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Building a Scalable Database-Driven
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Abstract—In this paper, we describe the design and implementation of a reverse dictionary. Unlike a traditional forward dictionary,
which maps from words to their definitions, a reverse dictionary takes a user input phrase describing the desired concept, and returns a
set of candidate words that satisfy the input phrase. This work has significant application not only for the general public, particularly
those who work closely with words, but also in the general field of conceptual search. We present a set of algorithms and the results of
a set of experiments showing the retrieval accuracy of our methods and the runtime response time performance of our implementation.
Our experimental results show that our approach can provide significant improvements in performance scale without sacrificing the
quality of the result. Our experiments comparing the quality of our approach to that of currently available reverse dictionaries show that
of our approach can provide significantly higher quality over either of the other currently available implementations.
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1 INTRODUCTION AND RELATED WORK

N this paper, we report work on creating an online reverse

dictionary (RD). As opposed to a regular (forward)
dictionary that maps words to their definitions, a RD
performs the converse mapping, i.e., given a phrase
describing the desired concept, it provides words whose
definitions match the entered definition phrase. For exam-
ple, suppose a forward dictionary informs the user that the
meaning of the word “spelunking” is “exploring caves.” A
reverse dictionary, on the other hand, offers the user an
opportunity to enter the phrase “check out natural caves” as
input, and expect to receive the word “spelunking” (and
possibly other words with similar meanings) as output.

Effectively, the RD addresses the “word is on the tip of my
tongue, but I can’t quite remember it” problem. A particular
category of people afflicted heavily by this problem are
writers, including students, professional writers, scientists,
marketing and advertisement professionals, teachers, the list
goes on. In fact, for most people with a certain level of
education, the problem is often not lacking knowledge of
the meaning of a word, but, rather, being unable to recall the
appropriate word on demand. The RD addresses this
widespread problem.

The RD problem description is quite simple: given one
or more forward dictionaries, how can we construct a
reverse dictionary, given the following two constraints?

e R. Shaw is with Google, Inc., CA 94043. E-mail: shawrc@google.com.

o A. Datta and K. Dutta are with the Department of Information Systems,
School of Computing, National University of Singapore, Singapore
117417. E-mail: datta@comp.nus.edu.sg, duttak@nus.edu.sg.

e D. VanderMeer is with the Decision Sciences and Information Systems
Department, College of Business, Florida International University, Miami,
FL 33199. E-mail: vanderd@fiu.edu.

Manuscript received 15 June 2010; revised 5 Sept. 2011; accepted 4 Oct. 2011;
published online 19 Oct. 2011.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-06-0332.
Digital Object Identifier no. 10.1109/TKDE.2011.225.

1041-4347/13/$31.00 © 2013 IEEE

First, the user input is unlikely to exactly match (indeed,
might differ widely from) the definition of a word in the
forward dictionary. For example, a user may enter the
phrase “to waste resources on unimportant things” when
looking for a concept such as “fritter,” whose dictionary
definition might be “spend frivolously and unwisely”—
which is conceptually similar, but does not contain any of
the same words as the user input.

Second, the response efficiency needs to be similar to
that of forward dictionary online lookups, i.e., the RD needs
to be usable online. According to a recent Forrester study,
end users become impatient if a website takes longer than
4-5 seconds to respond to a request [8].

Effectively, the problem is as follows: upon receiving a
search concept, the RD consults the forward dictionary at its
disposal and selects those words whose definitions are
similar to this concept. These words then form the output of
this RD lookup. The problem reduces to a concept similarity
problem (CSP), which, in principle, has been addressed in a
variety of fields, such as psychology, linguistics, and
computer science. Specifically in computer science, concept
similarity has been addressed by both Information Retrieval
(IR) researchers [18], [21] as well as Database researchers
[32]. Yet, it turns out that the RD concept similarity problem
possesses significantly different characteristics from the
concept similarity work reported in the literature.

The CSP is a well-known hard problem [18] which has
been addressed in a number of ways with a limited degree
of success. The real-time, online concept similarity identification
problem we need to tackle is different from what extant CSP
work addresses. In effect, one of the core contributions of
this work is the development and implementation of a
practical and scalable (i.e., capable of supporting online
interactive applications) concept similarity measurement
system. Specifically, the two problems have key differences
that make direct use of existing results infeasible.
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The first problem considers the unit of analysis. Estimat-
ing the semantic similarity of concepts is an important
problem, well studied in the literature. Results of such
studies are reported in a variety of fields, including
psychology [41], natural language processing [31], informa-
tion retrieval [18], [21] language modeling [17], [28], and
database systems [32]. Virtually all attempts to study the
similarity of concepts model concepts as single words. Work in
text classification for instance, surveyed in detail in [35],
attempts to cluster documents as similar to one another if
they contain co-occurring words (not phrases or sentences).
Current word sense disambiguation approaches, where
researchers seek to identify the contextual meaning of a
polysemous word (i.e,, a word with multiple meanings)
based on nearby words in a sentence where the target word
appears, still consider a single word at a time. This single-
word focus is well recognized in the literature [21], [15]—in
[21], for instance, the authors remark: “Measures of semantic
similarity have been traditionally defined between words or
concepts, and much less between text segments containing two or
more words.” For a RD, semantic similarities must be
computed between multiword phrases.

Some work in the literature does address multiword
similarity. One area of such work [9], [23] addresses the
problem of finding the similarity of multiword phrases
across a set of documents in Wikipedia. However, there is a
further problem (our second problem) in applying these
methods directly, because the methods proposed in these
works assume that the documents contain sufficient
contextual information (at least 50-100 words) for similarity
matching, which fits within the traditional notion of “short
documents” in IR research [3], [10]. In another area of
related work, ie., passage retrieval [34], [19], [4], the
concept of interest is modeled as a multiword input query.
Work in this area attempts to identify relevant passages in
large-text documents.

In contrast, in the reverse dictionary scenario, the
“documents” considered for similarity are very short
dictionary definitions (often consisting of fewer than ten
words), which contain very little contextual information.
The lack of contextual information in the RD case adds to
the difficulty of addressing this problem space.

Finally, we consider the online responsiveness and
scaling problems. A key requirement for our RD system
is that its performance allows online interaction with users.
Current semantic similarity measurement schemes are
highly computationally intensive, making online scaling
difficult [15]. Consider for instance, vectorization—perhaps
the most effective technique applied to similarity measure-
ment. In this technique, concepts are represented as vectors
in a feature (or keyword) space. The two most common
methods to achieve this, latent semantic indexing (LSI) [11]
and principal component analysis (PCA) [16], both analyze the
keywords of documents in a corpus to identify the dominant
concepts in the document. Subsequently these dominant
concepts are represented as vectors in the keyword space
and are used as the basis of similarity comparison for
classification. Such vectorization is a highly computation-
ally intensive operation, as is the comparison of the
distance between two vectors (using techniques like cosine

distances [16]). Typically, in most implementations of CSP
solutions, vectorization is done a priori, and at runtime,
only vector distances are computed. The computational
intensity of this distance computation itself renders such
solutions infeasible to reside behind online applications.

In the RD case, since our concepts are not known
beforehand, particularly in the case of user inputs, we need
to compute the user input concept vector at runtime and then
subsequently compute the distance between this and the
dictionary concept vectors (where these vectors can be
computed a priori). Vector computation is known to be
quite compute intensive [36], even though much effort has
been expended in building efficient schemes. The results of
this effort have been several published variants of LSI,
such as pLSI [12] and Latent Dirichlet Allocation (LDA) [2].
Researchers have attempted to enhance the scale of the
efficient variants by creating parallelized and distributed
avatars [24]. Yet, even in the highest performing vectoriza-
tion schemes, even for modest document sizes (=50,000),
response times are still on the order of multiple tens of
seconds. In our case, we are looking at approximately
200,000 words and for corpora of that size, it appears
infeasible that online speed or scale might be achieved
with even state-of-the-art existing methods.

In this paper, we report the creation of the Wordster
Reverse Dictionary (WRD), a database-driven RD system
that attempts to address the core issues identified above.
The WRD not only fulfils new functional objectives outlined
above, it does so at an order of magnitude performance and scale
improvement over the best concept similarity measurement
schemes available without impacting solution quality. We also
demonstrate that the WRD is far better in solution quality
than the two commercial RDs [26], [6] available.

The remainder of this paper is structured as follows:
In Section 2, we describe our solution approach and in
Section 3, we describe the architecture of the WRD system.
In Section 4, we analytically demonstrate the scalability of
our approach. In Section 5, we present the results of our
experiments, including both quality and performance
results. Finally, we conclude in Section 6.

2 PROPOSED SOLUTION APPROACH

Intuitively, our reverse dictionary system is based on the
notion that a phrase that conceptually describes a word
should resemble the word’s actual definition, if not
matching the exact words, then at least conceptually
similar. Consider, for example, the following concept
phrase: “talks a lot, but without much substance.” Based
on such a phrase, a reverse dictionary should return words
such as “gabby,” “chatty,” and “garrulous.” However, a
definition of “garrulous” in a dictionary might actually be
“full of trivial conversation,” which is obviously close in
concept, but contains no exact matching words.

In our RD, a user might input a phrase describing an
unknown term of interest. Since an input phrase might
potentially satisfy the definition of multiple words, a RD
should return a set of possible matches from which a user
may select his/her choice of terms. This is complex,
however, because the user is unlikely to enter a definition
that exactly matches one found in a dictionary. However,
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the meaning of the phrase the user entered should be
conceptually similar enough to an actual dictionary
definition to generate a set of possible matches, e.g.,
returning to the “talks a lot, but without much substance”
example, our reverse dictionary should return words like
“garrulous.” How can we generate such potential matches?
How can we do this such that the system can provide
online responsiveness?

One approach might be to compare the user input phrase
to every definition in a dictionary, looking for definitions
containing the same words as the user input phrase. Such
an approach has two major problems: 1) it requires the
user’s input phrase to contain words that exactly match a
dictionary definition; and 2) it does not scale well—for a
dictionary containing more than 100,000 defined words,
where each word may have multiple definitions, it would
require potentially hundreds of thousands of queries to
return a result.

As a first step, we can improve the efficiency of the
simple method proposed above by reducing the set of
definitions we compare to the user input phrase by knowing
which definitions a given word appears in. For example,
suppose that a user input phrase contains the word
“carnival.” If we know which dictionary definitions the
word “carnival” appears in, i.e., if we have an index that
maps from a word to all the dictionary words in whose
definitions it appears, we can use such an index to limit the
set of definitions we compare to the input phrase to only
those definitions containing the word “carnival.” We call
such an index a reverse mapping, since it is designed to
support a reverse dictionary. This is a form of inverted
index [1], [39], where we incorporate stemming to ensure
that we use the most generic form of a word possible. For
example, if the word “spirited” occurred in a definition,
then in the reverse mapping we use the word “spirit.” This
removes the possibility of concepts that are actually similar,
but are not found to be similar based on differing
grammatical usage.

This optimization, though useful, only takes us so far.
The user’s input phrase must still exactly match words in a
dictionary definition, which is very unlikely. We can extend
the input phrase to consider conceptually similar words
using a form of query expansion [20] in order to improve
the potential that relevant definitions will be identified. For
example, if the user’s input phrase contains the word
“carnival,” relevant definitions containing the conceptually
similar word “festival” would not be returned. If instead we
considered the set of words where “carnival” or “festival”
appear in definitions, we can increase the probability of
identifying relevant definitions.

These two approaches form the basic framework of our
method, which we discuss in detail in the remainder of this
section. We first define several concepts that will be useful
in describing our methods.

We define the notion of a ferm t as any legitimate word in
the English language, e.g., “cow,” “boy,” “reading,”
“jargon,” and “merrily” are examples of terms. We further
define a phrase P as a sequence of one or more terms, i.e.,
P = <ty,t3,...,t;,..t,>. For convenience, we designate the
fact that term ¢ is part of the phrase P by the notation ¢ € P
(even though P is not technically a set).

”oou

A dictionary D is a set of mappings P — P. For clarity,
we will distinguish between the two classes of phrases,
word phrases (W) and sense phrases (.5), where W refers to
a word or sequence of words indexed for lookup in a
dictionary, and S refers to a definition of a W in a dictionary.
Under this classification, a dictionary D can be redefined as
a set of mappings W — S. In particular, the mapping W; —
S; expresses the following relationship: .S; denotes a sense (or
meaning) of the (word) phrase W;. For example, consider the
following dictionary mapping: “to retreat” — “to turn back
in defeat.” This denotes the fact that the meaning of the
(word) phrase “to retreat” is expressed the (sense) phrase
“to turn back in defeat.”

Forward mapping (standard dictionary): Intuitively, a
forward mapping designates all the senses for a particular
word phrase. This is expressed in terms of a forward map
set (FMS). The FMS of a (word) phrase W, designated by
F(W) is the set of (sense) phrases {5, 5%, ...5,} such that
for each S; € F(W;), (W; — S;) € D. For example, suppose
that the term “jovial” is associated with various meanings,
including “showing high-spirited merriment” and “pertain-
ing to the god Jove, or Jupiter.” Here, F(jovial) would
contain both of these phrases.

Reverse mapping (reverse dictionary): Reverse mapping
applies to terms and is expressed as a reverse map set
(RMS). The RMS of ¢, denoted R(t), is a set of phrases
{P,Py,...,P,...,P,}, such that VP, € R(t),t € F(P,). In-
tuitively, the reverse map set of a term ¢ consists of all the
(word) phrases in whose definition ¢ appears. For example,
suppose forms of the word “spirit” appear the definitions of
both “languid,” which might be defined as “lacking spirit or
liveliness” and “jovial,” which might be defined as
“showing high-spirited merriment.” Here, R(spirit) would
include both “languid” and “jovial.”

We note that we consider the words “spirit” and
“spirited” as conceptually equivalent for the purposes of
concept matching. We do this by running each word
through a standard stemming algorithm, e.g., the Porter
stemmer [29], which reduces each word to its base form by
removing common modifications for subject-verb agree-
ment, or variation in parts of speech (e.g., “standard,”
“standards,” “standardizing,” “standardization”). We de-
note the output of stemming a term as i. Further, we
maintain a count of definitions in which a stemmed term &
appears, denoted N (%).

As we noted above, a user is unlikely to enter an exactly
matching definition, but should be able to enter something
conceptually similar to the dictionary meaning. Thus, we
need ways to describe how words can be conceptually
related to one another. We defines several types of
relatedness below.

Synonym set: A set of conceptually related terms for ¢.
Weyn(t) = {t1,t2,...t;,...,t,}, where ¢; is a synonym of ¢, as
defined in the dictionary. For example, W,,,(talk) might
consist of the set of words { speak, utter, mouth, verbalize}.

Antonym set: A set of conceptually opposite or negated
terms for t. Wy (t) = {t1,12,...tj,...,1,}, whereeach ¢ is an
antonym of ¢, as defined in the dictionary, e.g., Wt (pleasant)
might be consist of {“unpleasant,” “unhappy”}.

”ou
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Hypernym set: A set of conceptually more general terms
describing t. Wy, (t) = {t1,t2,...tj,...,t,}, where ¢; is a
hypernym of ¢, as defined in the dictionary. For example,
Wiy (red) might consist of {“color”}.

Hyponym Set: A set of conceptually more specific terms
describing t. Whyo(t) = {t1,t2,... ¢, ..., t,}, where ¢; is a
hyponym of ¢, as defined in the dictionary. For example,
Whyo(red) might consist of {“maroon,” “crimson”}.

Forward mapping sets, as well as synonym, antonym,
hypernym, and hyponym sets can be retrieved from an
existing corpus. In this paper, we draw these sets from the
WordNet [22] database.

User phrase: A user phrase U is a phrase defined by a
sequence of terms <ty,...,t,...,t,> input by a user. This
string serves as input to our method.

Given an input U, we note that some common words are
not useful for the purposes of indexing. Such words are
called stop words [33], and are typically removed from
indexes and queries over indexes.

Stop word sets: We define two sets of stop words, Level 1
stop words (L1), which are always removed during index
building and querying, and Level 2 stop words (Ly), which
may or may not be useful in indexing. An example of an
area where a word may or may not be useful is gender,
because the gender is important in some cases but not
others. For example, the input “man who is married”
should logically return the word “husband,” but not “wife;”
however, the input “man who cares for patients” should
return both “physician” and “nurse.”

Negation word set: Negation is also a concern. For
example, a user might enter an input phrase using the
word “not,” e.g.,, when an antonym of the negated term
would be more precise. We wish to identify such cases, We
define a set of negation words, denoted G.

Query: A query phrase @ is a Boolean expression based
on an input U.

Output: The output O of our method consists of a set of
W:s, such that a definition of each W in the output satisfies Q.

Table 3 provides examples of level 1 and level 2 stop
words, as well as negation terms, and Table 4 summarizes
the notation used throughout the remainder of the paper,
respectively.

Having described our notational building blocks, we
now move on to describe the details of our reverse
dictionary creation techniques. The details of this concep-
tual similarity discovery follow.

2.1 Solution Overview

At a high level, our approach consists of two sequential
steps. Upon receipt of a user input phrase, we first find
candidate words from a forward dictionary data source,
where the definitions of these candidate words have some
similarity to the user input. We then rank the candidate words
in order of quality of match. The find candidate words phase
consists of two key substeps: 1) build the RMS; and 2) query
the RMS. We now describe the details of our approach.

2.2 Building Reverse Mapping Sets

Intuitively, building the RMS of a term ¢, R(t), is a matter of
finding all Ws in whose definition ¢ appears. Given the
large size of dictionaries, creating such mappings on the fly

is infeasible. Thus, we precreate these Rs for every relevant
term in the dictionary. This is a one time, offline event; once
these mappings exist, we can use them for ongoing lookup.
Thus, the cost of creating the corpus has no effect on
runtime performance.

For an input dictionary D, we create R mappings for all
terms appearing in the sense phrases (definitions) in D.
Algorithm 1 describes this process. We build R indexes by
iterating through all the terms (or Ws) in D. For each W
defined in D, we consider each sense phrase S;, where
(W; — S;) (line 2). For each term ¢t appearing in S; (lines 3-
4), we first determine the most generic form of ¢ by
applying stemming to ¢ (line 5). This results in a stemmed
form of t: {. We then place W in R(f), and increment the
count of appearances N(f) (line 6).

Algorithm 1. BuildRMS
1: Input: a dictionary D.
2: for all mapping W; — S; € D do
3: Extract the set of terms {¢;...%,},t, € SP;
4: for all ¢, do
5 Apply stemming to convert ¢; to convert it to its
general form #;
6: Add W; to R(f},) and increment N(£;) by 1.

2.3 Querying the Reverse Mapping Sets

In this section, we explain how we use the R indexes
described in Section 2.2 to respond to user input phrases.
Upon receiving such an input phrase, we query the R
indexes already present in the database to find candidate
words whose definitions have any similarity to the input
phrase. We explain the intuition behind this step with an
example. Given an input phrase “a tall building,” we first
extract the core terms present in this phrase: “tall” and
“building” (the term “a” is ignored, since it is a stop word).
We then consult the appropriate R indexes, R(tall) and
R(building), to find those words in whose definitions the
words “tall” and “building” occur simultaneously. Each
such word becomes a candidate word.

Two additional issues are important for the reader to
understand. First, the fact that two terms occur simulta-
neously in a word W does not imply that W should be part
of the final output. At this step, we are only concerned with
finding candidate words. In the ranking phase, we will test
candidate words” definitions for quality of match with the
input phrase. Second, different dictionaries might use
different terms to define the same W. For instance, a
dictionary might use the word “high” rather than “tall,”
and “edifice” instead of “building.” So, in this candidate
identification step, we consider not only the terms extracted
from the user input phrase, but also terms similar to them
in meaning.

Upon receiving an input phrase U, we process U using a
stepwise refinement approach. We start off by extracting
the core terms from U, and searching for the candidate
words (Ws) whose definitions contain these core terms
exactly. (Note that we tune these terms slightly to increase
the probability of generating Ws) If this first step does not
generate a sufficient number of output Ws, defined by a
tuneable input parameter o, which represents the minimum
number of word phrases needed to halt processing and
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return output, we then broaden the scope of @) to include, in
turn, the synonyms, hyponyms, and hypernyms of the
terms in (). If these steps still do not generate a sufficient o
number of output Ws, we remove terms from () to increase
the scope of possible outputs until either a sufficient
number of output Ws has been generated, or @) contains
only two terms.

When the threshold number of Ws o has been reached,
we sort the results based on similarity to U, and return the
top B Ws, where (3 is a tuneable input parameter defining
the maximum number of Ws to include in returned results.
The details of sorting and ranking Ws are described in
Section 2.4.

Algorithms 2, 3, 4, 5, and 6 implement the above
procedure. We begin our discussion with the Generate-
Query algorithm (Algorithm 2), which controls the overall
process. It takes as input U and minimum and maximum
output thresholds « and f, respectively, and expands the
query in a stepwise fashion until a sufficient number of W
outputs have been generated. We next describe the steps in
Algorithm 2 in detail.

Algorithm 2. GenerateQuery(U, «, )

1: U=UstVt; €U, t; & Ly

2: Form a boolean expression ) by adding all ¢; € U to
Q, separated by AND
Q@ = Q OR ExpandAntonyms(Q)
for all t; € U do

Apply stemming to ¢; to obtain i,
Replace t; in @ with (¢; OR )

Reorder terms in @ s.t. all nouns appear before verbs,
and verbs before adjectives and adverbs
O = ExecuteQuery(Q)

9: if |O| > « then
10: Return SortResults(0)
11: forall ¢; € Q s.t. t; € Ly do
12: Remove t; from Q
13: O =0 U ExecuteQuery(Q)
14: if |O| > « then
15: Return SortResults(0)
16: O = OU ExpandQuery(Q, “synonyms”)
17: if |O| > « then
18: Return SortResults(O)
19: O = OU ExpandQuery(Q, “hyponyms”)
20: if |O] > « then
21: Return SortResults(0)
22: O = OU ExpandQuery(Q, “hypernyms”)
23: if |O] > a then
24: Return SortResults(O)
25: Create a list [ of all terms t; € Q
26: Sort [ in descending order based on N(t;)
27: while |Q > 2| do
28: Delete ¢; from (), where t; has the highest value of

N(tL) in{

29: O =0 U ExecuteQuery(Q)

®

30: if |O| > «a then

31: Return SortResults(O)
32: else

33: Delete t; from [

Algorithm 3. ExecuteQuery(Q)
1: Given: a query @ of the form Q =1t ®; ty ®a t3 ..
ti—1 Op_1 tr, where ©; € {AND UR}
2: Oc = R(t1) ®1 R(t2) @2 R(t3) ... R(ti-1) @r—1 R(tr),
where if ®; = AND, ®; = N and 1f ®; =0R, ®; =U
3: return O,

Algorithm 4. ExpandAntonyms(Q)
1: Given: a query @ of the form Q =t @1t Oz t3. ..
ti_1 Op_1 tr, Wwhere ©; € {AND, UR}

2: Create a new query @', where @)’ is a copy of @
3: for all negated ¢; € Q do
4. F = W(mt(ti)
5. if F # () then
6: Create a new subquery ¢ = ()
7: for all t; € F do
8: Add t; to g, connected to existing terms with OR
9:  Replace ¢ and the word that negates it in @’ with ¢
10: if Q' # Q then
11: Return @’
12: else
13:  Return

Algorithm 5. ExpandQuery(Q, SetType)
1: Given: a query @ of the form Q =t ®1ts O2t3...
ti—1 Ok-1 tr, where ©®; € {AND, OR}
2: forall ¢; €  do
3 if SetType is “synonyms” then
4 F= Wsyn(ti)
5. if SetType is “hyponyms” then
6: F= Whyo(ti)
7 if SetType is “hypernyms” then
8: F =Wy, (t:)
9:  Create a new subquery ¢ = (¢;)
10:  forall t; € F do
11: Add t; to g, connected with OR
12: Replace t; in @ with ¢
13: Return ExecuteQuery(Q)

Algorithm 6. SortResults(O, U)
1: Create an empty list K
2: for all W; € O do
3: for all S, € W do
4 if 3t; € W]‘ s.t. t; € L, then
5: Remove t; from W
6: Compute Z(S) and Z(U)
7 for all pairs of terms (a,b), where a € Z(S) and

be Z(U) do
8: if a and b are the same part of speech in Z(5)
and Z(U), respectively then
x E(A(a,b))
9: Compute p(a,b) = %
(z(s
10: Compute A(a, S) = %
11: Compute A\(b,U) = 7“(2(;()[), )d')
12: Compute p(a, S,b,U) = A(a, S) x A(b,U) x
pla,b)

13: Use p(a, S,b,U) values to measure the phrase
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similarity M(S,U) of S and U following the
algorithm described in [5].
14: Insert the tuple (S,U, M) in to the list K
15:  Sort the tuples in K in descending order based on
the value of M
16: For the top § word senses in K, return the
corresponding words

We first remove all L; stop words (line 1). Since these
stop words do not add specificity to the input, removing
them does no harm. We next generate a query @ by
connecting all the terms ¢; € U with AND (line 2).

We next consider instances where a negation word (as
listed in the examples in Table 3) modifies a term ¢; € Q.
We note that if there are any antonyms in R (t;), these
terms might help to generalize () and improve the result
set. For example, “not pleasant” can be expanded to
include conceptually similar terms “unpleasant” or “un-
happy.” In line 3, we call the ExpandAntonyms algorithm
(described in Algorithm 4 below), which creates a copy of
@ expanded to include antonyms of negated terms, and
concatenate the result to Q with OR. For example, given
@ = (“wetness” AND “not” AND “pleasant”), ExpandAnto-
nyms will return (“wetness” AND (“unpleasant” OR
“unhappy”)). We combine this result with @ to form
((“wetness” AND “not” AND “pleasant”) OR (“wetness” AND
(“unpleasant” OR “unhappy”))).

Next, we apply stemming to all terms ¢; € ) (lines 4-6),
to include the most general form of each ¢; in Q.

In line 7, we reorder the query such that all nouns appear
first, then verbs, then adjectives and adverbs. Since nouns
and verbs represent more concrete concepts than adjectives
or adverbs, they have smaller average mapping sets than
adjectives and adverbs. By starting set comparison proces-
sing with the items with smaller average set sizes, we
reduce the number of set operations required, as compared
to orderings that process adjectives and adverbs earlier.

In lines 8-10, we evaluate @ by calling ExecuteQuery. If
this generates sufficient output, we call SortResults to
sort the results by similarity to the U, and return the sorted
list. We describe ExecuteQuery and SortResults next.

If sufficient results are not generated, we expand @ to
consider synonyms (lines 16-18), hyponyms (lines 19-21),
and hypernyms (lines 22-24) using the ExpandQuery
algorithm (described in detail below). We evaluate @ at
each stage to determine if processing needs to continue to
gather further results (lines 17, 20, and 23).

If we still do not have sufficient results, we begin to
generalize () by successively removing a single term ¢; from
@, in descending order of incidence in definitions of W,
ie., in decreasing order of N(t;). This removes the more
common words first, based on the assumption that the least
commonly occurring words will be the most important in
finding suitable output W's. We evaluate @ at each step, and
continue until we have sufficient output, or until ) contains
only two terms.

2.3.1 Executing a Query

The ExecuteQuery algorithm, shown in Algorithm 3,
takes any generic () as input, where @ is a Boolean

expression consisting of terms ¢;...t;, and produces an
output set O., which contains a set of Ws.

To evaluate @, we take the output of R(¢;) for each term
t; € Q, and merge the R sets for two terms based on how
they are connected together in . If the two terms are
connected with AND, we merge the corresponding R sets
using set-intersection. If the two terms are connected with
OR, we merge the corresponding R sets using set-union.

For example for the @ = (“wetness” AND “not” AND
“pleasant”) OR (“wetness” AND (“unpleasant” OR “unhap-
PY”"), O = (R(wetness) N R(not) N R (pleasant)) U (R(wet-
ness) N (R (unpleasant) U R(unhappy)).

2.3.2 Replacing Negation with Antonyms

The ExpandAntonyms algorithm, described in Algorithm 4,
takes a query (), and returns a copy of ), where each negated
term t; is expanded to include its antonyms. We first create a
copy of @, called @ that will be modified to include
antonyms of negated terms (line 2). Then, for each negated
term ¢; in @, we find the set of antonyms of ¢;, called F
(line 4). If there exist any antonyms for ¢;, we create a new
Boolean expression ¢ (line 6) that contains all the antonyms
of ¢; connected by OR (lines 7-8), and we replace t; and the
word that negates it in @' (line 9). This generates an alternate
version of () containing antonyms rather than negated terms,
which we return (lines 10-13).

For example, if query @ = (“wetness” AND “not” AND
“pleasant”). In this case the negation word “not” is before
the adjective “pleasant.” The antonym set of pleasant is
Want(pleasant) = {“unpleasant,” “unhappy”}, and
¢ = (“unpleasant” OR “unhappy”).

2.3.3 Expanding a Query

The ExpandQuery algorithm, described below in Algo-
rithm 5, returns a set of output Ws, based on an expansion
of @ to include conceptually similar terms of type SetType,
which can be “synonyms,” “hyponyms,” or “hypernyms.”
We expand each term in @ in turn. For each ¢; € Q, we find
the appropriate set of related terms, using Wy (¢;) for
synonyms (lines 3-4), W,,(t;) for hyponyms (lines 5-6), and
Wiy (t;) for hypernyms (lines 6-7). We then create a new
subquery g, initially containing only ¢;, and concatenate the
related terms to ¢ using OR (lines 9-11). We replace ¢; in @
with ¢, evaluate ) by running ExecuteQuery, and return
the results (line 13).

For example, consider the case of synonyms. If Q = (“talk”
AND “much”), Wy, (talk) = {speak, utter, mouth, verbalize}
and W, (much) = {very, often, lot, excessively }, we evaluate
the following boolean expression containing expanded
synonyms: ((“talk” OR “speak” OR “utter” OR “mouth” OR
“verbalize”) AND (“much” OR “very” OR “often” OR “lot”
OR “excessively”)). Similar logic applies to hyponyms and
hypernyms.

2.4 BRanking Candidate Words

The SortResults algorithm, shown in Algorithm 6, sorts
a set of output Ws in order of decreasing similarity to U,
based on the semantic similarity of the definitions S ... .S,
of W (i.e.,, F(W)) as compared to U.

To build such a ranking, we need to be able to assign a
similarity measure for each (S,U) pair, where U is the user
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TABLE 1
Example Parser Output for P,

(ROOT
(S
(NP
(NP (DT the) (NN dog))
(SBAR
(WHNP (WP who))
(S
(VP (VBD bit)
(NP (DT the) (NN man))))))))

input phrase and S is a definition for some W in the
candidate word set O. If simply considering the pairwise
similarity of words in two phrases could produce a
meaningful measure of similarity, we could directly apply
the work in [5]. We note, however, that the sequence of
words in a phrase is important, and that some words
contribute more to the meaning of a phrase than others.
Consider two phrases: “the dog who bit the man” and “the
man who bit the dog.” They contain the same words, so the
method in [5] would consider them virtually equivalent, but
they convey very different meanings.

Thus, we need measures of both term similarity across
two terms generally, and term importance, i.e., how critical
the term is in the context of the phrase of which it is a part.
If we can build a measure of similarity that is weighted by
the importance of each term in the context of the phrase
where it occurs, then we can leverage the similarity
framework suggested in [5] with these importance mea-
sures. Specifically, we can generate a weighted similarity
measure for each pair of terms (a,b), wherea € Sand b € U,
such that if a and b are conceptually similar, and they are
both important in the phrases in which they occur, then the
phrase pair (S,U) would be measured to be more similar
than another pair of phrases (S,U’), where U and U’ contain
the same set of terms, but a € S is more important to the
meaning of S than a € S’ is to the meaning of 5.

We approach the problem of building such a weighted
similarity measure by first developing a measure of general
conceptual similarity term similarity, p(a,b), between two
terms a and b. We then develop a measure of ferm
importance, A(t, P), for a term ¢ in a phrase P. For example,
A(a, S) describes the importance of a in the phrase S and
A(b,U) describes the importance of b in the phrase U. We
combine these measures by defining p(a, S, b, U), which is a
single importance-weighted similarity measure.

We first consider term similarity. We compute the
similarity p(a,b) (based on [40]) for two terms a and b
based on their locations in the WordNet hierarchy, where
this hierarchy organizes words in the English language
from the general at the root to the most specific at the leaf
nodes. Intuitively, two terms have very little similarity if
their least common ancestor (LCA) in this hierarchy is the
root, and increasingly greater similarity the deeper their
LCA is in this hierarchy.

We define several functions for use in computing the
similarity of two terms p(a,b). A(a,b) returns the least
common ancestor shared by both a and b in the WordNet
hierarchy. E(t) returns the depth of a term ¢ in the WordNet
hierarchy. Using these two functions, we define a similarity

TABLE 2
Example Parser Output for P,

(ROOT
(S
(NP
(NP (DT the) (NN man))
(SBAR
(WHNP (WP who))
(S
(VP (VBD bit)
(NP (DT the) (NN dog))))))))

function that describes how similar two terms are in the
English language:

2 x E(A(a,b))
P00 = T + B6) W

That is, p(a, b) will be larger the closer a and b are to their
LCA in the hierarchy.

We next consider the notion of term importance, A(t, P),
for a term t in a phrase P. We return to the example of the
two phrases: P, = “the dog who bit the man” and P, = “the
man who bit the dog.” Here, the subject of the phrase is
intuitively more important than the object, i.e., in P, “dog”
is more important than “man,” and in P, “man” is more
important than “dog.” If we were to add adjectives or
adverbs, these would add detail, but be less critical to the
meaning of the phrase than the subject or object. For
example, the phrase P; = “the agitated dog who bit the
man” differs very little in basic meaning from P,—we have
just added a bit of information that might explain why
the dog bit the man.

To generate the importance of each term, we can use a
parser, e.g., OpenNLP [30], that can return the grammatical
structure of a sentence. Given an input phrase, such a parser
returns a parse tree, where the words in the input phrase that
add the most to the meaning of the phrase appear higher in
the parse tree than those words that add less to the meaning
of the input phrase. The details of this how this parser
works are beyond the scope of this paper, but we note that
the output representation is similar to a functional
programming language with part-of-speech notation as
described in [25]. Table 1 shows the parser output Z(P;) for
the phrase P, = “the dog who bit the man,” while Table 2
shows the parser output Z(P,) for the phrase P, = “the man
who bit the dog.”

Here, we can clearly see that the word “dog” is more
important than the word “man” in P;, and less important

TABLE 3
Examples of Stop and Negation Words

Level 1 stop
words

a, be, person, some, someone, too, very, who, the, in,
of, and, to, that, for, with, this, from, which, when,
what, than, into, these, where, those, how, during,
without, upon, toward, among, although, whether,
else, anyone, beside, whose, whom, onto, anybody,
whenever, whereas

woman, female, male

Level 2 stop

words
Negation lack, lacking, never, no, non, none, not, seldom,
words without
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TABLE 4
Notation

Notation | Meaning

any legitimate word in the English language
stemmed (generic) version of ¢

a sequence of one or more terms

a set of mappings P — P

a word phrase

a sense phrase

a forward dictionary, i.e., a set of mappings W —
S

reverse mapping for ¢, i.e., all the Ws that include
t in their definitions

count of definitions in which a stemmed term #
appears

set of synonyms of ¢

set of antonyms of ¢

set of hypernyms of ¢

set of hyponyms of ¢

a user input phrase

set of negation words

boolean expression query, based on U

the set of level 1 stop words

the set of level 2 stop words

set of output W Ps satisfying @

minimum threshold number of W P € O required
to stop processing

£ | maximum number of W P to include in output
term similarity of the terms ¢1 and t2
importance of ¢ in P

parse tree of a phrase P

depth of ¢ in a parse tree

overall depth of a parse tree for P
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than the word “man” in P». Thus, for a parse tree Z(P), we
can use the depth d; ofaterm ¢ € Pin Z(P), where Z(P) hasa
total depth d(Z(P)), to generate a measure of the importance
of t to the meaning of P. We define a term importance
function A(¢, P), for a term ¢ in a phrase P as follows:

(d(Z(P)) — di)

At, P) = 2P (2)

where A(t,P) produces a larger value, the higher ¢
appears in the parse tree Z(P).

Finally, we define a weighted similarity factor
u(a,S,b,U) where a € S and b € U as follows:

w(a, S,0,U) = A(a, S) x A(b,U) x p(a,b). (3)

We use this weighted similarity factor p(a,S,b,U) to
generate a weighted similarity measure for each term pair
(a,b) where a € S and b € U. We can then use this weighted
similarity matrix as input to the generic string similarity
algorithm described in [5] to obtain a phrase similarity
measure M(S,U) for a sense phrase S and a user input
phrase U. We can then rank the elements of the candidate
set O by similarity to U, and return the 3 best matches.

3 SOLUTION ARCHITECTURE

We now describe our implementation architecture, with
particular attention to design for scalability. Fig. 1 presents
the architecture of the system. The Reverse Dictionary
Application (RDA) is a software module that takes a user
phrase (U) as input, and returns a set of conceptually
related words as output.

P1
P1, P2, ... Pk " @w @
Reverse P2

ity
-]
Result Dictionary [+ . Thread Pool syyggym

-~ L D ——
Application : —
] y d d my e
PK Definition
SIS ia

Fig. 1. Architecture for reverse dictionary.

To perform the processing described in Section 2, the
RDA needs access to information stored in a set of
databases:

1. the RMS DB, which contains a table of mappings
t — R(t), as well as dictionary definitions and
computed parse trees for definitions;

2. the Synonym DB, which contains the synonym set for
each term ¢;

3. the Hyponym/Hypernym DB, which contains the
hyponym and hypernym relationship sets for each
term ¢;

4. the Antonym DB, which contains the antonym set for
each term ¢; and

5. the actual dictionary definitions for each word in the
dictionary.

The mappings for the RMS, synonyms, hyponyms,
hypernyms, and antonyms are stored as integer mappings,
where each word in the Wordnet dictionary is represented
by a unique integer. This both condenses the size of the
mapping sets, and allows for very fast processing of
similarity comparisons, as compared to string processing.

This architecture has three characteristics designed to
ensure maximum scalability of the system. First, a cache
stores frequently accessed data, which allows a thread to
access needed data without contacting a database. It is well
known that some terms occur more frequently than others.
The synonym, hyponym, hypernym, and RMS sets of these
popular terms will be stored in the cache and the query
execution in the database will be avoided. Second, the
implementation of a thread pool allows for parallel retrieval
of synonym, hyponym, hypernym, and RMS sets for terms.
Third, separate databases increase the opportunity for
parallel processing, and increase system scalability. If a
single machine is not capable of handling the necessary
loads, the database can easily be further distributed across
multiple servers using partitioning methods to improve
overall system scalability.

When the RDA needs word-related data, it delegates the
job of retrieving this data to a thread in a thread pool. The
thread first checks the local cache to determine whether
the appropriate data exist in the cache. If so, the cache
returns the needed data. If not, the cache returns a null set.
If the thread receives a null set from the cache, it contacts
the appropriate database to obtain the needed data.

Having described the architecture, we estimate the cache
size for the data for the most frequently used data types,
ie., RMS sets, synonyms, hyponyms, hypernyms, and
antonyms. If we can store these data objects entirely in
cache (using MD5 hashing) in a reasonable memory size,
then the GenerateQuery algorithm can execute entirely
on in-memory data objects until it calls SortResults,
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which requires accessing full definitions (sense phrases) for
each candidate W € O.

We first describe the cache overhead for a single cache
entry, and then consider the overall cache sizes for each of
the mappings used in our method. Rather than representing
a word by its string in the mappings for reverse mappings,
synonym mappings, etc., we use integers (a unique 4-byte
integer is assigned to each word). We implement the cache
with a Java HashMap, where each cache entry contains one
integer word-id, and is associated with a key and other
HashMap-related data structures. For small stored values
(and integers are certainly small values), a Java HashMap
with an integer key is associated with overheads of
approximately 2.5 times (including the space required for
the key). For a small 4-byte stored integer value, this
amounts to a total of 10 bytes for each cached entry (ie.,
6 bytes of overhead).

Cache size for synonyms: On average, each of WordNet's
155,287 words has 3.63 synonyms. To store the synonym
words for the WordNet corpus, we need a hashtable of size
15,5287 x 3.63 x 10, i.e., 7.2 MB.

Cache size for antonyms: On average, each WordNet
word has 0.045 antonyms. This gives us an in-memory
hashtable size of 15,5287 x 0.045 x 10, i.e., 69 KB, to store
all antonym sets.

Cache size for RMS: Based on the RMS sets we have built
on the WordNet corpus, we have found that, on average,
each term has an RMS set of 10 words. Thus, storing the
RMS data objects in cache will require 15,5287 x 10 x 10,
i.e., 15.5 MB to store the RMS maps for the entire WordNet
dictionary. Note that ExecuteQuery queries the RMS, so
such caching will help to enhance the performance of the
system, whereas the actual definitions, which are not
accessed until the SortResults step, are kept in the
database.

Cache size for Hyponym-Hypernym database: For each
word in the WordNet dictionary, we need to store on
average 2.74 hyponyms, 2.75 hypernyms, and the depth of
the word in the WordNet hierarchy. To cache this
information in a hashtable structure will require 15,5287 x
(2.7542.74) x 104 155,287 x 4, i.e., 9.2 MB.

Thus, with a cache size of 7.2+ 0.069 +15.5+9.2 =
32 MB, we can cache all the data required to run
GenerateQuery (up until it calls SortResults) can
execute entirely on in-memory data objects. For this portion
of the data, the database system will be used as a backup
only in case there is a memory dump or a new dictionary is
added into the system.

SortResults will access a larger volume of data,
making it impractical to cache all the data that it might
require for processing (the dictionary data, which includes
all definitions, requires 25 GB of storage). Here, we can
apply more traditional caching such that we store the most
frequently accessed dictionary definitions (and other data
objects required) in cache to speed processing for the most
frequently requested words, and retrieve less-frequently
accessed data from the database.

We have implemented this architecture, and used it as
the basis of our experimental platform. We describe our

performance experiments, which look at the accuracy and
runtime performance of our methods, next.

4 SCALABILITY ANALYSIS

In this section, we try to understand the scalability of our
approach by considering the expected scaling behavior of
each of the algorithms that support our approach.

We first consider the expected scaling behavior each of
our algorithms. We begin our analysis with the Gener-
ateQuery algorithm (Algorithm 2), since it calls all the
other online algorithms. The key components of Gener-
ateQuery that require attention in terms of our scalability
analysis are ExecuteQuery and SortResults. Of these,
ExecuteQuery is called multiple times, while SortRe-
sults is called only once (just before results are returned
to the user).

ExecuteQuery involves two main operations: 1) query-
ing the data source to retrieve the RMS of each element in @;
and 2) executing set logic on the returned RMSs. The second
operation is not computationally intensive. Thus,
the scalability of the ExecuteQuery will depend on the
number of elements in Q.

Let m be the number of elements in (). Let 5 be the mean
number of synonyms per term, & be the mean number of
hyponyms per term, hr be the mean number of hypernyms
per term, and a be the mean number of antonyms per term.
Given these, the mean number of elements in @ will be
g=mx (5+h+hr+a).

To better estimate g, we have computed the distributions
of synonyms, hyponyms, hypernyms, and antonyms based
on counts in the WordNet database. These distributions
are very much skewed. So the mean does not represent the
distribution appropriately. We therefore consider the
medians of these distributions (s,,g = 2, hpa =0, hrpmg = 1,
amq = 0), and we get ¢=30 for m = 10, i.e,, on average
30 RMS database queries per (). In essence, then, we can
expect the scalability of ExecuteQuery to depend on the
scalability of RMS database in executing on average
30 queries per user input phrase if the average |Q| = 10.

Finally, we consider SortResults(Algorithm 6), which
depends on the scalability of the computation of p(a,b) and
A. The A computation parses dictionary definitions and user
input phrases for grammatical structure, and generates
parse tree. We precompute the parse trees for dictionary
definitions a priori and offline, and store them in the RMS
database. Then, we need to compute only the parse tree of
each input user phrase, which is typically very short in
length, at runtime. Parsing the user input phrase can be
done quite efficiently without much overhead particularly
because the context free grammar has the worst case time
complexity of cubic time [7].

The value of p(a,b) is based on the hypernym-
hyponym database, which contains following table struc-
tures: TABLE_HYP = (word, parent-word); and TA-
BLE_DEPTH = (word, depth).

Given two terms a and b, the depth of these terms in the
WordNet hierarchy, E(a) and E(b), can be found from the
TABLE_DEPTH. Given two words a and b, the common list
of ancestors can be found from TABLE_HYP using a nested
SQL query (some further optimization of this is possible
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using different table structures—this is left to future work).
With the list of common ancestors from TABLE_HYP and
the depth of each of these ancestor words from TABLE_
DEPTH, we can compute A(a,b). Thus, computing p(a,b)
will require executing three select statements on TABLE_
HYP and TABLE_DEPTH. With proper indexing, hashing
and caching these executions can be made quite efficient.

In summary, the scalability of our approach depends on
the RMS queries on the RMS databases and the queries
related to WordNet hierarchy from hyponym-hypernym
database. We demonstrate this scalability in practical terms
in our experimental results, in Section 5.

5 EXPERIMENTAL STUDY

In this section, we first demonstrate the scalability and
responsiveness of our approach with an existing approach,
and then demonstrate the quality of our solution compared
to an existing approach.

To achieve both of these goals, we needed a reverse
dictionary solution. We were unable to find a direct reverse
dictionary solution described in the academic literature;
however, there are two industry solutions publicly acces-
sible online: onelook.com and dictionary.com. While
we can (and do) compare our reverse dictionary solution to
the results from these real sites in terms of quality,
performance testing is problematic. So, we have applied
existing techniques from document similarity and classifi-
cation problems to develop reverse dictionary solutions for
performance comparison purposes.

The vector-based approach is a classic document index-
ing, searching, and classification technique. We chose the
Support Vector Machine (SVM) technique, which is a
document clustering implementation based on regression
analysis, and statistical document clustering/classification
techniques such as LSI [11] and LDA [2]. Our goal here is to
test whether our approach provides meaningful perfor-
mance benefits over existing approaches, and if so, whether
these benefits are achieved at the expense of quality. Since
SVM provides the best benchmark for quality of results, we
use this as the baseline comparison for both performance
and accuracy comparisons. We include LDA and LSI in our
performance comparisons as well, since these methods are
known to provide performance improvements over SVM.

Our evaluation consists of four parts. We first demon-
strate the responsiveness of the WRD system in comparison
to the SVM approach. We then demonstrate how the WRD
system scales with the availability of more hardware
resources in comparison to the SVM, LSI, and LDA. Once
we have demonstrated that the WRD performance and scale
is substantially better than any of the existing approaches,
we demonstrate that WRD achieves this performance
without sacrificing quality by comparing the accuracy of
the WRD with the SVM approach. Finally, we compare the
WRD with some of the existing RD systems available in the
internet and demonstrate that the accuracy of the WRD is
significantly better than that of existing online RD systems.

5.1 Experimental Environment

Our experimental environment consisted of two 2.2 GHz
dual-core CPU, 8 GB RAM servers running Windows XP.

On one server, we installed our implementation our
algorithms (written in Java). The other server housed an
Oracle 11i database, configured to store our dictionary data.
This DBMS hosted all database instances, e.g., for RMS,
synonym, antonym, hypernym, hyponym databases.

5.2 Workload Generation

We drew our experimental workload of user inputs based
on a set of 20,000 user input traces generated by a set of
approximately 1,000 Wordster beta users (college students
in a North American city). We divided the user input
phrases into three bins, based on the length of the phrase
disregarding any stop words: |U|<2; 2<|U|<4; and
5 < |U|. We selected 300 unique user input phrases
following a two step process: 1) choose a bin based on a
uniform random distribution; and then 2) choose a phrase
from that bin based on a uniform random distribution. Our
workload contains 87 user inputs from the |U| <2 bin,
108 user inputs from the 2 < |U| <4 bin, and 108 user
inputs from the 5 < |U| bin.

5.3 Experimental Overview

We make a strong argument in Section 1 regarding the
infeasibility of directly applying vector-based approaches
to the CSP problem, so we compare the performance of
our approach to an implementation based on the SVM
using SVMLite [13] and SvMmulticlass 1941 here. In the
learning phase, SVM pre-creates a context vector for each
word in WordNet by including words from definitions,
synonyms, antonyms, hypernyms, and hyponyms. Each
synset (synonym set) in Wordnet is identified by a class
number, and this class number is assigned to any word
within that synset. This class number, along with the
context vector for each word, is the input in SVM'’s
learning phase. The learning phase happens as a pre-
processing step, which gives the SVM approach every
possible advantage. At runtime, given a U, we create the
context vector using words in U. We use SVM to classify U
in one of the synset classes. The words belonging to that
synset are returned as the output of SVM-based Reverse
Dictionary implementation.

Since the SVM approach has access to all the word-
relationship data available and compares the input phrase
to the context vector for each word in the WordNet corpus,
we can use the SVM quality as a rough benchmark for high-
quality output. We show the results of comparing the
quality of output from our approach to that of the SVM
method in the quality experiments below. First, however,
we consider the performance of the SVM approach as
compared that of our approach.

5.4 Response Time Results

To test how our system performs, we performed a classic
response-time measurement experiment. The results are
reported in Fig. 2, where we plot the average response times
(measured in milliseconds) against system load (measured
in requests/second) for three different values of « for our
approach (labeled Wordster), and for SVM. In this experi-
ment, load is modeled by varying the rate of user inputs
(drawn at random from the experimental set) incident on
the system, in requests arriving per second.
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Fig. 2. Response time performance as request rate increases.

The curves all show classic exponential growth with
increasing load. However, the response time of the
Wordster system is about an order of magnitude better than
the response time for the SVM approach, which requires
vector similarity computation of the user defined phrase
across the context vectors for all clusters (synsets). In
contrast, the Wordster approach identifies a limited number
of candidate words using the RMS and word-relationship
data sets, and computes full similarity only against the
definitions of these words in the final step. This requires
significantly less processing than the SVM approach.

The differences between the different curves for Word-
ster occur because the different values for o require
different amounts of processing in the GenerateQuery
algorithm execution. Smaller values of a show faster
response times, since the algorithm can short-circuit in
earlier steps, after a small number of candidate words have
been identified. Larger values show higher response times
because GenerateQuery must execute further into the
steps that consider synonyms, hypernyms, etc., to generate
the minimum number of candidate words. Further, with
smaller values of «, the size of the output O is smaller,
which in turn results in faster execution of SortResults.
A larger value of a will generate a larger number of
candidate words in O, requiring more time and resources in
SortResults.

5.5 Scalability Results

To demonstrate the scalability of our approach, we set up an
environment where we can control the total CPU usage by
the system. We demonstrated how the performance of the
Wordster and other systems changes with the increased
availability of CPU resources. In addition to SVM, in this
experiment we also considered two advanced document
clustering and classification techniques: LSI and LDA. For
LSI, we used the Semantic Vector implementation available
at [38]. For LDA, we used GibbsLDA++ [27]. In both the LSI
and LDA cases, as we did for the SVM case, we precreated
the model for each word in WordNet by including words
from definitions, synonyms, antonyms, hypernyms, and
hyponyms. In LSI [38], once the model has been created and
given input to the system, it can be directly searched by a
user input U. In LDA [27], we input all the dictionary words
and their corresponding context vectors to GibbsLDA++,
and receive a set of classes as output. We then provide
the user input U to identify the class to which U belongs,
based on GibbsLDA++ inference. The dictionary words
corresponding to that class are identified as the Reverse
Dictionary output.

= A= Semantic Vector
«+ 4+ GibbsLDA++
—e— Wordster

—B- SVM

Average Reverse Dictionary
Response Time
(seconds)

20 40 60 80 100
CPU Limit (%)

Fig. 3. Scalability as CPU limit increases.

At runtime, we compared the user input phrase with the
model for each word to find the set of words that most
closely represents the concepts in the user defined phrase.

We ran each of the Wordster, SVM, Semantic Vector, and
GibbsLDA++ implementations in a Linux environment
running on a VMWare virtual machine running on a host
Windows XP Quad processor 2.4 GHz machine. Using the
VMWare configuration settings, we limited the percentage
CPU allocated to the Linux VM from 20 to 100 percent. This
effectively enables us to control the available CPU for each
approach considered in this experiment. We report the
average response time for each approach for each CPU limit
in Fig. 3. Here, the response time of SVM, Semantic Vector,
and GibbsLDA++ show decreases in response time as more
CPU resources are allocated. However, even when all CPU
resources are available (the best-case performance of the
SVM, Semantic Vector and GibbsLDA++ approaches), the
Wordster performance still provides about an order of
magnitude improvement. The key reason for such a big
difference is that in all other cases, the user input phrase
needs to be compared with the large number of clusters
from the dictionary entries, which becomes highly CPU-
intensive. In the Wordster approach, we identify a subset of
candidate definitions for comparison early on in processing.

5.6 Quality Results
We now turn our attention to reporting the results of
experiments to judge solution quality. To determine the
optimal result sets for our 300 experimental query strings,
we computed the optimal results manually (by expert
professional lexicographers) as a yardstick for the accuracy
of our algorithms. We measure solution quality with the
standard Information Retrieval metrics precision and recall.
In our first quality experiment, we compare the output
quality of the SVM, Cosine [20], and Okapi [37] approaches
to our approach (labeled Wordster). For the Okapi and
Cosine approaches, we developed library modules within
the Wordster system for each of these approaches. In Fig. 4,
we plot precision and recall against «. Here, we compare
the first a results produced by each method in terms of both
precision and recall. Precision and recall have opposing
trends—as alpha increases, we progressively consider
larger and larger numbers of possible output phrases,
thereby increasing the probability of including false
positives, which causes precision to decrease as « increases,
while simultaneously increasing the probability finding
expected results, which causes recall to have an increasing
trend as « increases.
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------ Wordster Precision

Wordster Recall
~ = SVM Precision
— -SVM Recall

03 | = eOkapi Precision
=== Cosine Precision
— - -Okapi Recall
— -Cosine Recall

1 3 5 7 9 10

Fig. 4. Accuracy as the value of alpha is varied.

At low values of a the SVM, Cosine, and Okapi
approaches give better results because they exhaustively
compute similarity with all the clusters in the entire
dictionary corpus. At higher values of «, the Wordster
measure of word-similarity using the importance of the
word in the user defined phrase starts to pay off with
improved results in comparison to the other methods tested.

In our second quality experiment, we compare the
quality of our approach with that of the two existing
reverse dictionaries available: 1) onelook.com and 2) dictio-
nary.com. Because these two reverse dictionary do not rank
their output, we compare the output with a very high value
of o, o = 50, and categorize the result based on the length of
user input phrase (ignoring stop words). We report the
results in Figs. 5 and 6.

In all three cases, both the precision and recall increase
with the length of the user input phrase because additional
words add context—as the length of the user phrase
increases, it is possible to more accurately identify the
semantic meaning of the user phrase in all cases.

We note that in all length-cases Wordster outperformed
both Onelook.com and Dictionary.com. We also note that
Onelook.com performs better than the Dictionary.com.
However, since we lack any meaningful information
regarding the implementation of Onelook.com or Dictio-
nary.com, we cannot offer any further explanation.

6 CONCLUSION

In this paper, we describe the significant challenges
inherent in building a reverse dictionary, and map the
problem to the well-known conceptual similarity problem.
We propose a set of methods for building and querying a
reverse dictionary, and describe a set of experiments that
show the quality of our results, as well as the runtime

0.8
0.7

0.6
0.5
04
03
0.2 -
0.1

0

Length >=5

W Wordster
Dictionary.com

= Onelook.com

Length <=2 2<Length<=4

Fig. 5. Precision comparison.

0.9 W Wordster

Dictionary.com

0.7 ® Onelook.com
0.6
0.5 -
0.4 -
03
0.2 -
0.1
0

Length <=2 2<length<=4 Length >=5

Fig. 6. Recall comparison.

performance under load. Our experimental results show
that our approach can provide significant improvements
in performance scale without sacrificing solution quality.
Our experiments comparing the quality of our approach
to that of Dictionary.com and OneLook.com reverse
dictionaries show that the Wordster approach can provide
significantly higher quality over either of the other
currently available implementations.
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