. The number of users in this experiment is
 kept constant at 600 with one C-DBRD and three database
 instances. As n is increased, generally the performance of the
 system improves, as demonstrated by the lower response
 times. However, increasing n shows diminishing returns.
 Beyond a certain value of n (in this experiment, for n = 15),
 increasing n actually increases the response time. This is
 because data structures (tables, indexes) related to older
 queries are deleted from database buffer to accommodate the
 structures of new queries. If we consider such older queries in
 computing similarity factors, a query may be sent to a database
 instance anticipating a cache hit, but the result is actually a
 cache miss.

 We explain this in more detail with an example. Let us as-
 sume that two statements, qx and q2 , have executed in sequence
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 in database instance dx. Let us also assume there is a query, q[
 that is executed in the database instance d2 , and that there is a
 high similarity between qx and q[. If the database can cache
 only one statement at a time, then in the database instance dx
 the query q2 will be cached, but not qx. In database instance
 d2, q' will be cached. Now, if the statement qx arrives again,
 if n = 2, the statement will be sent to the database instance dx.
 However, in this case, the cached qx has already been evicted
 from cache, so the execution of the new qx cannot utilize
 cached data objects. However, if n = 1 , the C-DBRD will find
 similarity with q J and will send it to the database instance d2 ,
 where it can exploit the cache related to the query qx. This
 simple example demonstrates how a high value of n can
 actually reduce the performance. (This is reflected in Figure
 10 as well.)

 Clearly, choosing a proper value of n is an important factor of
 our C-DBRD algorithm. In future research, we intend to ex-
 tend our research work to dynamically estimate optimal values
 of n from the size of various structures and the buffer size.

 Comparing the Overhead of C-DBRD, RR,
 LCPU, and FMEM

 In this section, we compare the overhead of the C-DBRD,
 LCPU, and FMEM approaches. We devised an experiment
 using the TPC-W database and the experimental testbed
 described at the beginning of this section of the paper. Speci-
 fically, we created a list of 10,000 generated queries based on
 the TPC-W databases. The queries were generated by ran-
 domly selecting "fields" and "where" clauses based on the
 TPC-W schema. We built a Java-based client program that

 simulates 100 users by creating 100 parallel threads, where
 each thread randomly selects an SQL statement from the pre-
 generated 10,000 SQL statements and submits it to the data-
 base request distributor module for a request distribution
 decision to one of the three database instances behind the data-

 base request distributor. The database request distributor
 module can execute the RR, LCPU, FMEM, or C-DBRD
 module based on a configuration setting. We further intro-
 duced a simple timer command within the code of the database
 request distributor module, to measure the average time
 required to run the request distribution logic (including the
 time required to fetch needed information, such as SQL query
 plans, CPU loads, or memory usage from remote database
 nodes, as required by the respective algorithms). The average
 time for every 60-second interval is reported and plotted in
 Figure 1 1 for all of the four scenarios.

 As is clear in Figure 11, the RR method demonstrates the
 lowest runtime for request distribution decision-making. (In
 some cases, RR showed a running time at a sub-millisecond
 level. These cases have been reported as execution times of 0
 milliseconds in our experimental results.) This fast running
 time makes sense, since RR does no complex processing. The
 LCPU and FMEM methods each require three remote calls to
 the cluster databases to get the current CPU and memory utili-
 zation values, respectively. These operations have constant
 time complexity. In both the LCPU and FMEM cases, the
 average time throughout the experiment is around 50
 milliseconds.

 As discussed in the previous section, the overhead of the C-
 DBRD method depends on whether the QPR cache is filled or
 not. For the C-DBRD approach in these experiments, the QPR
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 cache was initially empty. For each new incoming SQL
 statement not found in cache, the C-DBRD had to fetch the
 query plan from the SDB, after which the query plan was
 placed in the QPR cache and was available for subsequent
 calls for its associated query. In Figure 11, this initial cache-
 filling is demonstrated in higher decision-making times for C-
 DBRD in the early part of the experiment. However, as the
 time line of the experiment progresses, more and more of the
 needed query plans are available from the QPR cache, in
 which case there is no need for the C-DBRD algorithm to
 fetch the query plan data from the SDB. In these cases, the C-
 DBRD decision making involves accessing in-memory hash
 maps and computation as discussed in the previous section.
 Over the course of the experiment, this increasing availability
 of cached query plan information manifests as a decreasing
 average decision-making time for the C-DBRD case. At
 steady state (i.e., when the QPR cache is full), the average C-
 DBRD decision-making time is actually lower than that of the
 FMEM and LCPU cases. As discussed in the previous sec-
 tion, the FMEM and LCPU methods require remote calls,
 which involves network I/O, not CPU. In contrast, although
 the C-DBRD method runs a more complex algorithm then
 LCPU and FMEM, at steady state all the information it needs
 is available to the local process; no out-of-process calls or
 remote server calls are required. This results in slightly lower
 decision-making times for the C-DBRD case as compared to
 the FMEM and LCPU cases, when C-DBRD is running in a
 steady-state condition.

 To summarize, while the C-DBRD method is in a transient
 state, the FMEM and LCPU cases provide lower decision-

 making time overheads. However, when the C-DBRD is at
 steady state, the C-DBRD case provides lower decision-
 making overheads than FMEM and LCPU.

 Field Experiment

 In this section, we compare the C-DBRD approach for dis-
 tributing read requests with SQL Server 2005 clustering
 (Microsoft Inc. 2009) and RR request distribution in the
 staging environment of an online floral retailer. The web site,
 which is coded in ASP.NET 2.0, normally runs on six SQL
 Server database servers running on Windows Server 2003,
 each with a dual-core 2.3 GHz processor with 2 GB of RAM.

 We first consider the C-DBRD use case. Here, the product
 catalog is replicated across four standalone SQL Server
 databases, as shown in Figure 12. The loads for browsing the
 product catalog are distributed to these database servers using
 C-DBRD request distribution. Specifically, we installed two
 C-DBRDs in front of the four product catalog database servers
 (one C-DBRD is used as primary; the other is configured as a
 fail-over node). The other two of the six SQL Server data-
 bases are configured as a cluster with shared storage, where
 both the instances are active and ready to receive transactional
 load, and the transactional loads are distributed by an SQL
 Server connection pool. These two database servers are used
 to store transactional data (i.e., purchase records). The four
 replicated catalog databases are updated at night (when load
 is very low) based on daily transaction records and inventory.
 We denote this case as "C-DBRD."
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 We next describe the SQL Server clustering use case, shown
 in Figure 13. In this scenario, all six SQL Server instances are
 configured in an SQL Server cluster using shared storage (i.e.,
 six RDBMS software instances all access the same data tables

 via shared storage). In this case, all six SQL Servers have
 access to both the product catalog database and the trans-
 actional data, which means that both read and write workloads
 for all six database software instances access the same data

 tables. The loads across all of these six SQL Server cluster
 instances are distributed by the SQL Server connection pool
 mechanism. We denote this case as "SQL Cluster."

 Finally, we describe the RR case. In this case, the six SQL
 Server databases are configured identically to the C-DBRD
 case (i.e., four databases are configured for product catalog
 loads and two are configured for transactional loads). The
 only difference is in the request distribution mechanism for the
 product catalog loads. Here, as shown in Figure 14, the loads
 for browsing the product catalog are distributed to these
 database servers by the SQL Server connection pool using
 round-robin distribution. We denote this case as "RR."

 The loads are simulated using LoadRunner (Mercury, Inc.
 2009), and based on a day's worth of application server access
 log data to simulate user behavior on the site. The number of
 simulated users is controlled by LoadRunner. At each simu-
 lated user count of interest, we note the throughput (transac-
 tions per second) and response time (milliseconds) through the
 LoadRunner console. We plot the response time and through-

 put as the load is increased from five simultaneous users to
 1,000 simultaneous users in Figures 15 and 16, respectively,
 for the C-DBRD, SQL Cluster, and RR cases.

 Figure 1 5 shows how the three system configurations compare
 as the load is increased. Initially, C-DBRD, SQL-Cluster, and
 RR show virtually equivalent performance, with marginal
 improvement in the C-DBRD case. However, after 600
 simultaneous users, the response time in the SQL-Cluster case
 increases rapidly, creating a difference of about 40 percent at
 1,000 users. The RR case revealed similar, but less acute,
 increases in response time at the same load level.

 In the simulated user behavior, we observed that about 87
 percent of actions are related to product catalog browsing
 (reads) and 13 percent are related to transactions (writes). For
 the SQL-Cluster case, at high loads, the overhead caused by
 updates from purchases caused significant overheads on the
 database, seriously hampering the performance for browsing
 behavior. In contrast, in the C-DBRD case, due to the separa-
 tion of catalog and transactional databases, browsing perfor-
 mance is not hampered. Further, the number of database
 servers in the cluster for transactional data is reduced to two

 in case of C-DBRD, as opposed to six in the case of SQL-
 Cluster. This further reduces the synchronization overhead of
 updates in the transactional database.

 For the RR case, the increase in response time over the C-
 DBRD case is due to the fact that the RR case does not take
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 into account the potential cached data in the database
 instances. These results are closely correlated to our experi-
 mental results, described earlier.

 Discussion and Conclusion

 In this paper, we present an effective request distribution stra-

 tegy for improving resource utilization in the data layer in
 multitiered online enterprise applications. Specifically, we
 addressed three main research questions:

 (1) How can we model database workloads in online multi-
 tiered applications?

 (2) Based on this model, how can we design an effective
 request distribution mechanism for the data layer in online

 multitiered applications?

 (3) Given such a request distribution mechanism, how does
 it perform against existing request distribution tech-
 niques?

 Intuitively, our approach makes use of reference locality in the

 database cluster, by attempting to route requests to the server

 instance most likely to have the data resources needed for the
 query in its cache. As in the application layer, locality-based
 request distribution will improve the performance of the data
 layer. However, due to the nature of the data structures
 accessed in a database request, a cost model to quantify the
 potential impact of content affinity-based request distribution
 needed to be developed. To support this, we developed an
 analytical model describing database workloads from a cost
 perspective with two aims: (1) to model the expected cost
 savings for processing a statement in the presence of caching,
 and (2) to model the workload of a database instance, based on
 the statement cost savings model.

 We developed an analytical comparison of the C-DBRD and
 RR approaches, and showed that we can expect C-DBRD to
 better distribute requests for improved resource utilization than

 RR. At worst, we expect C-DBRD to provide equivalent
 request distribution compared to RR when caching cannot be
 leveraged for improved resource utilization. We further com-
 pare the expected overhead of computing routing decisions for
 C-DBRD, RR, LCPU, and FMEM. We found that both LCPU
 and FMEM can both be expected to incur higher overheads
 than C-DBRD when the C-DBRD-enabled system is in steady
 state. RR incurs virtually no computational overhead in
 making request distribution decisions (i.e., we expect C-
 DBRD to incur higher overheads for request distribution
 decision making than RR). However, we expect that the
 improvements in statement response times using C-DBRD to
 overcome the differences in request distribution decision-
 making overhead.

 We compared our approach to existing distribution strategies
 employed in the web server and application server layers, to
 extant request distribution mechanisms in the research
 literature, as well as those available commercially, and found
 that our approach performed significantly better than the other

 methods tested. In an experiment comparing response time
 and throughput performance, where improvements in these
 measures serve to represent the additional capacity that
 becomes available with the use of our method, we found that

 the C-DBRD method provides substantial improvements in
 performance at the highest workload tested, on the order of 45

 percent, in comparison to the FMEM method. Futher, C-
 DBRD showed a 55 percent improvement over the round-
 robin approach, and a 63 percent improvement over the lowest

 CPU approach.

 In a field experiment, we further tested our method in a
 corporate production-staging environment of a mid-size e-
 commerce site, comparing our method to a clustered SQL
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 Server configuration using shared storage, as well as the
 baseline RR case. Here, we found that our method provided
 a 40 percent improvement over the SQL Server clustering case
 and a 30 percent improvement over the RR case. These per-
 formance gains represent real additional capacity on database
 instance (i.e., existing resources can handle substantially
 higher workloads using our method). Considering this, our
 approach promises significant real-life value, in particular for
 read-mostly scenarios typical in large e-commerce retail
 applications.

 We note a few limitations to take into account when assessing
 these results. As we mentioned in the first two sections of this

 paper, our focus here is on replicated databases in low-
 transaction scenarios; our methods are not appropriate for
 transaction-heavy environments. Further, we note that our
 results may not generalize as well for applications that
 generate ad hoc queries on the fly as a substantial portion of
 their workloads; we would expect lower similarity between
 queries, and therefore fewer opportunities to take advantage of
 cached data on the instances of a cluster.

 IT managers may, rightfully, question the risk of adding a
 request distribution layer, both in terms of the possibility of C-

 DBRD as a single point of failure, and as a performance
 bottleneck itself. C-DBRD can be configured for high avail-
 ability, with multiple C-DBRD instances in the request
 distribution layer (one primary, one for failover), or clustered
 (where each instance distributes requests) when a single C-
 DBRD instance cannot handle the full request load. Our
 experiments show that, even at very high workloads with
 multiple C-DBRD instances, C-DBRD CPU usage was very
 low - at most 20 percent across all cases. Since the C-DBRD
 method is primarily processing-oriented, there is clearly room
 for further workload. If a single C-DBRD instance proves
 unequal to the task, multiple C-DBRD instances can be con-
 figured to handle the load. Thus, there is little risk in imple-
 menting C-DBRD-based request distribution for the data layer.

 When should an IT manager consider a change in request
 distribution technique? We are certainly not advocating
 changes in a working system using an existing request distri-
 bution technique: If it is not broken, there is no need to fix it.
 However, IT application environments and application port-
 folios are very dynamic, and rarely grow smaller. IT managers
 face a constant challenge in finding resources to support the
 growth of usage for existing applications and new initiatives
 coming online. When faced with the choice to add new infra-
 structure to support growth or a new application, our request
 distribution method offers the IT manager the opportunity to
 improve the efficiency of existing resources (up to 45 percent
 response time improvements, based on our experimental
 results), rather than simply installing additional infrastructure.

 Whether the resources made available through improved
 efficiency are used to support additional growth of existing
 applications or new initiatives, there is a clear financial benefit
 with the use of our method.

 Once the implementation decision is made, the IT manager
 will need to configure a value for n , the length of history to be

 maintained in the QPR. Our experiments indicate that the
 choice of a good value of n is important in terms of C-DBRD
 performance. Therefore, we present some guidelines below
 that will be helpful in this regard.

 • If the database buffer size is very small, the caching has
 zero impact on the C-DBRD database instance selection
 and the optimal value of « is 0.

 • If the database buffer size is equal to or more than the
 total database size, the buffer can hold all database
 objects without any eviction, so in this scenario IT
 managers can select a very high value for optimal n.

 • The higher the ratio of database buffer size versus the
 total database size, the higher the optimal value of n.

 In practice, a good value for n will be dependent on the
 application(s) and the expected workload. An IT manager can
 choose a value for n by running the experiment, described in
 the section "Sensitivity to Length of History Stored in the
 QPR," in a staging environment with the application set of
 interest, and load testing scripts that implement expected
 workloads. Running a set of such experiments with increasing
 values for n will yield the data needed for a graph similar to
 Figure 10. When the response time starts to increase with a
 larger value of «, the optimal value for n is clear.

 We believe that we have made a strong case for IT managers
 to consider request distribution at the data layer using C-
 DBRD, based on the additional capacity available using this
 method. Our results demonstrate substantial potential gains in
 resource capacity utilization for read-mostly environments in
 practice, since database resources will be able to handle
 significantly larger workloads with our method in place than
 without it.
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