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ABSTRACT
Reliability test plans are important for producing precise and accurate assessment of reliability char-
acteristics. This article explores different strategies for choosing between possible inspection plans
for interval-censored data given a fixed testing timeframe and budget. A new general cost structure is
proposed for guiding precise quantification of total cost in inspection test plan. Multiple summaries
of reliability are considered and compared as the criteria for choosing the best plans using an eas-
ily adaptable method. Different cost structures and representative true underlying reliability curves
demonstrate how to assess different strategies given the logistical constraints and nature of the prob-
lem. Results show several general patterns exist across a wide variety of scenarios. Given the fixed
total cost, plans that inspect more units with less frequency based on equally spaced time points are
favored due to the ease of implementation and consistent good performance across a large number
of case study scenarios. Plans with inspection times chosen based on equally spaced probabilities
offer improved reliability estimates for the shape of the distribution, mean lifetime, and failure time
for a small fraction of population only for applications with high infant mortality rates. This article
uses aMonte Carlo simulation-based approach in addition to the commonly used approach based on
the asymptotic variance and offers comparison and recommendation for different applications with
different objectives. In addition, the article outlines a variety of different reliability metrics to use as
criteria for optimization, presents a general method for evaluating different alternatives, as well as
provides case study results for different common scenarios.

Introduction

Statistical analysis of reliability data is broadly used
in reliability assessment. Depending on time, budget,
and logistical constraints, a variety of types of data can
be obtained from different test schemes. The tests are
run either for a predetermined duration or end after
observing a certain number of failures. For either case,
if not all of the units have failed by the end of the test,
then the data contain only partial information on the
survived units, since it is known that the units sur-
vived until the end of the study, but not the exact failure
times for those units. These data are referred to as time-
censored or failure-censored data (Meeker and Escobar
1998, Ch. 3).

Exact failure times are observed only if the test units
are beingmonitored individually and continuously, but
often this is impractical or not possible. This leads to
another type of data commonly encountered in relia-
bility analysis known as interval censored data, or also

CONTACT Lu Lu icyemma@gmail.com Department of Mathematics and Statistics, University of South Florida, Tampa, FL.
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referred to as grouped data or readout data (Tobias
and Trindade 2012, p. 42). For example, when testing
electronic components, continuous in situ monitoring
of all test units can be too costly for many applica-
tions. Instead, the units are inspected at prescheduled
time points. At each time point, all units that have sur-
vived up until the previous inspection time are exam-
ined. The number of failures is recorded and the failed
units are not tested further. By conducting the inspec-
tions at only the prescheduled time points, the cost
can be reduced considerably compared to continuous
monitoring. However, this testing scheme only records
the number of failures that occur in the time intervals
between inspections, and hence there is some loss of
precision about the exact failure times. For interval cen-
sored data, the failure time is only known to fall within
the interval between inspection times, where it passed
at the start of the interval time, but failed before the end
of the interval.
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This article focuses on case studies for reliability test
plans (Meeker and Escobar 1998, Ch. 10) for inter-
val censored data where there is a fixed total budget
constraining the testing options. Meeker (1986) com-
pared multiple inspection schemes (including equally
time spaced, equally probability spaced, equally spaced
in log time, and constrained theoretical optimum) for
interval censored data forWeibull underlying distribu-
tions based on evaluating the asymptotic variance of
certain interesting percentile lifetime (such as 1%, 10%,
and 50% life). Seo and Yum (1991) examined some
theoretical and practical test plans for accelerated life
test for Weibull distributions based on minimizing the
asymptotic variance of certain percentile lifetime under
the use condition. Shapiro and Gulati (1996) proposed
a two-step monitoring system for testing mean lifetime
for Exponential distributions. Kim and Yum (2000)
further compared the life test plans for Exponential dis-
tributions with strategies based on controlling the pro-
ducer and the consumer risks. For most of the exist-
ing work, the inspection frequency (the planned total
number of inspections during the test duration for each
test unit) was either pre-specified or chosen arbitrarily
and the number of test units were chosen as the small-
est number of units required tomeet a certain standard
based on either minimizing the asymptotic variance or
controlling the consumer and producer risks. Consid-
ering that cost usually plays an important role in choos-
ing life test plans in real applications, this article takes a
different perspective by considering a fixed total cost as
the main constraint on the test planning. Given a fixed
total cost, the practitioner faces an immediate challenge
of choosing between the strategies that test more units
and less often versus the strategies that test fewer units
and more often. We propose a new general structure
(see Eq. [1]) to quantify the total cost comprised of
three major components that are commonly relevant
in broad applications and explore the impacts of dif-
ferent cost structures associated with different types of
tests. We also examine the relative size of different cost
components on the estimated reliability summaries to
demonstrate a different class of life test strategies that
is primarily driven by the cost. The new cost quantifi-
cation structure helps provide principled guidelines for
the practitioners to precisely assessing the cost impact
on the inspection test plan. In addition, we explore a
simulation-based approach for directly assessing the
empirical distribution of the reliability estimates rather

than relying completely on the asymptotic assumption
for studying the estimate properties. Results from both
the empirical studies and the asymptotic approxima-
tions are compared and result in general recommen-
dations for use in different applications.

Since applications have different priorities for how
the reliability results will be used, we look at how the
choice of reliability metric impacts the performance of
potential test plans. The reliability engineer in charge of
the test should decide on the implementation details of
the plan: the number of test units, the overall duration
of the test, aswell as howoften and atwhat times to con-
duct the inspections. These decisions should be made
based on the goal(s) of the test and any cost or logis-
tical constraints. Historically, some guidance on sam-
pling plans has been given by Lavin (1946) and Goode
and Kao (1960), but we revisit this guidance to illus-
trate differences in performance for a variety of quan-
tities of interest. In general, testing more units gains
more information and results inmore precise estimates
of the reliability. Having more inspections during the
course of the test reduces the uncertainty induced by
censoring and hence improves the estimation. How-
ever, increasing the number of test units or the inspec-
tion frequency also increases the overall cost of the
inspection plan. In circumstances with a fixed budget,
the trade-off between alternatives means that we can
choose to testmore units less often, or fewer unitsmore
often. In addition, the timing of the inspections affects
both the cost and the reliability estimates. The earlier
the inspections are performed, the fewer failures are
expected to be observed, which results in less infor-
mation gain due to increased degree of censoring and
also increases the overall cost as more units need to be
inspected multiple times as they survive more inspec-
tions. Hence, with a fixed total budget, the number of
test units and how often and when to inspect the units
can substantially impact the quality of the estimated
reliability.

In this article, we explore how different choices of
the sample size and inspection timing and frequency
impact the reliability assessment through a series of
short case studies. Consider a case where the lifetime
of a product, T , is assumed to follow a Weibull dis-
tribution, Weibull (α, β), using the parameterization
f (t ) = βtβ−1

αβ e−( t
α
)
β

, whereα is the characteristic life or
scale parameter, and β is the shape parameter (Tobias
and Trindade 2012, p. 88). To estimate its lifetime
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distribution, a number of test units, n, are inspected
at m prescheduled time points, t1, t2, . . . , tm−1, tm.
At each time point, the unit either passes or fails.
Failed units are removed from further testing, and units
that pass continue to be tested until the end of the
test at time tm. The obtained interval censored data,
denoted as d1, d2, . . . , dm, contain the number of fail-
ures dk observed during the time interval (tk−1, tk].
The number of units that survive (pass) through the
final test tm is denoted by r = n −∑m

k = 1 dk. For
any particular test plan with a selected combination of
{n; t1, t2, . . . , tm−1, tm}, the parameters of the Weibull
distribution, α and β , can be estimated using maxi-
mum likelihood estimation (MLE, Tobias andTrindade
2012, p. 98). Details of the data analysis using the MLE
approach are given in the section “Reliability estimates
using maximum likelihood estimation.”

One important initial aspect of setting the objec-
tives of the test is to choose the quantitative reliability
summary (or summaries) of interest. For any assumed
life distribution, a variety of reliability quantities can
be expressed as functions of the unknown parameters.
How the results will be used can often guide which
summaries are most beneficial and appropriate for the
goals of the inspection. Given the estimated model
parameters, α̂ and β̂ , other reliability summaries are
calculated as known functions of the estimated param-
eters and their uncertainty quantified based on asymp-
totic theory of MLE (see the next section for more
details). The goal is to choose an inspection test plan
that gives the most precise estimates of the reliability
characteristics of interest. In our case study, we con-
sider several typical reliability quantities of interest:

� theWeibull parameters (the scale parameterα and
the shape parameter β);

� the median lifetime T50 (the time by which half of
the population is expected to fail);

� themean time to failureMTTF (the expected life-
time for all population units);

� the 10th and 1st percentiles of lifetime, denoted as
T10 and T1, respectively (the time by which 10% or
1% of the population is expected to fail); and

� the reliability at the end of the testR(tm) (the prob-
ability that a test unit survives to the end of the
test).

Note that for different studies, not all reliability sum-
maries above are of interest or are considered equally
important. For example, in warranty studies or acceler-
ated life test plans, early failures for a small fraction of

the population under the normal use condition may be
of more interest than the mean or median lifetime. For
other studies with different goals, different choices of
reliability quantities could also be considered. Instead
of enumerating all possible reliability summaries,
this article focuses on illustrating a general method
for interval data test planning given cost constraints
through some representative case studies. The general
methodology outlined in this article for evaluating
the test plan can be easily adapted for any reliability
summary of interest chosen for a study.

Given a fixed overall budget, the number of units
used and the number of possible tests per unit in the
inspection plan is typically determined based on the
associated cost. For interval censored data where the
inspections are conducted at some preselected time
points, there are typically three types of cost involved:
(1) the one-time cost of the initial setup for a single test
unit, denoted as Cunit , (2) the cost of the test setup for
the overall inspection at each scheduled time points,
denoted as Cts, and (3) the cost of each inspection of
a test unit at each time point, denoted as Cinsp. Recall
that units that fail at early time points are removed from
testing at all subsequent inspection time points, which
means that the actual exact number of inspections for
each test unit is unknown before conducting the test.
Hence, the cost associated with individual inspections
across all test units is also unknown. However, we can
calculated the expected total cost, denoted by ETC, as
the sum of the three components:

ETC = Cunit · n +Cts · m +Cinsp · ETI [1]

where ETI = n{m −∑m−1
i = 1 F(ti)} is the expected

total number of inspections for all n test units, which
is calculated based on expecting n[1 − F(ti−1)] units
to be inspected at time ti, since all units that survived
the previous inspection need to be inspected at the
next time point no matter if the units pass or fail the
inspection. The Weibull cumulative distribution func-
tion (cdf) at ith inspection time ti, i.e., the expected pro-
portion of failure by time ti, is given by

F (ti) = 1 − e−
(
ti
α

)β

[2]

Note that the relative contributions of the above
three cost components varies considerably for different
applications. For example, for assessing the reliability
of a stockpile of missiles, the cost of setting up a unit
for testing initially, Cunit can be negligible, while the
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main costs may be the test setup at each schedule
time (gathering the units for testing and having the
equipment set-up and available for the inspection),Cts,
and the cost of individual inspections (conducting the
non-destructive test of the units),Cinsp. However, when
testing electronic components or devices, the primary
costs can be generated from both the initial setup of
the test equipment for each device, Cunit , and the indi-
vidual inspections (sending personnel to operate the
test equipment and conduct the test),Cinsp. In this case,
the fixed test setup at each inspection time, Cts, might
be negligible. Given a fixed total budget, the number of
units and how often they are tested are dependent on
the relative size of the different costs. In our case stud-
ies, we explore the impact of different cost structures
and the cost ratios between the different compo-
nents on the selection of the best inspection plans. In
particular, we look at two different cost structures.

(1) Cost structure I considers an application anal-
ogous to the stockpile test, where Cts and Cinsp

are the primary costs. Within this scenario, the
number of test units allowed primarily depends
on the relative size of the two primary costs.
If the test setup at each inspection time is of
similar magnitude or smaller than the cost for
inspecting an individual unit (Cts ≤ Cinsp), then
more units can be tested and the cost of actual
inspections will dominate the total cost. But if
the test setup cost is dramatically larger than
the individual inspections (Cts > Cinsp), then the
number of units can be tested will be reduced
considerably due to the large expense on set-
ting up for the inspection at each time point.
We explore different possible ratios for these two
components of cost, including CR1 = Cts

Cinsp
∈

{0.1, 1, 10, 25, 100}, which summarize a wide
range of possible scenarios typical of a broad
variety of applications.

(2) Cost structure II examines cases similar to
testing electronic devices where Cunit and Cinsp

are the dominant costs. For this case, we also
consider a wide range of scenarios including
CR2 = Cunit

Cinsp
∈ {0.1, 1, 5, 10, 25}. Small ratios

correspond to a very small initial cost for setting
up the test for each unit compared to an indi-
vidual inspection, while the larger ratio values
indicate the initial cost dominating the cost for
testing each unit at multiple time points. When
the initial cost per unit is relatively small, the

individual inspections dominate the total cost;
but if as the initial cost per unit becomes sub-
stantially larger than the individual inspection
cost, then the number of units possible within
budget mainly depend on the initial cost per
unit, which does not change much with how
often the inspections are conducted during the
test.

In addition to the cost structure, the shape of
the underlying lifetime distribution also affects the
expected total cost (ETC) and the relative performance
of the test plans. If the lifetime curve starts with high
reliability and drops slowly throughout the duration
of the test, then fewer units are expected to fail and
more total inspections (ETI) are anticipated across all
test units. With a fixed total budget, fewer units can
then be tested and heavier censoring at the conclu-
sion of the inspection plan is expected. However, if
the lifetime curve decreases quickly over time, then
more units are likely to fail, leading to fewer inspec-
tions expected for each test unit and allowing for more
initial units to be considered at the start of the test.
This case can lead to improvements in the precision of
estimation. Therefore, since the true underlying reli-
ability curve is generally not precisely known at the
time of planning the test, exploring different possible
shapes of the reliability curve allows us to choose a
test plan with robust performance for different possi-
ble underlying life distributions. We consider four dif-
ferentWeibull reliability curves with differently shaped
hazard functions. The selected curves reflect common
characteristics from our experiences with applications
of real systems and products. In general, the prod-
ucts start with very high overall reliability, and inter-
est in testing involves covering the early stages of their
degrading reliability. Often when the units start to
have reliability that drops below 50–70%, the manu-
facturer is less interested in characterizing their perfor-
mance. Since the hazard function often varies between
increasing, stable, or decreasing over time, we explore
each of these scenarios. While individual testing sce-
narios from real examples are proprietary, the exam-
ples chosen are indicative of common problems. The
overall test duration was chosen to be tm = 3000 hr to
have about 40–70% censoring rate across the four cases
explored. Note that this choice can be easily adapted
to meet the constraints and budget for other studies.
Since the scale parameter can be considered essen-
tially as a multiplying factor on the chosen time scale,
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Figure . (a) The reliability/survival functions and (b) the hazard functions for the four different Weibull distributions considered.

the choice of the scale parameter should not affect the
relative performance of the test plans or the gen-
eral conclusions. Figure 1 shows the reliability/survival
functions and the hazard functions for the fourWeibull
distributions. Curve 1 is aWeibull(α = 6000, β = 1.4)
distribution with an increasing hazard function with
time. Curve 2 has a constant failure rate over time
(exponential or Weibull(α = 8000, β = 1) distribu-
tion). Curve 3 is aWeibull(α = 8000, β = 0.7) distri-
butionwith has a decreasing hazard function over time.
Finally Curve 4 has a sharply decreasing hazard func-
tion (Weibull(α = 4000, β = 0.3)). Note that Curves
1 and 2 have similar reliability of around 0.68 by the end
of the test duration. Curve 3 has a lower reliability with
R(tm)� 0.63, and Curve 4 has much lower reliability of
R(tm)� 0.4 by the end of the test. The scale parameters
are chosen to control the censoring rate within the test
duration to be around the (1/3,2/3) window.

To explore different choices of inspection times
{t1, t2, . . . , tm}, we consider two common strate-
gies that are either probability-based or time-based
(Meeker 1986). The probability-based strategy chooses
inspection times with equally spaced reliabilities (i.e.,
the change of reliability between adjacent time points
are approximately equal). The time-based strategy
chooses equally spaced inspection times within the
test duration. Note that the time-based strategy is
straightforward to use regardless of the underlying
true lifetime curve, while the probability-based strat-
egy requires a good guess or estimate of reliability
curve based on subject matter expertise or historical
data. If the probability-based strategy shows no obvi-
ous advantage in performance, then the time-based
strategy is likely a better choice because of its ease of

implementation. In our case study, we compare six
inspection plans with different inspection frequencies
based on using both probability-based and time-based
plans. For the simplicity of notation, we refer to the
probability-based plans as P1, P2, and P3 with 8, 6,
and 4 inspection times, respectively, and we use T1, T2,
and T3 to denote the time-based plans with 8, 6, and
4 inspection times. Figure 2 shows the six inspection
plans for the first Weibull distribution (Curve 1) with
the top row containing the probability-based choices.
Note that the probabilities between inspection points
are equally spaced on the y-axis. The bottom row of
Figure 2 shows the time-based choices with equal spac-
ing on the x-axis between inspections.

The remainder of this article is organized as follows.
In the next section, we provide more details about the
planned analysis using maximum likelihood estima-
tion and howpotential quantities of interest can be esti-
mated from the Weibull parameterization. The follow-
ing section compares the different reliability estimates
for the six inspection plans for different cost ratios
under cost structure I (CR1 = Cts

Cinsp
) for different under-

lying reliability curves. Then, the next section consid-
ers similar comparisons for the second cost structure
II (CR2 = Cunit

Cinsp
) across different cost ratios. The final

section contains some conclusions and discussion.

Reliability estimates usingmaximum likelihood
estimation (MLE)

Since interval censored data have incomplete informa-
tion on the failure times of the test units in the sample,
the likelihood of each observed failure is captured
by the probability that the unit failed in its observed
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Figure . Six inspection plans combining the probability-based (first row) or time-based (second row) plans with the number of inspec-
tions across the test duration (, , and  times corresponding to left, middle, and right columns, respectively) for Curve  with the
Weibull(6000, 1.4) distribution.

time interval (ti−1, ti], calculated by F(ti) − F(ti−1),
where F(·) is the Weibull cdf defined in Eq. [2]. The
likelihood for each unit still working at the end of
the test (right censored at the end of the test, tm) is
given by 1 − F(tm). For a dataset with d1, d2, . . . , dm
observed failures at times t1, t2, . . . , tm, respectively,
and n −∑m

i = 1 di survivors from n total test units, the
likelihood function is given by

L (α, β) ∝ F(t1)d1
{ m∏
i = 2

[F (ti) − F (ti−1)]di
}

× [1 − F (tm)]
n−

m∑
i = 1

di
.

The MLEs of the model parameters are obtained by
minimizing the negative log-likelihood

− log (L (α, β)) = C + d1logF (t1)

+
m∑

i = 2

dilog [F (ti) − F (ti−1)]

+
(
n −

m∑
i = 1

di

)
log [1 − F (tm)] ,

where C is a constant. A closed form analytical solu-
tion for the MLEs that minimize the negative log-
likelihood is generally not available for interval cen-
sored data. Instead, a numerical search algorithm, such
as theNewton-based approaches (Deuflhard 2004), can
be used to find the MLEs for α and β .

Since numerical search algorithms, especially the
Newton-based approaches, can be sensitive to the
initial values specified, we use a combination of reli-
ability probability plotting and least squares estima-
tion to provide sensible initial values to accelerate
the search and avoid spurious convergence. For
a Weibull distribution, we have ln(t ) = ln(α) +
1
β
ln{−ln[1 − F(t )]}, and hence a linear regression

model fitted between ln(ti) and ln{−ln[1 − F̂(ti)]}
provides guidance on sensible starting values for
model parameters α and β . F̂(ti) is estimated with
the empirical cdf, F̂ (ti) = ∑i

j=1 d j /
∑m

j = 1 d j at
all ti’s where di > 0. Least squares (LS) methods
can be used to estimate the intercept ln(α) and
slope 1/β , which are then used as initial values in
the Newton-based numerical search algorithm. The
nlm function in R (https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/nlm.html) was used to find

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/nlm.html
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the MLEs. The code for implementing the method is
available upon request from the authors.

With the MLEs, α̂ and β̂ , for the Weibull parame-
ters, other reliability quantities of interest can be calcu-
lated that characterize specific aspects of the distribu-
tion. For example, the median lifetime, T50, the mean
time to failure, MTTF , the 10th and 1st percentile of
lifetime, T10 andT1, and the reliability at time tm,R(tm),
can be estimated by

T̂50 = α̂ (−ln (0.5))1/β̂ = α̂(ln (2))1/β̂

̂MTTF = α̂ �
(
1 + 1/β̂

)
T̂10 = α̂ (−ln (0.9))1/β̂

T̂1 = α̂ (−ln (0.99))1/β̂

R̂ (tm) = e−( tm
α̂ )

β̂

,

respectively. Here, � (x) = ∫∞
0 tx−1e−tdt is the

Gamma function. Note, the low percentile lifetime
summaries are useful for estimating the time by which
a small fraction of the population units will fail. This
quantification of early failure time is often of interest
in reliability demonstration and assurance activities,
where the impact of even a small fraction of failures is
potentially of high consequence. For example, a new
design can be accepted if the 10% life (by which 10%
of the units fail) is expected to exceed 2,000 hr with a
certain confidence level. To quantify the uncertainty
of the estimated reliability quantities, the asymptotic
properties of the MLEs are often used to estimate
approximate confidence intervals. Let G(θ ) denote a
function of the model parameters, θ , then the asymp-
totic variance, AV , of G(θ̂ ) can be obtained using the
Delta method (Casella and Berger 2002) as given by

AV
[
G
(
θ̂
)]

=
[
∂G (θ )

∂θ

]
θ=θ̂

AV
(
θ̂
) [∂G (θ )

∂θ

]T
θ =θ̂

.

[3]

In our application, we use the parameterization θ =
(ln(α), 1/β) to obtain the MLEs and the asymptotic
variance of θ̂ can be obtained using the inverse matrix
of theHessianmatrix obtained from theRoutput. Then
the asymptotic variances of T̂50, ̂MTTF , T̂10, T̂1, and
R̂(tm) can be obtained using the formulas in Eq. [3].
Note that the asymptotic approximation works well for
large samples. For our case studies, we also examine
the empirical confidence intervals obtained using the
Monte Carlo method from the simulations. In the next

section, we compare the relative performance of the
Monte Carlo and asymptotic confidence intervals from
different inspection plans.

Comparisons under cost structure I

In this section, we compare different inspection plans
based on a variety of cost ratios under cost structure
I (CR1 = Cts

Cinsp
), where the one-time set-up cost for

each unit, Cunit , is assumed to be negligible. For this
problem, we assume a fixed total budget of 1,200 cost
units. Note that like the scale parameters, the total cost
also serves as a multiplying factor on the cost unit,
and hence has little impact on the patterns of relia-
bility performance or the general conclusions. A prac-
titioner could easily adapt these constraints to match
their problem, and the general methodology adapts
easily to other fixed costs. To explore the impact of dif-
ferent reliability curves, we simulateM = 10, 000 data
sets from each of the four reliability curves in Figure 1,
and use the methods described previously to analyze
the data and obtain uncertainty summaries of the reli-
ability quantities of interest for all combinations of the
six inspection plans and five possible cost ratios,CR1 ∈
{0.1, 1, 10, 25, 100}.

Reliability curve 1 –Weibull distributionwith an
increasing hazard function

Consider the Weibull(α = 6000, β = 1.4) distribu-
tion with an increasing hazard function, shown with
the solid curve in Figure 1b. For a test duration of
3,000 hr, Figure 2 shows the inspection times for the six
plans chosen with the probability-based (top row) or
time-based (bottom row) strategy for 8, 6, or 4 inspec-
tions (left to right columns). Recall from the introduc-
tion that the probability-based plans are equally spaced
on the y-axis, while the time-based plans are equally
spaced on the x-axis. The time-based strategies (plans
T1, T2, and T3) inspect every 375, 500, and 750 hr for a
total of 8, 6, and 4 inspections, respectively. Compared
to the evenly time spaced strategies, the probability-
based strategies (plans P1, P2, and P3) tend to have
longer gaps between inspections at early times (e.g., the
first inspection is done around 600, 750, and 1,000 hr
for 8, 6, and 4 inspections, respectively) and more fre-
quent inspections towards the end of the test. This is
because the reliability reduces more quickly for older
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Table . The number of test units and the number of expected total inspections for all combinations of the six inspection plans and five
cost ratios (CR1 = Cts/Cinsp) under cost structure .

Number of Units (N) Number of Expected Total Inspections

CR1 P P P T T T P P P T T T

.            
            
            
            
            

ages and hence the time interval between inspections
becomes shorter for equal changes in reliability.

Given the total cost of 1,200, we consider five dif-
ferent cost ratios where CR1 ∈ {0.1, 1, 10, 25, 100}. By
ignoring the first term in Eq. [1] (since it is assumed
to be negligible), we calculate the largest number of
test units possible that stays within the total budget.
Figure 3a shows a plot of the number of test units
for different cost ratios. The cost ratio on the x-axis
is plotted on a log scale, which allows easier inter-
polation between the examined cost ratios. Different
inspection plans are shown with different line types
and symbols. When the cost ratio is relatively small
(below 1), there is hardly any difference in the number
of units within a given inspection paradigm. However,
as the cost ratio becomes larger, the initial sample size
decreases considerably for each test plan. Compar-
ing across the plans, there are substantial differences
between different inspection frequencies. The more
often we conduct the inspections, the fewer units
we can afford to test. However, there are negligible
differences between probability-based and time-based
strategies for the same number of inspections (e.g., T1

vs. P1). Figure 3b shows the expected total number of
inspections (ETI) across all individual test units for the
six plans. When the cost ratio is smaller than 1, there is
little difference between the ETIs for all six plans. But
as the test setup cost (Cts) becomes considerably larger
than the cost for individual inspections (Cinsp), fewer
total units can be tested for more frequent inspection
plans, as more of the budget is spent on test setup at
each testing time point. The probability-based and the
time-based strategies show negligible differences in
terms of the ETIs. Table 1 gives the numerical values
for both quantities shown in Figure 3.

To evaluate the performance of the testing plans, we
are interested in both the accuracy and precision of the
estimated quantities. Hence, we compare the different
test plans using the relative root of mean squared error
(RMSE). Figure 4 shows this quantity for α, β , T50,
MTTF , T10, T1, and R(tm), and the real cost from
the actual tests, summarized over the 10,000 simula-
tions. Note that the relative RMSE reports the ratio
of the RMSE and the true value, and hence provides
a standardized (unitless) measurement for the overall
discrepancy between the estimates and the true value

Figure . (a) The number of test units and (b) the expected number of inspections (ETIs) for the six inspection plans across five different
cost ratios (CR1 = Cts/Cinsp) under cost structure I for Curve  with theWeibull(6000, 1.4) distribution.
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Figure . The relative root of mean squared error (RMSE relative to the true value) for the seven reliability summaries and the real cost for
the six inspection plans with five cost ratios under cost structure I for Curve  with theWeibull(6000, 1.4) distribution.

measured in the squared distance across a larger num-
ber of simulations. The summary can be partitioned
into components for the variance and squared bias,
which quantify both precision and accuracy of the esti-
mates. The real cost relative RMSEmeasures howmuch
difference there is in the total cost of the inspection
plans once the actual number of observed failures for a
particular test is taken into account at each time point.
Generally, the reliability estimates have increased rel-
ative RMSE for plans where more units are inspected
less often. The probability-based and time-based
strategies have similar performance across all reliabil-
ity summaries. The real cost also has smaller relative
RMSE as we inspect more units and less often. How-
ever, the probability-based strategies generally have

considerably larger relative RMSE than the time-based,
which indicates the time-based strategy tends to have
more consistent real cost relative to the expected cost.

If we look at the reliability estimates across dif-
ferent cost ratios between Cts and Cinsp, we see that
when the test setup costs no more than the individ-
ual inspections (CR1 < 1), there are only small differ-
ences between the inspection paradigms for all sum-
maries. As the cost ratio increases, the relative RMSE
increases slowly until the test setup becomesmore than
25 times the cost of individual inspections, then the
relative RMSE increases more rapidly. The probability-
based and time-based strategies still have similar
performance. However, the relative RMSE inflates
more quickly for plans that inspect fewer units more
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Table . The RMSE of the seven reliability quantities and the real cost for all combinations of the six inspection plans and five cost ratios
under cost structure . Best values (with ties) are shown in bold and second choices are shown in italics for each combination.

α β

CR1 P P P T T T P P P T T T

. . . . . . 0.113 . . . . . 0.106
 . . . . . 0.112 . . . . . 0.105
 . . . . . 0.115 . . . . . 0.108
 . . . . . 0.119 . . . . . 0.112
 . . . . . 0.145 . . . . . 0.131

T50 MT TF

. . . . . . 0.092 . . . . . 0.131
 . . . . . 0.091 . . . . . 0.128
 . . . . . 0.094 . . . . . 0.132
 . . . . . 0.097 . . . . . 0.137
 . . . . . 0.117 . . . . . 0.169

T10 T1

. . . . . . 0.114 . . . . . 0.279
 . . . . . 0.113 . . . . . 0.278
 . . . . . 0.116 . . . . . 0.285
 . . . . . 0.119 . . . . . 0.298
 . . . . . 0.139 . . . . . 0.348

R(tm) Real Cost

. . . 0.037 . . 0.037 . . . . . 0.052
 . . 0.037 . . 0.037 . . . . . 0.052
 . . 0.037 . . . . . . . . 0.05
 . . 0.038 . . . . . . . . 0.047
 . . . . . 0.045 . . . . . 0.032

frequently. In contrast, the relative RMSE for real cost
reduces as the cost ratio gets larger between Cts and
Cinsp. As CR1 approaches 100, the difference between
the real costs between the 6 inspection plans decrease
and results look quite similar. The corresponding
numerical values of relative RMSE for all six plans with
different cost ratios are shown in Table 2.

The RMSE provides a combined summary of both
bias and variance of the estimates. To understand the
relative contribution from the two aspects, Table A1 in
the Appendix reports the fraction of variance out of
the total mean squared error (MSE) across the 10,000
simulations for the 5 reliability summaries and the
real cost. The variance consistently dominates the total
MSE for all reliability summaries with a lowest frac-
tion of 97.9% for all combinations of scenarios. There-
fore, the estimated biases of the reliability summaries
are minimal for all reliability summaries. In contrast,
the variance of real cost is generally small and counts
for no more than 16% of the MSE across all scenar-
ios. The real cost is generally larger than the expected
cost by 2–12% across different cost ratios and inspec-
tion plans. This indicates that the cost tend to be con-
sistently higher than the expected cost with relatively
small variability across simulations. However, the dif-
ference gets smaller for largest cost ratios since the test

setup cost takes a larger proportion of the total budget
and is not subject to any uncertainty. Also, the time-
based strategies generally have smaller bias than the
probability-based strategies.

Figure 5 shows the relative width of the 95% empir-
ical confidence interval (CI) for the reliability sum-
maries and the real cost for all six inspection plans
across different cost ratios. Again, for improved inter-
pretability we standardize the CI width by dividing by
the true value. The patterns are consistent with the rel-
ative RMSE in Figure 4 for all reliability summaries.
Across all reliability summaries, the MTTF is esti-
mated least precisely, whileR(tm) is most precisely esti-
mated relative to its size. The main differences in the
precision of the CIs are caused by the different inspec-
tion frequencies. Generally, more precise estimation
(narrower CI) is obtained by inspectingmore units and
less often. The probability-based and the time-based
strategies have similar performance. As the cost ratio
increases for more expensive test setups, we gradually
lose precision until the test setup becomes very expen-
sive (more than 25 times of the cost for individual
inspections) and the width of the empirical CI is sub-
stantially inflated. On the other hand, the plans that
inspect fewer units more often usually have a smaller
empirical CI width for real cost, which translates into
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Figure . The relative width of the % empirical confidence intervals relative to the true value for the seven reliability summaries and the
real cost for the six inspection plans with five cost ratios under cost structure I for Curve  with theWeibull(6000, 1.4) distribution.

smaller variation of the realized cost. This is because
more frequent inspections tend to result in less vari-
ability in the number of failures observed within each
time interval, and hence less variation in the realized
cost. The numerical values of the relative empirical CI
widths from Figure 5 are shown in Table 3.

Note that the average empirical CI width summary
in Figure 5 was based on summarizing over 10,000
simulations. An alternative summary frequently used
in many real applications is the asymptotic confidence
interval, which can be computed from a single set of
data. Measures of uncertainty based on the width of
the 95% asymptotic confidence intervals for four reli-
ability summaries T50, MTTF, T10, and R(tm) are pro-
vided in Figure A1 in the Appendix, with the actual

numerical values included in Table 4. The four plots in
the first columns of Figure A1 shows the average rela-
tive asymptotic CI width over 10,000 simulations (the
average width of the calculated CIs relative to the true
value of the quantity of interest), while the second col-
umn shows the upper 95% asymptotic CI width across
all the simulations. These two summaries provide typ-
ical and worst case scenario summaries for the uncer-
tainty measured based on the asymptotic results. Note
that the average asymptotic CI width for the four reli-
ability summaries on T50, MTTF , T10, and R(tm) gen-
erally match with the empirical CI width summary in
Figure 5, except that the average asymptotic CI width
forMTTF was a bit larger than the empirical CI width.
This can be manifested in some cases that we have
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Table . The relative width of the empirical % confidence intervals summarized across , simulations (relative to the size of the
quantity) for the seven reliability quantities and the real cost for all combinations of the six inspection plans and five cost ratios under cost
structure . Best values (with ties) are shown in bold and second choices are shown in italics for each combination.

α β

CR1 P P P T T T P P P -T T T

. . . . . . 0.441 . . . . . 0.407
 . . . . . 0.436 . . . . . 0.414
 . . . . . 0.444 . . . . . 0.421
 . . . . . 0.459 . . . . . 0.443
 . . . . . 0.552 . . . . . 0.521

T50 MT TF

. . . . . . 0.363 . . . . . 0.504
 . . . . . 0.352 . . . . . 0.496
 . . 0.366 . . . . . . . . 0.506
 . . . . . 0.377 . . . . . 0.525
 . . . . . 0.447 . . . . . 0.645

T10 T1

. . . . . . 0.446 . . . . . 1.09
 . . . . . 0.443 . . . . . 1.077
 . . 0.45 . . 0.45 . . . . . 1.101
 . . . . . 0.464 . . . . . 1.149
 . . . . . 0.546 . . . . . 1.35

R(tm) Real Cost

. . . 0.146 . . . . . . 0.018 . .
 . . . . . 0.145 . . . 0.018 . .
 . . 0.146 . . . 0.018 . . 0.018 . .
 . . 0.149 . . . 0.018 . . 0.018 . .
 . . . . . 0.176 0.011 . . 0.011 . .

evaluated using other reliability curves and/or cost
structures (shown in the SM) and it results from hav-
ing a few exceptional cases where the numerical search
for the MLEs fail to converge to sensible estimates,
which led to large estimates of MTTF and its associ-
ated asymptotic confidence intervals.We used 10 times
the true values as the threshold to exclude the 4 extreme
cases (out of 10,000 simulations) for this case.With this
wide acceptable range, the average asymptotic CI width
is still inflated by a few extreme estimates less than
10 times the true values. For some other cases shown
in the SM, the upper 95% asymptotic CI width can be
more robust to the extreme MLEs from the numerical
optimization. Comparing Figures 5 andA1, we find the
95% empirical CI width and the average 95% asymp-
totic CI width are quite comparable for the T50 and
R(3000) summaries. However, the asymptotic CI sum-
maries are wider forMTTF compared to the empirical
CI width. This is caused by a poor approximation of
the sampling distribution ofMTTF based on a normal
distribution from the asymptotic inference. However,
the asymptotic CI width for the 10th and 1st percentiles
of lifetime (Table 4) are substantially smaller than
the empirical CI width obtained from the simulations
(Table 3). The smaller percentiles have amore dramatic
difference between the asymptotic and simulation

results (the 95% empirical CI width is about 10 times
wider than the average asymptotic CIwidth). This indi-
cates the asymptotic approximation does not work well
for (extremely) small percentile lifetime summaries,
and using the asymptotic results for early failure times
tend to substantially underestimate the true associated
uncertainty.

The graphical summaries shown in Figures 3–5 as
well as Figure A1 in the Appendix allow the pattern of
change across different cost structures to be visualized
and provide a simple method for approximately inter-
polating to other intermediate cost structures. Gener-
ally, inspecting less often with more units results in
the best possible performance with more precise esti-
mates of reliability summaries. The difference becomes
larger as the test setup cost becomes more expensive
than inspecting individual units. When the cost ratio
is smaller than 25, the uncertainty of reliability esti-
mates is quite robust to change in cost ratio, which is
evidenced by the relatively flat curves in Figures 4 and
5. Also, the probability-based and time-based strate-
gies are very similar (almost overlapping lines) for cases
with moderate cost ratios (CR1 < 25). Only P1 and T1
show some differences in the reliability summaries for
larger cost ratios (CR1 > 25). The difference in the
real cost differs more between inspection plans, but the
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Table . The average (left columns) and % (right columns) relativewidth for the %asymptotic confidence intervals across simulations
for T50, MTTF, R(tm), T10, and T1 for all combinations of the six inspection plans and five cost ratios under cost structure . Best values
(with ties) are shown in bold and second choices are shown in italics for each combination.

Average Asymptotic CI Width Upper % Asymptotic CI Width

CR1 P P P T T T P P P T T T

T50 T50

. . . . . . 0.354 . . . . . 0.514
 . . . . . 0.355 . . . . . 0.516
 . . . . . 0.359 . . . . . 0.527
 . . . . . 0.369  . . . . 0.543
 . . . . . 0.444 . . . . . 0.706

MT TF MT TF

. . . . . . 0.494 . . . . . 0.797
 . . . . . 0.496 . . . . . 0.795
 . . . . . 0.501 . . . . . 0.806
 . . . . . 0.515 . . . . . 0.841
 . . . . . 0.63 . . .  . 1.128

R(tm) R(tm)

. . . 0.144 . . . . . 0.149 . . .
 . . 0.144 . . . . . 0.149 . . .
 . . 0.147 . . . . . 0.151 . . .
 . . 0.15 . . . . . 0.156 . . .
 . . 0.176 . . . . . 0.183 . . .

T10 T10

. . . . . . 0.584 . . . . . 0.749
 . . . . . 0.583 . . . . . 0.748
 . . . . . 0.596 . . . . . 0.773
 . . . . . 0.612 . . . . . 0.795
 . . . . . 0.726 . . . . . 0.989

T1 T1

. . . 0.111 . . 0.111 . . . . . 0.152
 . . 0.111 . . 0.111 . . . . . 0.153

. . 0.112 . . . . . . . . 0.156
 . . 0.116 . . . . . . . . 0.163
 . . 0.137 . . 0.137 . . . . . 0.201

largest relative RMSE is still moderate as no more than
12% of the total cost for all cases. For large cost ratios,
the RMSE of the cost is within 5% of the total cost.

We now summarize the patterns seen for the other
Weibull curves (Curves 2, 3, and 4). Details in the cor-
responding figures and tables are given in the online
supplementary information (SI) A.2, A.3, and A.4,
respectively. For Curve 2 with aWeibull(8000, 1) dis-
tribution and a constant failure rate, the patterns shown
in SM A.2 looks very similar to Curve 1, except the
relative RMSE for T50 and MTTF increase slightly. As
Curve 2 is even closer to a straight line compared to
Curve 1 (see Figure 1a), there are even smaller differ-
ences between probability-based and the time-based
reliability, which make the two strategy types have
almost identical testing intervals, and hence very sim-
ilar performance for reliability summaries. Note that
the difference for real cost between the probability- and
time-based strategies is smaller compared to Curve 1
results. Inspection frequency is still the main driving

factor for differences in estimation precision. Small cost
ratios tend to have little impact on the reliability esti-
mates. But as the test setup becomes dramatically more
expensive than the individual examination, fewer test
units can be evaluated, which results in less precise esti-
mation of reliability summaries. In contrast, the real
cost becomes more consistent when the fixed test setup
cost increases with higher cost ratio.

For Curve 3 based on a Weibull(8000, 0.7) dis-
tribution and a decreasing failure rate, a few more
units can be tested with the slightly lower reliabil-
ity at the end of the test interval (hence more fail-
ures and fewer ETIs during the course of the test).
Results are shown in the SI A.3. Compared with pre-
vious cases especially Curve 2, the reliability decreases
faster early and has a bit less linear shape over time,
hence there are slightly increased differences between
the probability-based and time-based strategies. The
probability-based strategies achieve a bit more preci-
sion for estimating the model parameter β , as well as



QUALITY ENGINEERING 525

Figure . (a) The number of test units and (b) the expected total inspections (ETIs) for the six inspection plans across the five different cost
ratios (C R1 = Cts/Cinsp) under cost structure I for Curve  with theWeibull(4000, 0.3) distribution.

MTTF . The improvement is substantial for estimat-
ing MTTF when the cost ratio is larger than 25. The
probability-based strategies also havemore consistency
in the realized cost. Although the time-based strate-
gies seem to estimate R(3000) slightly better for all cost
ratios, the differences are very small.

As the reliability curve gets further away
from a straight line as shown in Curve 4 with a
Weibull(4000, 0.3) distribution and a quickly decreas-
ing hazard function, higher failure rates are expected
throughout the test period and hence considerably
more units are allowed to be tested given the fixed total
budget, as shown in Figure 6 (with numerical values
available in Table A.4.1 in the SI). However, due to
the quickly reducing reliability during early inspec-
tion time, the probability-based strategies have very
frequent inspections during the first 200 hr and very
few inspections after 500 hr (as shown in Figure A2 in
the Appendix). As a result, the interval data have fewer
failures in the early short inspection time intervals but
more failures during the later long inspection intervals,
whichmay result in less precise estimation of reliability
shape parameter β . Figure 7 shows the relative RMSE
for the seven reliability summaries and the real cost for
this scenario. A few observations can be made. First,
inspection frequency still dominates the performance
for estimating the scale parameter α, T50, and R(3000).
However, with the same inspection frequency, the
time-based strategies consistently have smaller RMSE
than the corresponding probability-based strategies.
The difference becomes more substantial as we inspect

more often, as more precision is lost with the smaller
numbers of failures during early inspections. On the
other hand, having more inspections during the early
times when the reliability changes very quickly tend to
give a more precise estimation of the shape parameter
β , theMTTF as well as the early percentilesT10 andT1,
which even dominates the impact from the inspection
frequency for cases without extremely large cost ratios.
This is evidenced by the probability-based strategies
with different inspection frequencies all have consis-
tently smaller RMSE than the time-based strategies for
CR1 < 50. The patterns are less pronounced for the
MTTF plot as the RMSE for plan T1 was substantially
inflated due to a few extreme estimates obtained in
the simulations. Also the probability-based strategies
have consistently smaller RMSE for real cost due to the
small uncertainty associated with the failures during
the early inspection time intervals. Numerical sum-
maries are available in Table A.4.2 in the SI. Figure 8
shows the relative width of the 95% empirical CIs
for Curve 4. Similar patterns can be observed for the
precision of all reliability summaries and the real cost.
The asymptotic results are available in Section A.4 in
the SI, which shows the same general performance
across the different inspection paradigms.

In summary, under cost structure I when the test
setup and the individual inspections dominate the esti-
mated total cost in Eq. [1], the plans that inspect more
units less often tend to offer more precise estimates of
reliability quantities. The probability-based and time-
based strategies have very similar performance when
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Figure . The RMSE (relative to the true value) for the seven reliability summaries and the real cost for the six inspection plans with five
cost ratios under cost structure I for Curve  withWeibull(4000, 0.3) distribution.

the true reliability curve does not differ much from
a linear function of time. In this case, the time-based
strategy is likely the best choice due to its simplicity
of implementation. However, as the reliability curve
becomes farther away from a straight line with a sharp
decrease in early lifetime, the time-based strategy is still
best for estimating the scale parameter α, median life-
time T50, and the reliability at the end of inspection
period R(tm) with generally smaller relative RMSE and
width of the empirical and asymptotic CIs for all possi-
ble cost ratios. However, the probability-based strate-
gies generally provide better estimates of the shape
parameter β , the mean lifetime MTTF , and the early
percentiles of lifetime such as T10 and T1. This effect
is even more important than the inspection frequency
whenCR1 < 50. As to the variability in the real cost, the

time-based plans which inspect more units less often
also tend to have smaller relative RMSE for most of the
cost ratios. Therefore, using a time-based strategy with
a larger number of test units and fewer testing points
could be an easily implemented robust choice for most
of the scenarios except for a population with very high
infant failure rate when there is a focus on the shape
parameter β or the average lifetime, MTTF , or any
early percentile of lifetime such as T10 or T1.

Comparisons under cost structure II

Cost structure II considers a scenario when the test
setup Cts is considered negligible and the initial set
up cost per unit Cunit and the individual inspection
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Figure . The relative width of the % empirical confidence intervals relative to the true value for the seven reliability quantities and the
real cost for the six inspection plans with five cost ratios under cost structure I for Curve  withWeibull(4000, 0.3) distribution.

at each time point, Cinsp, are the major components
contributing to the total cost. Under this cost struc-
ture, the total cost for each unit is Cunit + si ×Cinsp,
where si represents the actual number of inspections
performed for ith unit. As the set up cost per unit,Cunit ,
becomes substantially larger than the cost of inspec-
tion at each time point, Cinsp, the fixed cost per unit
will dominate the total cost for each test unit regard-
less how often the inspections are conducted through-
out the test. Hence as the ratio CR2 = Cunit/Cinsp

increases, there are fewer distinctions between the dif-
ferent inspection plans regardless of howoften the units
are tested. We explore a wide range of possible cost
ratios, CR2 ∈ {0.1, 1, 5, 10, 25}. Figure 9a shows the
number of test units and the total expected inspections

for the six inspection plans for Curve 1 based on the
Weibull(6000, 1.4) distribution. We can see that when
the set up cost per unit is relatively small compared to
the individual inspections, inspecting less often allows
the experimenter to test a lot more units. However,
as the cost ratio increases, the difference in the num-
ber of test units possible becomes smaller until there
are almost no differences between the six inspection
plans. On the other hand, for smallCR2 the total num-
ber of inspections starts off very similarly for all six
plans, since the cost of the individual inspections dom-
inates the total cost. As the cost ratio increases, the
total cost associated with each test unit increases, and
hence fewer units can be tested which leads to less pre-
cision of reliability estimates. As the fixed cost per unit
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Figure . (a) The number of test units and (b) the total expected inspections for the six inspection plans and the five cost ratios under cost
structure II for Curve  with aWeibull(6000, 1.4) distribution.

dominates the total cost on each test unit, all the plans
have essentially similar numbers of test units. As a
result, the plans that test the units more often have
more precise estimation.

Figure 10 shows the relative RMSE for each of the
seven reliability summaries and the real cost for Curve
1. When the cost ratio is small to moderate (CR2 ≤
10), similar to cost structure I, the inspection frequency
is the main factor driving changes in the precision of
reliability estimates. The plans that inspect more units
less often have smaller relative RMSE, and there is lit-
tle difference between the probability-based and time-
based strategies. As the cost ratio increases, estima-
tion precision is lost due to being able to test fewer
units. However, as the cost ratio becomes so large that
all the plans have similar numbers of test units, then
the plans that test more often have more precise esti-
mation. The probability-based plans have similar per-
formance as the time-based plans for true reliability
curves that are close to linear during the time of the
testing.

In addition, the plans that inspect more units less
often tend to have smaller RMSE for the real cost, while
the time-based strategies generally have a more consis-
tent real cost than the probability-based strategies with
the same inspection frequency. Also, for small to mod-
erate cost ratios, the real cost is generally higher than
the expected cost, but the miss from the expected cost
is typically smaller as cost ratio increases, which can be
explained by the larger fraction of variance relative to
MSE for bigger cost ratios (see Table B.1.3 in the SI).
For large cost ratios (CR2 ≈ 25), the real cost is within
1.5% of the anticipated cost.

Figure 11 shows the relative width of the 95%
empirical CIs, which provides an alternate means of
quantifying the variability of the quantities. Similar to
cost structure I, the variance of all reliability estimates
dominate the bias and take about 97–100% of the MSE
for all scenarios (see Table B.1.3 in the SI). The empiri-
cal CI width also favors inspectingmore units less often
for small to moderate cost ratios. On the other hand,
the plans that inspect less often have more variation
for the real cost. The differences diminish as the cost
ratio becomes large (close to 25). The probability-based
and time-based strategies with the same inspection fre-
quency have similar performance. More details for this
scenario are given in the SI.

The results for Curves 2–4 are available in Sec-
tions B.2–B.4 in the SI, respectively. The overall
patterns are generally consistent with Curve 1 for the
relative performance of the different testing strate-
gies, with a few exceptions. As the reliability curves
become considerably different from a straight line, the
probability-based plans tend to have a slight advantage
with more precisely capturing the shape of the distri-
bution (β) compared to the time-based plans. Another
difference between the different Weibull distributions
is that the probability-based and time-based strategies
showmore differences for Curve 4 from the other three
curves. The time-based strategies can provide slightly
more precise estimates for the scale parameter α,
median lifetime T50, and the R(3000) given a particular
inspection frequency, while the probability-based
strategies tend to provide better estimates of the shape
parameter β , MTTF , T10, and T1 regardless of the
inspection frequency. This effect becomes even more
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Figure . The relative root of mean squared error (RMSE relative to the true value) for the seven reliability summaries and the real cost for
the six inspection plans with five cost ratios under cost structure II for Curve  with aWeibull(6000, 1.4) distribution.

important than the inspection frequency for all cost
ratios and becomes more prominent for larger cost
ratios.

In summary, under cost structure II when the cost
per unit and the individual inspections dominate
the anticipated total cost in Eq. [1], the plans that
inspect more units less often generally offer more
precise estimates of the reliability quantities described
in this article. The probability-based and time-based
strategies have similar performance when the true
reliability curve does not differ much from a lin-
ear function of time. The time-based strategies are
again likely to be preferred for their simplicity of
implementation. Note that as the cost ratio increases,
fewer units can be tested as the cost per unit takes

a larger fraction of the total cost, and hence more
precision is lost for all of the reliability estimates
across all inspection plans. However, with the dimin-
ishing difference in the number of test units across
different plans with the dominant cost per unit, the
difference in the estimated reliabilities from different
inspection plans also becomes very small. The overall
difference between the two strategies for inspection
for a fixed number of inspection points is generally
not large, and if multiple quantities are of interest,
there is generally not a severe trade-off between
alternatives. Recall, that the probability-based
strategies are dependent on an educated guess about
the shape of the true underlying lifetime curve. There-
fore, using a time-based strategy with more test units
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Figure . The relative width of the % empirical confidence intervals relative to the true value for the seven reliability summaries and
the real cost for the six inspection plans with five cost ratios under cost structure II for Curve  with aWeibull(6000, 1.4) distribution.

and less frequent inspections could be a convenient
and robust choice for most scenarios except for distri-
butions with high infant mortality rates and when the
experimenter is primarily interested in good estima-
tion of the shape parameter β , or the average lifetime,
MTTF , or the early failure times such as T10 or T1.

Discussion and conclusions

This article considers the selection of inspection plans
for interval censored data to achieve good reliability
estimates subject to a constraint on the total cost. A
new general cost structure was proposed to guide
the precise quantification of total cost in inspection
test planning. The article outlines a variety of differ-
ent reliability metrics to use as potential criteria for

optimization, presents a flexible method for evaluating
different alternatives, as well as provides case study
results for a variety of different common scenarios.
Under this framework, a practitioner should be able
to adapt the approach to their particular scenario and
find tailored results. The characteristics of interest
that were considered were the Weibull scale and shape
parameters, median lifetime, mean time to failure, the
10th and the 1st percentiles of lifetime, and estimated
reliability at the conclusion of the test. Several main
factors that drive change in the estimated reliability for
multiple summaries of interest have been evaluated.
These include the number of test units, the inspection
frequency, and the choice of inspection time points
based on achieving evenly spaced probabilities or
times. Considering the potentially different impacts
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from the relative cost of different contributions to
the total cost for different applications, we explored
two representative case studies considering fixed total
budgets with very different cost structures. The main
contributors to cost structure I are the cost for test
setup at each inspection time point and the cost for
individual inspections. Alternately, the main contrib-
utors to cost structure II are the cost for the initial
setup for each test unit in addition to each individual
inspections. A wide variety of cost ratios between
the two primary cost components are evaluated for
each case study to understand the potentially different
impacts on reliability estimates. In addition, the roles
of the underlying reliability mechanism, captured

by different shapes of reliability curves, are studied
by exploring four different Weibull reliability curves
with different hazard rates. Also, the assessment of
the reliability estimates are conducted based on sim-
ulation studies in addition to the asymptotic approx-
imation that was commonly employed in existing
work.

Across the diverse combinations of different impact
factors, the patterns have many similarities. For both
cost structures, when the reliability curves are not
too different from a straight line, the dominant factor
driving changes in the MSE of the reliability estimates
and the real cost for the test is the inspection frequency.
Table 5 shows the general results across a variety of

Table . Summary of funding with general recommendations.

Top Inspection Plans

Cost Structure I For
CR1 ∈ {0.1, 1, 10, 25, 100}∗ Cost Structure II For

CR2 ∈ {0.1, 1, 5, 10, 25}∗

Reliability Curve Resp./Metric RMSE ECIW RMSE ECIW Comments

Curve :∗
Increasing hazard

β . T&P perform similarly.
MT TF . T is preferred for being

slightly better for most
scenarios and easy to
implement.

∗
Censor rate at . T50 Best: T; Second: P

T10
T1
R Best: T≈ P

C Best: T Best: T≈P Best: T Best: T≈P
Second: P Second: P

Curve : β . Despite P is slightly
better for a lot of scenarios,
T is generally preferred
due to very similar perform
with easier implementation

∗
Constant hazard MT TF

∗
Censor rate at . T50 Best: P; Second: T

T10
T1
R Best: T≈P

C Best: T Best: T≈P Best: T Best: T≈P
Second: P Second: P

Curve : β . T&P still perform
∗
Decreasing hazard MT TF similarly, except P shows

∗
Censor rate at . T50 Best: P; Second: T slightly more advantage

T10 when estimatingβ and
T1 MT TF
R Best: T≈P . T is still recommended

for easy implementation

C Best: T Best: T≈P Best: T Best: P
Second: P Second: P Second: T

Curve : β . If T or R is of interest, T∗
Fast decreasing MT TF Best: P Second: P is preferred for most precise
hazard T1 estimation and easy
∗
Censor rate at . T10 implementation

T50 . If β orMT TF or an earlier
R Best: T Second: P percentile (T or T) is of

more interest, P is
preferred for most precise
estimates

C Best: P Best: P Best: P Best: P
Second: P Second: T Second: P Second: T

R = R(tm),C = Real Cost, ECIW = % (relative) empirical confidence interval width.
∗Some isolated exceptions.
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scenarios considered, and highlights the top inspection
plans across the different metrics and cost ratios under
each of the cost structures. In general, testing more
units less often given a fixed total budget results in
more precisely estimated reliability on the multiple
characteristics considered. Increasing the cost for each
individual unit relative to the other contributors to
cost under either cost structure is associated with less
precise reliability estimates, but more consistency in
the real cost of implementation relative to the expected
cost. A pattern for the cost structure I, which resem-
bles some typical stockpile reliability surveillance
plans, has the following characteristics: The difference
between plans with different inspection frequencies
increases as the test setup at multiple inspection times
becomes to dominate the total cost. For cost structure
II, which is similar to testing electronic parts, there is a
diminishing difference between plans as initial setup
cost per unit becomes dominating the total cost. Across
both cost structures considered, there is not much dif-
ference between probability-based and time-based
plans for reliability curves that are close to straight
line. But for cases with high infant mortality rates,
probability-based strategies tend to give more precise
estimates of the shape of the distribution, the mean
lifetime, and the early failure times (corresponding to
small percentiles of lifetime).

Since the probability-based strategies rely on having
a good prior assessment of the reliability distribution,
but generally do not demonstrate substantial improve-
ment in the precision or accuracy of the reliability esti-
mates (except in cases with high infantmortality rates),
the time-based strategies are preferred due to their ease
of implementation and good performance for multiple
aspects. The time-based plans show good robustness
across various model specifications. Therefore, in
general, when optimizing over a fixed total budget, we
recommend time-based test plans that inspect more
units less frequently. The probability-based strategies
are only recommended for cases with strong evidence
from historical data that the underlying reliability has
a high infant mortality rate. In addition, the asymp-
totic approximation is generally not recommended
for quantifying uncertainty for early failure times and
small failure proportions as it tends to substantially

underestimate the true uncertainty. In this case, the
simulation approach illustrated in this article provides
more accurate quantification for uncertainty.
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Appendix

Table A. The fraction of variance relative to the mean squared error for all reliability summaries and real cost for the six inspection plans
with five cost ratios for Curve  under cost structure I.

α β

CR1 P P P T T T P P P T T T

. . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

T50 MT TF

. . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

T10 T1

. . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

R(tm) Real Cost

.       . . . . . .
       . . . . . .
       . . . . . .
       . . . . . .
       . . . . . .
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Figure A. The mean (left column) and % (right column) relative width for the % asymptotic confidence intervals for T50, MT TF,
R(tm), and T10 for Curve  under cost structure I.
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FigureA. The six inspection planswith different inspection frequencies (, , and  times from left to right columns) using the probability-
based (first row) or time-based (second row) plans for Curve .
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