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ABSTRACT.Foreign Exchange rate forecasting is a challenging area of study over the
past. Various linear and non-linear methods have been used to forecast foreign exchange
rates. As the FX data are nonlinear and highly correlated, forecasting through non-linear
dynamical systems is becoming more and more relevant. Nearest Neighbor Algorithms is
one of the most commonly used non-linear pattern recognition methods that outperform
the available linear forecasting methods for the high frequency foreign exchange data. As
the distance plays a key role in the £-NN algorithm, by choosing an appropriate distance
we can improve the performance of the algorithm significantly. The most commonly used
distance for k-NN forecasting in the past was Euclidean distance. Due to possible correla-
tion among vectors at different time frames, distances based on deterministic vectors such
as Euclidean, are not very effective when applying for financial data. Since Mahalanobis
distance captures the correlations, we suggest to use this distance in the selection of neigh-
bors. In this work, we used five different FX currencies to compare the performances of
the algorithm with traditional Euclidean and Absolute distances with the proposed Maha-
lanobis distance. The performances were compared in two ways: (i) forecast accuracy and
(i1) transforming their forecasts in to a more effective technical trading rule. The results
are obtained with real FX trading data, and the results show that method introduced in this
paper outperforms the other popular methods.

Furthermore, we have conducted a thorough investigation of optimal parameter choice with
different distance measures. We adopt the concept of distance based weighting to the NN

and compared the performances with traditional unweight NN algorithm based forecasting.
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1. INTRODUCTION

The foreign exchange (FX) market is a global market for currency trading. A prelimi-
nary global study by the Bank for International Settlements from the 2013 Triennial Central
Bank Survey of Foreign Exchange and OTC Derivatives Markets Activity show that trading
in foreign exchange markets averaged 5.3 trillion dollars per day in April 2013 [15].Thus,
foreign exchange rates forecasting is one of the challenging and important applications
of financial time series prediction. Being one of noisiest financial data, foreign exchange
rates make it even more difficult for the data analyst to forecast. Also, the currency rates are
nonlinear and highly correlated [6, 13]. Due to this nature of the data, forecasting through
non-linear dynamical systems is becoming more and more relevant. Neighbor Algorithms
is one of the most popular such non-linear pattern recognition algorithm, which dates back
to an unpublished report by Fix and Hodges in 1951, [3]. Like any other technical analysis
method, nearest neighbor prediction model is also completely rely on the historical data.
When applying for foreign exchange rate forecasting, its main goal is to investigate the
past behavior of the currency rates so that it can fully capture the dependency of the future
exchange rates and that of the past. We look for the repetitions of specific price patterns
such as major trends, critical or turning points.

Nearest Neighbor algorithms are examples of instant-based learning. The idea of Near-
est Neighbor (or k -Nearest Neighbor) algorithm is to select fixed number of observations
which are closest to the desired point (value). The term 'nearest’ is determined by a dis-
tance metric. Even though the nearest neighbor (NN) algorithm outperforms available
linear forecasting methods, it also has issues which need to be addressed. Choosing an
appropriate distance metric, deciding the number of nearest neighbors and embedding di-
mension have become the major challenges when applying k£-NN algorithm.

In section 2, we will give some background material on distance measures, and error mea-
sures. Section 3 will deal with selection of Embedding Dimension (m) and Number of
Nearest Neighbors (k). Comparison of forecast accuracy and trading decisions based on
Mahalanobis and Euclidean distance based methods will be done in section 4. Conclusion

will be given in section 5.

2. BACKGROUND

2.1. k-Nearest Neighbor Algorithm and the choice of Distance.

k-Nearest neighbor (k-NN) algorithm rank the data and chose the £ closest of them based
on the distance between the query vector and the historical values.
Consider the finite time series {z;}}"; = {21, x9, ..., x, }. First, we divide the time series
data in to two separate parts; for 7' < n, a training (in-sample) set {z1, z9,...,x7} and a

testing (or out-of-sample) set {z71, X719, ..., T, }. In order to identify behavioral patterns
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in the data, we transform the scalar time series in to time series vectors. We need to choose
an embedding dimension and delay time to create vectors out of the training set. Embed-
ding dimension is the number of time series we consider for a history vector and delay time
is the time gap between two consecutive data values in a vector.

Let m and 7 € N (set of positive integers) be the dimension and delay parameter respec-

tively. Then a time series vector at time ¢ can be written as;
" = (T4, Tpery ooy Ty—(m-1)r) for 14+ (m—-1)7<t<T (2.1

These m-dimensional vectors are often called as m — histories and the m-dimensional
space R™ is referred to be the phase space of the time series [6, 7].

Our primary goal is to use the most relevant vectors out of the training set in the forecast-
ing algorithm to predict the exchange rate at time ¢ = 7"+ 1 , which is a one-step-ahead
forecasting. The most relevant vectors are the ones having similar dynamic behavior as
the delay vector 7. We compare the distance between the delay vector and all the other
m-history vectors to choose the vectors with similar dynamic behavior [6, 7]. Then we
look for the closest k vectors in the phase space R™ such that they minimize the distance
function d(a%*, x;).

In £-NN algorithm, m and k are pre-determined constants. In the literature, the op-
timal values of m and k are quite ambiguous. There have been quite a lot argument and
discussions about the optimal choice of m and k since the NN rule was first officially in-
troduced by Cover and Hart in 1967 [3, 14]. In section 3 We will discuss the choice of m
and k for Mahalanobis distance along with other distance choices.

For the forecasting we can incorporate variety of Statistical and time series predicting meth-
ods with NN algorithm for the forecasting. In the literature of k-NN forecasting, the most
commonly used forecasting method is locally weighted simple linear regression [1, 6, 7].
So, to compare the performance of the chosen distance functions, we use the following

locally adjusted linear regression model [1, 7]:

m—1

Erp1 =) @1y + (2.2)
n=0

The coefficients were fitted by the linear regression of x?} 41on x?} = (xt]. s Lty s Tty (m—1)r

for j = 1,2, ..., k. Thus the estimated coefficients a; are the values of a; that minimize

2
(Tg,41 — QoTy, — A1T4;—1 — .. — A 1T, (m—1)r — Om) (2.3)

k
=1

j
The data used in equation (2.3) are the only k(m + 1) data values obtained from the k-

neighbor vectors of size m and the corresponding next values, L forj = 1,2,...,k

chosen neighboring vectors, not the entire data.
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As the forecasting is completely depending on the selected k nearest neighbors, it is
highly important to use a distance function which captures the behavior of the data accu-
rately. Many researchers have pointed out the difficulty of choosing a distance measure for
the NN algorithm that works well for different types of data. Over the past decades, the
most common choice of distance was Euclidean distance [4, 17]. The way it?s defined, the
Euclidean distance is unable to capture the trend of the highly volatile (hence random) and
highly correlated foreign exchange data when choosing the neighbors for the NN algorithm.
Apart from Euclidean distance, several other distance measures such as Manhattan, Minkowski,
and Hamming distances have been used in the algorithm for various types of classification
problems [8, 14].

Even though the asymptotic probability of error of the NN is independent of the choice of
metric, classification performance of finite sample nearest neighbor algorithm is not inde-
pendent of the distance function [8, 11]. As Nearest neighbor rule is highly sensitive to
outliers, selecting irrelevant neighbors can cause increase in forecasting error.

In their work, Fukunaga & Hostetler showed that using a proper distance measure, the vari-
ance of the finite sample estimate can be minimized [8]. Short & Fukunaga investigate the
relation between the distance function in £-NN and the error measure [14]. They conclude
that the error can be minimized by using an appropriate distance metric without increasing

the number of sample vectors.

2.2. Distance.

In general, the distance between two objects describes how far apart the objects are. Dis-
tance is a rule of assigning positive numbers between pair of objects (or points). As itis a
concrete way of describing an element of some space is closer to or far away from another,
distance concept has been widely used in the field of time series data clustering [2, 4]. In
time series pattern recognition, an appropriate distance function can categorize data in to
clusters by capturing the similarity or dissimilarity between the data.

In Mathematics, a distance function is usually called as a metric. It is a generalization of
the concept of physical distance. Let X be an arbitrary set.
A function d : €2 x ) — R is a metric (or a distance function) on if the following conditions

are satisfied for all z, y, z € €.

(i) Non-negativity: d(z,y) > 0

(ii) Coincide axiom: d(x,y) = 0 if and only if z = y
(iii) Symmetry: d(z,y) = d(y, )
(iv) Triangular inequality: d(z, 2) < d(x,y) + d(y, 2)

The pair < §2,d > is called a metric space. In general, elements of the set {2 are called

points of the metric space and d(x, y) referred as the distance between points z, y.
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Now, we will briefly discuss some distance measures commonly used in NN algorithm.

Consider n-dimensional vectors © = (z1, g, ..., ;) and y = (y1, Y2, ..., Yn) in R™.

The Fuclideandistance between x and y is define as

(2.4)

Euclidean distance is a function which calculates the real straight line distance between
two points. It is the most common distance of choice in NN algorithms. Even though it
works well for low dimensional data, it performs poorly when the data are high dimen-
sional. Also, Euclidean is not the best distance choice when the data are highly correlated

as it does not account the correlation among the vectors.

Manhattan distance gets its name from the rectangular grid patterns of the streets in
Manhattan [18]. The Manhattan distance between z and y in R™ is defined as

n

d(w,y) =Y |z = yil (2.5)

i=1

As it looks at the absolute difference between the coordinates, the most common and
appropriate name for this distance measure is absolute value. It is also recognized as a
computationally simplified version of Euclidean distance. Manhattan distance is preferred
to Euclidean distance in practice sometime, because the distance along each axis is not

squared, a large difference in one of the dimensions will not affect the total outcome.

Mahalanobis distance was introduced by P. C. Mahalanobis in 1936 by considering the
possible correlation among the data [9]. It is defined between two vectors z and y as:

e,y = \/ -0 Y- 26)

Here, Z_l is the inverse of variance-covariance matrix > between x and y and ' denotes
the matrix transpose. The major difference in Mahalanobis to any other distance measure
is that it takes the covariance in to account. Due to this reason it is also called Statistical
distance as well. Mahalanobis distance belongs to the class of generalized ellipsoid dis-
tance defined by

d(z,y) = /(z —y)M(z —y) (2.7)
Here M is a positive definite, symmetric matrix. In the case the Mahalanobis distance,

the matrix M becomes the inverse of variance-covariance matrix. Obviously, this includes
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Euclidean distances as a special case when M is the identity matrix.

When using Euclidean distance, the set of points equidistant from a given location is a
sphere. The Mahalanobis distance stretches this sphere to correct for the respective scales
of the different variables, and to account for correlation among variables [18]. As the axes
of ellipsoidal sphere can assume any direction depending upon the data, this is more ap-
plicable in the area of time series pattern recognition. So unlike dimensional Euclidean
distance, it is possible to express the correlation and weight between dimensions using Ma-

halanobis distance.

As the nature of Mahalanobis distance allows it to capture correlation among the data and
also trend of the time series better compare to the other distances [4, 11], in this work, we
proposed to use Mahalanobis distance in k-NN algorithm for FX data. We compare the
performance of the Mahalanobis distance based £-NN algorithm with popular Euclidean

and Manhattan distance based algorithm.

The performance of the Mahalanobis distance based K -nearest neighbor algorithm was
compared with the other distance based algorithms in two ways:

(1) Forecast accuracy

(i) Transforming their forecasts in to a technical trading rule

In the former case, our goal is to capture the deviation of the fitted values against the actual
observations. In the latter case, we are interested in looking at the forecasts in financial
point of view. For that we create trading signals, buy and sell using a technical trading rule
[6, 7] and the performances were evaluated by the commonly used performance measures

in practice.

2.3. Measures of Forecasting Accuracy.

Let z; and z; for t = 1,2, ..., n be the actual and fitted values respectively. To determine
the forecast accuracy of the prediction model for number of out-of-sample predictions, the

following error measures were used.

Mean square error (MSE): Mean square error defined by

n

MSE = * > (@ — ) (2.8)

n
t=1

i1s the most common measurement of error used in Statistics to determine the difference
between the true values and estimates. It is a scale dependent measure but gives a basis to

compare the forecasts. Due to squaring, MSE gives disproportionate weight to larger errors.
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Means absolute percentage error (MAPE): Means absolute percentage error is another
widely used accuracy measure when the observations are non-negative. It gives a forecast-
ing accuracy as a percentage so one can compare the error of fitted time series that differ in

levels.

100 ~ & —
MAPE:EZW g (2.9
n
t=1

T

Also, mean absolute percentage error does not affect by larger deviations as MSE does. It
is zero for a forecasting model when there is a perfect fit. But there is no restriction of its

upper bound.

Theil’s U- statistic (U/): We consider the following version of to compare the forecasting

accuracy of our model.

2

M=

(Tt — 1)
U=—"= — (2.10)
> (2)% + Zt)(:z:t)Q

t

This is a measure of the degree to which the forecasted values differ from the actual values.
U statistic is independent of the scale of the variable and constructed in such a way that it
necessarily lies between zero and one, with zero indicating a perfect fit. However, U statistic
do not provide information on forecasting bias which is better captured by the mean square

€ITor.

Normalized Root Mean Square Error (NRMSE): Scale invariant forms of mean square
error (MSE) are useful because often we want to compare errors in different scales. The
non-dimensional version we consider here is the Normalized-Root-Mean-Squared Error
(NRMSE) given by:

Stedt) ()20 - 2,)?
NRMSE = = = 1= (2.11)

o o

Here is the standard deviation of the time series [1]. The Normalized Root Mean Square
Error (also called the normalized root mean square deviation, NRMSD) is a frequently used
measure of the difference between values predicted by a model and the values actually ob-

served.

FX trading data contain many directional changes. So one of the natural questions that

arise is which measure does better prediction at the points of directional change. Following
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gives a measure of accuracy of directions at the points of change of direction.

Sign Correction Proportion (SCP): This is a measure of forecasting accuracy in which
the proportion of forecasts that correctly predict the direction of the series movement is

considered. Directional change in times series is defined as:

d(z)—{l Gf a(t+ 1) —2(t) >0

— , (2.12)
-1 ;if z(t+1)—2(t) <0

To identify whether a model forecasts in the same direction as real data, we compare the
directional change using the forecasted values by the model and actual data. Let ¢ be the
function that takes values 1 if the forecast observations correctly predicts the direction of
change and 0 otherwise. So 4 can be defined as:

5(@_):{ 1 5if  d(i) = d() o

0 ;if otherwise

Here a?(z) are the directional change values obtained by the forecasting model. The

sign correction proportion (SCP) for n forecasted values is calculated by

1
sCp = ;5@) (2.14)

This is a widely used accuracy measure to observe how well a model can captures the
direction of the time series [13]. Higher the SCP value, better the directional forecasting

accuracy.

3. SELECTING EMBEDDING DIMENSION (m) AND NUMBER OF
NEIGHBOURS (k)

3.1. Data.

The data used here are the daily exchange rates of Euro (EUR), British pound sterling
(GBP), Swiss franc (CHF), Japanese Yen (JPY), and Canadian dollar (CAD) vis-a-vis
American dollar (USD) were used in this paper (ProQuest Statistical datasets). These are
the daily spot rates of the currencies from January 2006 to December 2010.

3.2. Embedding Dimension.

The choice of embedding dimension for the time series is a key issue need to be addressed
before start making trading signals. So first we conduct an empirical investigation to select
a suitable value for m. Here we have considered all five exchange rates data sets we used
in our work. In this empirical investigation, we want to figure out whether the choice of m
is data dependent and also distance dependent. So the forecasting accuracy was compared
using all the error measures mentioned in section 3.3 by varying the value of m along with

different distance choice. 80% of the data was considered as the training set and rest of the
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20% was taken as the testing set. The value of k£ was set to be 2% of the training sample

for this part of the work [6]. The training window size was kept fix by removing the oldest

data value at each time step.

TABLE 1. U-statistic with Mahalanobis distance

Currency m=3 m =4 m =25 m =6

EUR 0.00389801 | 0.00392875 | 0.00430221 | 0.00456411
GBP 0.00345430 | 0.00348754 | 0.00359710 | 0.00362095
JPY 0.00690517 | 0.00717526 | 0.00810838 | 0.00771370
CHF 0.00555915 | 0.00572837 | 0.00586630 | 0.00590578
CAD 0.00597986 | 0.00642774 | 0.00612342 | 0.00643873

Table 1 shows the U-Statistic values for different embedding dimension, m with Maha-
lanobis distance. According to our observation, larger m values do not improve the ac-

curacy of the model. It clearly indicates that for almost all the data sets, the embedding

dimension, m 3 gives the minimum error when comparing U-Statistics. These ob-
servations do not change significantly even when we replace Mahalanobis distance with
Euclidean or Absolute distance. Also the obtained results are similar for the other error
measures as well. As can be seen from the graph below, normalized root mean square error

also suggests choosing 3 as the embedding dimension.

MEIVSE with IVahalanobiz Distance ve m for daily Exchange Rates (le=20)
0.65 T T

.
n.ﬁ;/////‘é'\ﬁ,/f
Fi

055+ EUR. -

—-—--GBP
05 | —— ey i
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—bi— CAD i

0.35 —’/I—’/\
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Figure 3.1: Normalized Root Mean Square Error vs. Embedding Dimension with Maha-

lanobis Distance and Euclidean Distance respectively
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The tables 2(A) & (B) given below summarize the obtained results for the choice of embed-
ding dimension for all 5 currencies with U-Statistic and normalized root mean square error.
(This was published in the proceedings of Nonlinear Dynamical Systems and Application,
Volume 6)

TABLE 2(A). Optimal Choice of Embedding Dimension with U-Statistic.

Currency | Mahalanobis | Euclidean | Absolute
distance distance | distance
EUR 3 3 3
GBP 3 3 3
JPY 3 3 3
CHF 3 3 3
CAD 3 4 3

TABLE 2(B). Optimal Choice of Embedding Dimension with Normalized

Root Mean Square Error.

Currency | Mahalanobis | Euclidean | Absolute
distance distance | distance
EUR 3 3 3
GBP 3 3 3
JPY 3 3 3
CHF 3 3 3
CAD 3 3 3

Almost all the data sets agree with the conclusion of m = 3 being optimal. Similar results
were obtained comparing mean square error (MSE) and mean absolute percentage error
(MAPE).

3.3. Number of Nearest Neighbors, £.

Next, we wanted to figure out the effect of number of nearest neighbors (k) in the fore-
casting algorithm before comparing the performance of each distance choice. In time series
data forecasting, there isn’t a uniform guideline to select the neighborhood size [6, 7]. Es-
pecially for Financial data, the approaches used were diverse, so one cannot come up with
a unique method [6, 7]. The approach used here is the commonly used Casdagli’s (1991)
algorithm [1, 2, 7].

In Casdagli’s work [1, 2], the £ was determined empirically by testing the algorithm for
several value of k between 2(m + 1) and T' — (m — 1). His approach was to minimize
normalized root mean square error (NRMSE) by changing the value of k. He also varied
the embedding dimension m and studied the behavior of NRMSE as a function of k. His
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choice of distance was Euclidean distance.

In this work, we have chosen the neighborhood size % after comparing not only NRMSE,
also all the accuracy measures discussed in section 2.2. We did not restrict our distance
choice to just one function. We tested the data for k(k > m + 1) using Mahalanobis,
Euclidean and Absolute distances. Also this method was applied to all five currencies to

select an appropriate value for & for further analysis.

U-Statistic ws k for daily Exchange Rates with IMahalanohis Distance(m=3)

0.025 T T T T T T T T T T I
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Figure 3.2(a) U-Statistic vs. £ with Mahalanobis Distance
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Figure 3.2(b) U-Statistic vs. k£ with Euclidean Distance
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Even though the numerical values are slighting different, all the data sets behaves ex-
actly the same way as k changes. We started with £ = 5 as k has to be greater than m + 1
which is 4 in our case since m = 3. It can be seen clearly from the graphs above that for
values of k£ from 5 to 15, the change in U-Statistic were significant for all the currencies.
Thereafter, even the error measure decreases, the difference is much smaller. Especially,

after £ = 20 or 25 the changes are negligible.

We did not want to increase k further as can be seen from the table, for some cases
the error measure even started to increase slightly at some point. Also, as k-NN method is
a data reduction technique, the larger values of does not justify our main goal. This may
even result in considering the data as neighbors which are not that much effective on the
forecasting as father we go the data are less relevant to the most recent available vector. The
other accuracy measures also support the conclusion that an intermediate value of neigh-
borhood size will be an appropriate choice for k.

We wanted to extend our search for an optimum choice of % for different choices of
m, so instead of restricting m to be 3, we considered m = 4,5 and 6 and compared the
forecasting accuracy as a function of £. Similar analysis were performed as of m = 3 and
behavior of error measures along with the distance choice were investigated. The obtained

results were not much of different to those of m = 3.

Even though with a higher m value we need slightly larger k, earlier analysis of m in-
dicates that increasing m does not improve the forecasting accuracy. Considering all these
facts, to compare the performance of Mahalanobis distance based k-nearest neighbor algo-
rithm with other distance choices, the key parameters m and k of the algorithm were set to
be 3 and 20 respectively.

4. COMPARISON OF DISTANCE MEASURES WITH RESPECT TO
FORECASTS ACCURACY AND BUY OR SELL DECISIONS.

4.1. Forecasting Accuracy.

As the key parameters for the k-NN been selected the key parameters, next step is to
compare the performance of proposed Mahalanobis distance based k£-NN algorithm with
traditional Euclidean and Absolute distance based algorithms. For the first part, we consid-
ered all the accuracy measures mentioned in section 3.3 and compared the performances
of each algorithm based on how accurate their forecasts are. The following tables give the
summarized results for the currencies EUR, GBP, JPY, CHF, and CAD with the choice of
m = 3 and k = 20.
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In table 3 and 4 below, we report the forecasting accuracy for Mahalanobis, Euclidean

13

and absolute distance using U-Statistic and normalized root mean square error respectively.

The observations were similar when comparing the other error measures as well.

TABLE 3. U-Statistics.

Currency | Mahalanobis | Euclidean | Absolute
distance distance distance
EUR 0.00389801 | 0.00405640 | 0.00401522
GBP 0.00345430 | 0.00377776 | 0.00374190
JPY 0.00690517 | 0.00971223 | 0.01331857
CHF 0.00555915 | 0.00755257 | 0.00771336
CAD 0.00597986 | 0.00648498 | 0.00619930

TABLE 4. Normalized Root Mean Square Error.

Currency | Mahalanobis | Euclidean | Absolute
distance distance distance
EUR 0.16793291 | 0.17332175 | 0.17155159
GBP 0.22321725 | 0.24333251 | 0.24104249
JPY 0.29681857 | 0.42612478 | 0.58432940
CHF 0.21983992 | 0.29457650 | 0.30101833
CAD 0.58313581 | 0.58857894 | 0.59790435

From the results above, it is clear that Mahalanobis distance outperforms the other
distance measures for all the currencies. Except for normalized root mean square for
CAD/USD rates, all the other values for Mahalanobis distance are significantly smaller
compared to other distances. Especially in the cases of JPY/USD and CHF/USD rates,
the error measures of the proposed algorithm are much smaller than the traditional £-NN

forecasting with Euclidean and Absolute distances.

When comparing sign correction proportion (SCP) measures, the obtained results do
not support our previous observations. As can be seen from the table below, 3 out of 5 cur-
rencies indicate that Euclidean distance based method has a higher correction proportion
than Mahalanobis based method.
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TABLE 5. Sign correction proportion (SCP) with Mahalanobis and Eu-
clidean distances

Mabhalanobis | Euclidean
distance distance
EUR 0.448 0.52
GBP 0.496 0.516
JPY 0.524 0.5
CHF 0.576 0.548
CAD 0.584 0.592

The above results shows that Mahalanobis distance performs better only for JPY and
CHF data sets. This was a bit surprising as all the other accuracy measures support Maha-

lanobis based algorithm.

Due to this reason, we wanted to conduct a thorough investigation of directional fore-
casting accuracy. So we calculated mean absolute deviation (MAD) and mean square error
(MSE) only for the places where the model does not forecast in the same direction as the
actual values. In this way, we can measure how forecasted values are deviated from the

actual values even though they are not in the same direction as actual values.

TABLE 6. Man Absolute Deviation (MAD) with Mahalanobis and Eu-

clidean distance measures.

Mabhalanobis | Euclidean
distance distance
EUR | 0.010498383 | 0.011265078
GBP | 0.01103014 | 0.012782458
JPY | 0.00896291 | 0.023209785
CHF | 0.007168656 | 0.012757111
CAD | 0.007185595 | 0.009144574
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TABLE 7. Man Square error (MSE) with Mahalanobis and Euclidean dis-

tance measures.

Mabhalanobis | Euclidean
distance distance
EUR | 0.000146502 | 0.000164365
GBP | 0.000169709 | 0.000204144
JPY |0.000302811 | 0.001211702
CHF | 0.000115296 | 0.000458595
CAD | 0.000161336 | 0.000335663

15

This analysis shows that MAD and MSE values are smaller for Mahalanobis distance

compare to Euclidean distance even with a lower SCP value. The question arise here is that

can a model have a lower sign correction proportion and still have a smaller MAD? Whats

really happening here is even though the Euclidean based method captures the direction

of the real data somewhat better than Mahalanobis; forecasted values can be way off the

actual values which is giving a higher deviation.

These results indicate that a model may be able to predict more accurately in the same

direction as the actual time series still having larger deviation with the actual values. So we

can conclude that even though the Mahalanobis distance based method seems to perform

slightly weaker comparing SCP measure, it forecasts are much closer to actual data than

those of Euclidean distance based method.

Figure 4.1: Forecasted and real values- JPY/USD rates

Figure 4.1 shows the forecasted rates using Mahalanobis distance (blue color) and Eu-

clidean distance (red color) with the real data for JPY/USD currency market form ¢ = 150

tot = 210.
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As can be seen from the graph, the deviation of Mahalanobis distance based forecasts

follow the real FX rates pretty well compare to the Euclidean distance based algorithm.

Even though the accuracy measures verify how well a model forecasts, it is highly recom-
mended that we give an economic value for the predicted financial time series. In the next
subsection, we evaluate the economic significance of Mahalanobis distance based forecast-

ing algorithm and compare it with standard Euclidean distance based decisions.

4.2. Trading Decisions.

As in any other financial market, in FX market also a trader’s main goal is to make more
money out of foreign currency fluctuations. The primary goal of foreign exchange rate
forecasting has to be making proper trading signals: buy and sell at each time step so that
the trader makes more money. To satisfy this main aspect, first we need to transform fore-
casted values in to trading signals. The forecasts were transformed into a simple technical
trading strategy using the trading rule used by Fernandez-Rodriguez, Sosvilla-Rivero, and
Andrada-Felix in their work [6, 7]. Let 7; given by

e = (1) — In(1 +4,) — In(1 +4,) 4.1

be the estimated return from a foreign currency position over the period (¢, ¢ + 1) based on
the forecasted FX rate at time ¢. Here x, represents the spot exchange rate at time ¢, 24,1,
is the forecasted value for x4 is the domestic (US) daily interest rate and i is the foreign
country daily interest rate. The trading signals at time ¢ are made based on the estimated
return t,. The positive returns are executed as long positions (buy) and the negative returns

are executed as short position (sell) [6, 7]. So the trading decision can be given as

1 ;if 7,>0

5= N (4.2)
-1 if 7 <0

Based on estimated return, we calculate estimatedtotal(logaccess)return of the trading

strategy over the time period (1,7) as

n

R, = Z 27y (4.3)

t=1

Here r; is the actual return at time given by
re = (1) — In(z;) — In(144;) — In(1 + 4;)

We also consider the popular performance measure: Sharpe ratio to compare the results

along with the estimated total return. The Sharpe ratio, Sg used here is the mean daily total
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return of the trading strategy over its standard deviation,

Higher values of Sharpe ratio indicate that the model is performing better.

Sk

TABLE 8. Estimated return

i,

TR

Currency | Mahalanobis | Euclidean | Absolute
distance distance distance
EUR 0.52991777 | 0.47275687 | 0.46008299
GBP 4.16807227 | 4.13638609 | 4.05861762
JPY 0.67755404 | 0.22975657 | 0.48608330
CHF 0.42108879 | 5.16084868 | 5.16742874
CAD 4.38589604 | 3.76747181 | 4.01797807

The estimated total return for the technical trading strategy under different distance
measures are given in table 8. The final conclusion of distance choice is pretty much same
as that of error measures. Our proposed distance choice outperforms the traditional dis-

tance functions

TABLE 9. Sharpe ratio

Currency | Mahalanobis | Euclidean Absolute
distance distance distance
EUR 0.27890809 | 0.24686318 | 0.26614195
GBP 2.41593434 | 2.29776019 | 2.06031102
JPY 0.18429771 | 0.01026936 | 0.13113608
CHF 1.67419376 | 1.44768129 | 1.42328537
CAD 1.26400087 | 0.89502219 | 1.03678437

The Sharpe ratio also supports our conclusion of choosing Mahalanobis as the distance
of choice in in the method as can be seen from the table.
For all these data sets, we have used same number of neighbors and same forecasting tech-
nique with each distance measure. From our results, we can clearly see that choosing an
appropriate distance in NN algorithm can improve the forecasting significantly. As fore-
casted values directly effect on trading decision, more accurate forecasting will result in

better trading.
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4.3. Further Analysis on k-nearest Neighbor.

As the k neighboring vectors play a key role in nearest neighbor forecasting, we further
investigated on chosen nearest neighbors with different distance measures to observe how
well a distance function captures the dynamic behavior of a delay vector. The following

figures illustrate a delay vector and its nearest neighbors with Mahalanobis distance and

Euclidean distance functions.

sk | 7
| e /
[ 4
| wil /
- | /
| s #
e /
; | et L{
L | /
| £t /
s /
| wisk Fi
s | /
| [T 8 f
1 | f
| rut _.’f
W W w w W w | ; { i
b ™ E o ¥ £3 Ed [ I
| o ]
s
8- !
e /
/ /
i / oy e
]
1| b grus /
g | / £
Brust % [
i | il
LA i/ dionn- /
ik
| / - /
wish B /
i d
£z @ Y F £ - - oo -

Figure 4.2 (b): A delay vector and its with Euclidean distance

In each figures above, the graph on the top left corner shows the same delay vector for
JPY/USD data with m = 3 The other graphs are the 3 closets vectors selected by Maha-
lanobis distance (4.2(a) ) and Euclidean distance (4.2(b)). As can be seen from the graphs,
Mahalanobis distance captures the time series vectors which are much similar to the delay

vector compare to Euclidean distance. These observations support our claim Mahalanobis
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distance as a better choice for k-NN algorithm.

Even though Mahalanobis distance captures relevant time series vectors as neighbors,
when a delay vector has data values in different directions, the selected neighbors do not
exactly follow the same pattern. The results are similar with other distance choices are

well. The following figure is an example of such a case.

Figure 4.3: A delay vector and it’s NN with Mahalanobis distance when there’s a

directional change

As can be seen from the figure above, for a delay vector with data in different direc-
tions, even the Mahalanobis distance captures neighbors which do not behave as same as
the delay vector. This is an issue in many time series data forecasting methods. When
there are directional changes in data, forecasting methods do not performs well in practice.
Due to this reason, the importance of detecting change points in data prior to forecasting
have been a major part of time series data analysis [ref]. This is a minor setback of NN
forecasting method as well. Even though a proper distance measure captures the dynamic
behavior of the data, when there is a change point, the algorithm does not perform as good
as the other places. To address this, we will work on combining change point detection
methods with Mahalanobis distance based k- nearest neighbor algorithm as a part of our

future work.

4.4. k-Nearest Neighbor and weighted regression.

In the standard nearest neighbor algorithm, the selected neighbors are given equal weights
towards forecasting. We wanted to see if we assign weights for selected k neighbors ac-
cording to their distance, how well the model performs against the traditional method. So
we were interested in adopting the concept of ?distance-based weighing? with k-NN fore-

casting. Weighting the data can be viewed as giving more importance to relevant instances
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and discarding irrelevant instances. As nearest neighbor algorithm is already replicating
relevant instance, we wanted to see whether we need further weighing in the forecasting
part.

We used the popular tri-cube weight function defined by;

(@) :{ él_ [uf?)?,  for [u] < 1

as our choice of weighting in this paper. Here u is defined as follows:

) 4.5
otherwise

where d(i) is distance to the " nearest neighbor and d(k) is distance to the k' near-
est neighbor where £ is the farther neighbor considered. Obviously, farther the neighbor,
smaller the weight. We compare the forecasting accuracy of locally weighted £ — NN and
standard £ — NN algorithm with m = 3 with different values of k. We used both Maha-
lanobis and Euclidean distance for this analysis. The table below gives U statistics values
for k-NN algorithm with Mahalanobis distance.

TABLE 10. U Statistic with and without weighted regression Mahalanobis

distance.

Currency | Mahalanobis | Mahalanobis | Mahalanobis | Mahalanobis | Mahalanobis | Mahalanobis

(k = 20) weight weight weight weight weight

(k = 20) (k = 25) (k = 30) (k = 35) (k = 40)
EUR 0.00389801 | 0.00482134 | 0.00447082 | 0.00429696 | 0.00415463 | 0.00406373
GBP 0.00345430 | 0.00390652 | 0.00369875 | 0.00360442 | 0.00353554 | 0.00347328
JPY 0.00690517 | 0.01172117 | 0.010751872 | 0.009973787 | 0.009461335 | 0.00888432
CHF 0.00555915 | 0.006070793 | 0.005971333 | 0.005872418 | 0.005811847 | 0.005759591
CAD 0.00597986 | 0.008575087 | 0.007683319 | 0.007121021 | 0.00676352 | 0.006640292

First column in Table 9 gives the values for U-Statistics without weighted regression
for k£ = 20. With the same choice of k, when we introduce weights, the algorithm does
not performs as good as before. To see what is really happening here, we increased the
value of and performed the same analysis. Even with £ = 20 we don?t see results as
good without weighting. When we increased the number of nearest neighbors, further,
weighted regression started to give better results which are almost as good as regular local
regression method. This idea does not support our primary goal of data reduction. If
we use Mahalanobis distance with less number of data we can have better performance

in forecasting compare to weighted regression. So if we use an appropriate distance to
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select neighbors for NN algorithm, we can treat the selected neighbors equally during the

forecasting.

5. CONCLUDING REMARKS.

As finite sample nearest neighbor algorithm dependent on the distance function, choos-
ing an appropriate distance measure we can obtain better performances. We compared the
accuracy of the k-NN forecasting for Foreign exchange data with traditional Euclidean
and Absolute distance based algorithm with our proposed Mahalanobis distance based al-
gorithm. In this work, we observed that the proposed Mahalanobis distance based method
outperform Euclidean distance as well as the absolute distance based methods both in terms
of better fit and in terms of the trading rule. Also, we have conducted a thorough analysis
of choice of embedding dimension and neighborhood size for nearest neighbor algorithm
using five different currencies with different distance choices. The observations suggest
that smaller value of m such as 3 and sufficiently large enough value of £k give significantly
better results.
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