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ABSTRACT

The Unified Modeling Language has been shown to be complex and difficult to learn.
The difficulty of learning to build the individual diagrams in the UML, however, has
received scant attention. In this article, we consider the case of the UML sequence
diagram. Despite the fact that these diagrams are among the most frequently used in
practice, they are difficult to learn to build. In this article, we consider the question of
why these diagrams remain so difficult to learn to build. Specifically, we analyze the
process of learning to build sequence diagrams in the context of cognitive complexity
theory. Based on this analysis, and drawing on the theory of learner-centered design,
we develop a set of recommendations for presenting the sequence diagram building task
to the student analyst to reduce the complexity of learning how to build them.

Keywords: cognitive complexity, learner-centered design, sequence diagrams; systems
analysis and design, unified modeling language (UML)

INTRODUCTION

Object-oriented analysis and design
(OOAD) is the dominant software de-
sign method among practitioners. The
Unified Modeling Language (UML) is
anISO standard graphical modeling lan-

guageused in OOAD (International Or-
ganization for Standardization, 2005).
The UML consists of a set of diagrams
and associated notations, where each
diagram represents a different view of
asoftware analysis and design model—
structure, interaction, or state (Blaha &
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Rumbaugh, 2005; Dori, 2002). In the
OOAD process, analysts develop a set
of objects, where each object has a set
of attributes (data that the object knows
about) and behaviors (operations that
the object can perform). Objects interact
by invoking one another’s operations to
fulfill the high-level behaviors required
ofthe system, representing the business
logic of the to-be software system.
The analyst captures this logic in a set
of UML sequence diagrams (SDs).
Figure 1 shows an example of such a
diagram (all diagrams in this article
were developed using Visual Paradigm,
a software tool from Visual Paradigm
International).

SDs are crucial building blocks in
system design. Analyst errors in build-
ing them lead to significant rework
efforts or serious software defects at
implementation time, which in turn
leads to increased costs. Thus, it is
critical that analysts have the skills to
produce high-quality SDs. While se-
quence diagrams are among the most
widely used diagrams in the UML in
practice (Dobing & Parsons, 2006,
2008; Fowler, 1997) and are critical to
the design process, they are difficult to
learn to build (Bolloju & Leung, 2006;
Siau & Loo, 2006).

The OOAD process consists of five
basic steps: (1) developing high-level
requirements, (2) use case analysis, (3)
domain datamodeling, and (4) building
sequence diagrams (George, Batra, Va-
lacich, & Hoffer, 2006), and (5) building
aclass diagram. In steps (1) and (2), the
analyst develops a description of what

the system should do. In step (3), the
analyst develops the structure of the
system from a data perspective and, in
step (4), defines how the system should
achieve the behaviors required. In step
(5), the analyst refines the structure of
the system to include both data and
behavior. Good, clear techniques and
heuristics are available for steps (1),
(2),(3),and (5) through many textbooks
and other sources. Textbooks covering
OOAD (George et al., 2006), as well
as other sources (Fowler, 1997), offer a
sizeable set of advice on step (4). Even
with so many useful guidelines and
heuristics, however, learning to build
these diagrams remains difficult.

In this article, we consider the task
of learning to build SDs. Although much
thinking has been done on the problem
of developing guidelines and heuristics
for building a good SD, and much work
has been done on the difficulties oflearn-
ing OOAD, there has not been much
discussion of the process of learning
to build SDs in particular. This is our
focus in this article. Specifically, we
concentrate on two questions:

* What are the complexity factors
inherent in the process of learning
to build SDs?

* How can these factors be mitigated
to minimize the cognitive load of
learning to build SDs?

In this article, we apply Reeves’
Learner-Centered Design (LCD)
framework (Reeves, 1999) to the task
of learning to build SDs. We chose
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Figure 1. Example UML sequence diagram
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this framework for two major reasons.
First, it provides both a way to describe
the cognitive complexity of learning to
perform a task, in this case learning to
build SDs, as well as several learner
models and recommendations for re-
ducing cognitive loads for each learner
type—making it directly applicable
to our research question. Second, it is
grounded in more than thirty years of
research in cognitive science, informa-
tion systems, and design theory, and thus
provides a strong theoretical foundation
for our work.

The two main contributions of this
article are as follows: (1) we present
a qualitative analysis of cognitive
complexity of learning to build SDs to
identify the characteristics of the task

that increase its difficulty; and (2) we
develop a set of recommendations for
mitigating the complexity of the task
of learning to build SDs, based on the
theory of LCD. These recommendations
focus primarily on how to present the
SD-building task to beginners, rather
than onredesigning the actual SD-build-
ing task itself.

EXAMPLE

We present an example based on a
video rental store scenario. This serves
as the basis for examples throughout
the article. Suppose a portion of the
requirements reads as follows:
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The rental chain allows families to
give separate membership cards to all
family members, and to restrict a given
family member’s access to movies by
movie rating, e.g., a child in the family
cannot rent an ‘R’ rated movie on his
own, or content, e.g., a child in the fam-
ily cannot rent a movie that is labeled
withan ‘L’ for potentially objectionable
language. At rental time, the software
mustenforce any restrictions associated
with the family member presenting his
membership card.

Based on these requirements, one
might write a use case narrative simi-
lar to the one shown in Figure 2, and
develop a partial class diagram similar
to the one shown in Figure 3. Based on
these diagrams, Figure 1 shows one pos-
sible solution SD for this scenario.

The remainder of this article is
organized as follows. We first describe
related work, and then provide an
overview of cognitive complexity and
learner-centered design. We then pres-
ent an analysis of the cognitive com-
plexity of learning to build sequence
diagrams, and propose a set provide a
setofrecommendations aimed at reduc-
ing the complexity of learning to build
SDs based on LCD principles. Finally,
we conclude the article and describe
future work.

Figure 2. Example use case narrative

FamilyMember | isMemberOf | FamilyAccount | rentsMoviesThrough

RELATED WORK

Compared to structural techniques (de-
veloped priorto OO methods), OOAD is
cited as amore natural method of design
(Rosson & Alpert, 1990). Booch (1986)
proposed one of the earliest generalized
00 designmethods, providing a starting
point for the development of what we
know today as OOAD. Others refined
and expanded these notions, defining
key OO concepts, for example, reusabil-
ity (Johnson & Fotte, 1988; Micallef,
1988). To support the OOAD process,
several early modeling languages were
proposed, for example, (Rumbaugh,
Blaha, Premerlani, & Lorensen, 1991);
over time, these languages were assimi-
lated together and extended by others
to produce the current UML specifica-
tion (International Organization for
Standardization, 2005).

Since we are interested in the com-
plexity of UML SDs in this work, it is
useful to consider other work describing
UML complexity and related difficul-
ties. As a language, UML is known to
be complex (Siau & Cao, 2001; Siau,
Erickson & Lee, 2005), as well as dif-
ficult to learn (Bolloju & Leung, 2006;
Siau & Loo, 2006) and use (Agarwal
& Sinha, 2003).

Siau & Cao (2001) present a
quantitative analysis of the theoretical
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Figure 3. Example UML class diagram
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User

System

1. For each movie the cardholder wishes to
rent, the Employee scans the movie’s barcode

2. For each movie, the System checks the cardholder’s
restriction set for any holds based on rating or content

3. For each movie, the System retrieves the cost of rental
for the movie, adds the movie to the rental transaction, and
updates the total transaction cost

Exceptions:

Step 2. If the desired movie violates the restrictions associated with the customer’s membership card, the
system displays a message “unable to rent this movie”, along with the reason (which restrictions the movie
violates). A movie violating the customer’s restrictions is not added to the rental transaction list in step 3.

mathematical complexity of UML. This
study considered both individual dia-
grams as well as the UML in aggregate,
comparing both the diagrams and the
aggregate UML to other OO methods.
This analysis concluded that, while
individual diagrams are approximately
as complex as other OO methods, the
UML as a whole is 2 to 11 times more
complex than other OO methods. In
a follow-on study (Siau, et al., 2005),
the authors begin to consider the com-
parative complexity among pairs of
diagrams, looking specifically at class
diagrams and use case diagrams, and
finding that class diagrams are more
complex than use case diagrams. Our
work differs from this work in two ways.
First, we are interested in the cognitive
complexity of the task of learning to
build SDS, rather than the structural
complexity (defined mathematically) of
the diagrams themselves. Second, we
are interested in the complexity of SDs,
rather than class or use case diagrams,
or the UML as a whole.

Siau & Loo (2006) present the
results of an empirical study aimed at
identifying the factors that make learn-

ing UML difficult. This study surveyed
students in OOAD courses to identify
what they found difficult, using concept
mapping to categorize the results. This
study identifies several specific areas
students found difficult in building
SDs as well as other UML diagrams. In
(Bolloju & Leung, 2006), the authors
study a set of projects produced by
OOAD students in a university setting
to identify the typical mistakes that
novices make in building the four most
commonly-used diagrams in UML.

In Sheetz (2002), the author pres-
ents the results of an empirical study
examining the difficulties professional
developers experience when using
OO techniques. This study surveyed
several groups of developers, from
novices to experts, to determine what
aspects of OO development they found
difficult. The subject matter scope
of this study is much larger than our
scope—this study considers not only
technical issues (e.g., analysis, design,
implementation), but also managerial
and organizational issues (e.g., project
estimation, managing user expectations,
stakeholder buy-in), whereas our focus
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is on novice-level analysts learning to
build SDs. The results detail specific
aspects of OO development that spe-
cific experience groups found difficult
(i.e., whatnovices found difficult, what
intermediates found difficult, etc.), and
what aggregated groups found difficult
(i.e., what novices and intermediates
found difficult, what intermediates and
experts found difficult, etc.).

In (Agarwal & Sinha, 2003), the
authors present a survey-based study
of developers, focused on questions
of UML usability and ease-of-use. Of
particular interest here are the results
for novice developers, which indicate
that this class of developers found the
UML diagrams difficult to use. This
study advocates simplifying the UML
to make it more user-friendly.

Work on teaching OOAD and UML
also is related. In (Beck & Cunning-
ham, 1989), the authors introduce one
of the earliest studies of teaching OO
techniques to students, focusing on OO
thinking. Morerecentresearch (Brewer
& Lorenz,2003; Burton & Bruhn, 2004)
considers how teaching UML along with
OOAD canimprove learning in OOAD
overall. Tabrizi, Collins, Ozan & Li
(2004) extend this work by proposing
that OO concepts and UML should be
integrated into beginning programming
courses. In a similar vein, Wei, Moritz,
Parvez & Blank (2005) advocate an
automated tutoring method to provide
immediate feedback to students while
learning OOAD and programming.

Our work differs from these efforts
in its focus and method. These studies

focus on identifying what is difficult
within OOAD and UML and how OOAD
education in general can be improved,
while we focus on why it is difficult
to learn, with a specific focus on SDs.
These studies are complementary to our
work in that they identify the difficul-
ties we will consider in our analysis of
the cognitive complexity of learning to
build sequence diagrams.

COGNITIVE COMPLEXITY AND
LEARNER-CENTERED DESIGN

We base our analysis of the cognitive
complexity of learning to build se-
quence diagrams on the Reeves model
(Reeves, 1999) and develop our recom-
mendations forreducing the complexity
oflearning to build SDs on LCD theory.
We provide overviews of cognitive
complexity and LCD in this section.

Cognitive Complexity

Reeves’model of cognitive complexity
considers different sources of complex-
ity in learning to perform a task with the
aim of identifying the concrete factors
that make it difficult to understand. By
exposing these factors, we can then
modify the task to reduce the complex-
ity of learning to perform it using the
principles of learner-centered design.
Reeves’ model considers multiple
different potential sources of cognitive
complexity, some of which, forexample
metasocial forces, are notrelevant to the
topic at hand, and are omitted from this
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discussion. We consider each of the rel-
evant potential sources of complexity.

Information about the Task

The information available regarding
a task falls into two categories: (1)
process-related information about how
to perform the task in general; and (2)
domain-specific information about the
task athand. Inthe context oflearning to
build SDs, process-related information
refers to the specific steps to follow in
building an SD, while domain-specific
information refers to the actual problem
scenario to be modeled, as described in
a high-level requirements document.

The level of cognitive complexity
arising from information sources is de-
pendent on the quantity of information
as compared to the utility of the infor-
mation presented. Not all information-
based complexity is bad—considering
additional complexifying information
can lead to a higher-quality design.
However, complexifying information
that the task performer cannot use to
improve the design is simply noise,
where increasing noise leads to increas-
ing difficulty in selecting the useful
information, and hence additional
cognitive complexity.

The Design of the Task

We consider the difficulties introduced
by the task itself, in terms of the process
steps and guidelines provided to lead
the analyst from the problem formula-
tion to the goal solution. Generally, the

design of a task introduces cognitive
complexity if it exhibits one or more
of the following characteristics.

* The task process does not pro-
vide enough information for task
performer to build a complete
mental model. A mental model of
a task is a framework that allows
the task performer to deduce new
information about the task or predict
the future effects of a choice made
during the task. With an incomplete
mental model, the task performer
may make incorrect inferences
about the task.

* The next step in the process is not
always evident. [fa task process is
notsufficiently detailed, and the task
performer must guess at the next
step in the process, the probability
of error is high.

* A lack of constraints among
choices forces the task performer
to choose from too many options.
As the number of possible choices
increases, the task performer must
attempt to search through the option
space for the optimal choice. As the
size of the option space increases,
the difficulty for the task performer
in finding the optimal choice in-
creases significantly.

In each of these cases, the task
performer is forced to make decisions
without an adequate basis for the
choice, making each decision more
difficult and thus introducing cognitive
complexity.
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Problem Solving Within the Task

Problem-solving refers to the process
of transforming a problem formulation
into a goal solution. In the context of
this article, the problem faced by the
novice analyst is to produce an SD that
isboth correctand of a high quality. The
complexity of solving a problem can
be defined along multiple dimensions,
where a problem formulation can vary
from simple to complex along each
dimension. A problem becomes less
complex as:

* Sufficientinformationis provided
about the problem. A lack of crucial
information increases the cognitive
complexity of solving a problem.
The simplifying aspect of additional
information applies only so far as
the added information is useful (as
described above).

* Thegoalis defined more precisely.
The less clearly the expected solu-
tion is defined, the more difficult it
is for the learner to work toward the
goal solution.

e There are fewer variables, and
fewer interrelationships and de-
pendencies among them. Larger
numbers of variables and increasing
numbers of relationships among
those variables leads to increased
numbers of decisions the prob-
lem-solver must make in working
toward a goal solution, increasing
the potential for errors.

» Significant expertise is not re-
quired to solve the problem. The

more experience a problem-solver
requires to reach a quality solution
to a problem formulation, the more
complex it is for the novice to ap-
proach. Essentially, the novice must
develop expertise before being able
to confidently produce quality solu-
tions.

* Therearefewer possible solutions.
A larger number of potential solu-
tions makes aproblem more difficult
to solve, particularly when some
solutions are of higher quality than
others, or when there is a trade-off
between competing priorities.

* Logicand known patterns/exper-
tise from other domains can be
applied to solve the problem. The
applicability of existing expertise
from other domains tends to sim-
plify the problem-solving task.

Learner-Centered Design

Learner-Centered Design theory pres-
ents a set of design principles aimed at
reducing the cognitive complexity of
learning how to perform a task through
the redesign of the task itself. Once
we have determined the root causes of
complexity, we can apply the relevant
LCD principles to ensure that the
learner experiences as little confusion
as possible.

In his LCD theory, Reeves (1999)
proposes several models of learners,
classified by the goal ofthe learning pro-
cess at hand. For example, the learner
as categorizer model considers ways
to help learners filter and categorize
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large amounts of information, while
the learner as searcher model suggests
ways to help learners search through an
information space to identify high-qual-
ity, useful and relevant information. For
each model, he then proposes a set of
techniques for reducing cognitive com-
plexity for tasks that fit the model.

The learner model most useful to
the problem of helping beginner ana-
lysts learn to build SDs is the learner
as expert problem solver model. Ef-
fectively, we can think of the analyst’s
progress from novice to intermediate
to expert SD-builder as one of building
expertise.

Reeves (1999) defines the charac-
teristic difference between an expert
problem solver and a novice problem
solver can be summarized as follows:
novices have small amounts of infor-
mation of varying quality in a loose
organization, while experts have a high
quantity of highly relevant information
in an intricate web of interconnections.
Empirical studies (Wiedenbeck, Fix,
& Scholtz, 1993; Wiedenbeck, Ra-
malingam, Sarasamma, & Corritore,
1999) show that the mental models for
novice and expert programmers differ
significantly, where an expert typically
has built an intricate, pattern-oriented
mental model that the novice lacks.

The question that arises in terms
of LCD for the task of building SDs is
this: How canwe help the novice analyst
(a) build a strong knowledge base, (b)
filter out low-quality information, and

(c) build a mental model of the task

with high-quality relationships among
information elements?

To help reduce the complexity of
developing expertise in problem solv-
ing, Reeves suggests several recom-
mendations for organizing the relevant
material:

Provide Scaffolding

We can think of the “scaffolding” here
as providing a knowledge framework
upon which a learner can learn while
gaining expertise, as a way to help the
user climb the learning curve. This sug-
gests organizing content to build on the
learner’s accumulated knowledge.

Decompose and Recompose

Smaller problems are easier for the
learner to solve than larger ones. Solv-
ing a large problem becomes easier
if it can be broken down into smaller
problems, where the solutions to the
smaller problems can be combined into
a complete solution.

Use Examples and Exercises
Extensively

Anovice develops expertise by reason-
ing from the specific to the abstract.
Exercises and examples, provided each
exposes some new information or varia-
tion, add new knowledge to the learner’s
mental model of the task. The larger the
number of exercises and examples the
novice encounters, the more opportuni-
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ties there will be to build a better abstract
task model, and the greater the resulting
expertise level will be.

Engage the Learner Actively

Engaging learners actively, through
spoken questions and interactive ex-
ercises, forces them to “think on their
feet,” which helps the learner actively
construct a mental model of the task.
This type of interaction not only moti-
vates the learner to think in the desired
direction, but it also allows the educa-
tor/mentor to determine the learner’s
current level of expertise and provide
feedback in real time.

ANALYSIS OF THE COGNITIVE
COMPLEXITY OF LEARNING
TO BUILD UML SEQUENCE
DIAGRAMS

In this section, we enumerate several
characteristics of the SD-building task
that make learning to build SDs difficult
for the beginner analyst. These char-
acteristics were drawn primarily from
work in identifying typical errors and
difficultiesin OOAD and programming,
as described in our earlier discussion of
related work.

For the purpose of this analysis, we
consider the beginner to be a student
with no prior knowledge of OOAD or
programming experience (a worst-case
scenario). We also assume that the stu-
dent has progressed in the course to the

point where SDs arise—after use case
analysis and domain data modeling dis-
cussions. For students with some prior
experience, some parts of this discussion
may not apply. We also assume that the
learner has the basic building blocks for
an SD (i.e., requirements, use case nar-
ratives, domain data model) in place at
the start of the SD building task.

For each characteristic, we: (1) de-
scribe why itmakes the task difficult; (2)
identify the type of cognitive complex-
ity associated with the difficulty, and (3)
discuss whether the complexity stems
from the design process in general, or
from SDs in particular. We then apply
the LCD principles to recommend ways
to mitigate the complexity associated
with these characteristics.

Unfamiliar Metaphors

A number significant metaphor in SD
syntax and semantics refers to OO
programming, including concepts such
as message passing, parameters, and
returns. However, not every student
learning OOAD techniques has been
exposed to programming.

Students without prior program-
ming experience increased complexity
inlearning SDs, primarily coming from
problem-solving complexity—knowl-
edge from domains other than program-
ming cannot be applied; rather some
level of expertise is required. This
complexity is not related to the design
process, but is introduced by the SDs
themselves.
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Working with SD Syntax

SDs have a detailed and very specific
syntax. Atevery step in the SD-building
process, the student’s choice of syntac-
tic element makes a specific statement
about the design of the to-be software.
Message arrows are a good example
of this—should the arrow line be solid
or dashed? Each has its own specific
meaning, respectively, message call or
return. A solid-line arrow placed on an
angle has yet another meaning. Model-
ingalternative flows is another example.
SDs are inherently linear diagrams, but
if-then-else branching is a very com-
mon software structure in practice. One
method of handling this within the SD
syntax is to use alt boxes. If the logic
within each branchis complex, these alt
boxes quickly become large and very
cumbersome.

Working with the SD syntax creates
a combination of task design complex-
ity and information complexity: the
student must apply a complex set of
syntax rules from the very outset of
learning to build SDs. This complexity
stems from SD syntax, not the overall
design process.

Omitting Explicit Returns

The notion of flow of control through
thelogicisnotevidentinanexperienced
analyst’s SDs, since explicitreturn nota-
tions are often omitted to reduce clutter
and fit more logic into a given space. If
returns are added to the diagram, one

can trace the flow of logic through the
SD with a pencil as the focus of control
moves from one object to another.

A student who omits these returns
may mistakenly leave the focus of con-
trol at the recipient object, rather than
returning it to the calling object, once
processing is complete. As a result, the
novice will often mistakenly assign re-
sponsibility for initiating some process-
ing (i.e., sending a message to another
object), to an inappropriate object.

For example, Figure 4 shows a
fragment of an SD representing the
first few interactions of the main video
store checkout SD (shown in Figure 3).
Here, after the RentalControl object
asks the FamilyMember object for its
restriction set, rather than implicitly
returning its restriction set and the focus
of control back to the caller object, the
FamilyMember object instead sends a
message to the Movie object asking for
its rating. While this is not necessarily
incorrect, this places the responsibility
for obtaining the movie’s rating on the
FamilyMember object. This is likely
not the analyst’s intention, given that
the FamilyMember object was only
asked to return its restriction set, and
no more.

The requirement that the focus of
control should return to the calling ob-
jectcomes directly from programming,
where an explicitreturn call atthe end of
each method returns the focus of control
to the caller. A student, however, may
have little or no exposure to coding.
When building the first few SDs, then,
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Figure 4. Focus of control remains on the called object
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anovice who isnotadvised to explicitly
include returns may apply amore famil-
iar “connect-the-dots” metaphor.

Here, we can see problem-solving
cognitive complexity issues arising:
the novice analyst cannot apply famil-
iar metaphors; rather, some domain-
specific knowledge of programming
is required. Task design complexity
is also evident: without this domain
knowledge, the novice cannot build an
appropriate mental model of the task,
so the next step the novice should take
is not evident. This complexity is due
to SD-building conventions in practice,
and not to OO design in general.

Decomposing High-Level
Requirements into Logic Steps

For a given step in the use case narra-
tive, the analyst must decompose the

system-side requirements into more
detailed responsibilities to define the
step-by-step business logic. For ex-
ample, consider the use case narrative
fragment for step 2 as presented in Fig-
ure 2. Here, some object in the system
must be responsible for (1) obtaining
the movie’s rating and content labels,
(2) obtaining the restriction set for
the cardholder, and (3) comparing the
movie rating and content labels to the
cardholder’s restriction set to determine
if the cardholder should be permitted to
rent the movie.

This is a logical jump in abstrac-
tion from a lower granularity of detail
to a higher granularity of detail, where
the student analyst must add detail not
explicitly provided in the requirements
document or use case narrative. This
can seem like making up information.
A more experienced analyst, however,
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will recognize that the design process
inherently involves adding new detail
at each stage, and that not all detail can
be mapped directly back to explicit
statements from documents developed
earlier in the OOAD process.

Here, we can see cognitive com-
plexity arising from the design of the
SD-building task in two ways. First, the
next step in assigning responsibilities is
notalways obvious, since the high-level
requirements often do not explicitly
enumerate the low-level steps of the
business logic. Second, this lack of
explicit step-by-step logic leaves the
analyst free to choose among all avail-
able options with very few constraints.
This complexity is part of the design
process, as has been noted in previous
work (Sheetz, 2002), but arises notice-
ably in SD-building process.

Choosing to Centralize or
Decentralize Responsibility
Assignments

While the responsibilities for know-
ing information are relatively easy to
assign (e.g., the Movie object should
be responsible for answering queries
about its own rating), it is less obvious
which object should be responsible for
initiating processing.

We consider step 2 in Figure 2,
where we can decompose the required
behavior of the system into three respon-
sibilities: (1) obtaining the movie’s rat-
ing and content labels, (2) obtaining the
restriction set for the cardholder, and (3)
comparing the movie rating and content

labels to the cardholder’s restriction set
todetermine ifthe cardholder should be
permitted to rent the movie.

Which object should be responsible
for initiating this processing? Many
introductory texts suggest assigning
this responsibility to a centralized
controller object, which contains the
main flow of logic for responding to
a specific external event, and make all
other objects responsible only for pro-
viding information about their attributes
or doing simple calculations. Figure 1
shows an example of centralization of
responsibility for initiating processing,
where the RentalControl object is as-
signed these responsibilities.

Centralization doesn’t necessarily
represent good OO design because it
places virtually all the responsibility
for initiating processing on a single
object (the controller object). When
implemented, the code for the central-
ized controller class would likely be
significantly more complicated than
that of other objects. Assigning entity
objectsresponsibility for initiating mes-
sagesisnotnecessarily incorrect. In fact,
such messaging assignments can lead
to a more decentralized assignment of
responsibilities.

Consider, for example, Figure 5,
which shows a decentralized logic flow.
Here, the RentalControl object asks the
FamilyMember object to determine
whether ornotthe movieis acceptable to
rent based on the movie’s ID code. This
places the responsibility for obtaining
the movie’s rating and content informa-
tion, as well as checking this information
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Figure 5. Decentralization example
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against the cardholder’s restriction set,
on the FamilyMember object, rather
than the controller object.

This freedom presents the beginner
with a wide spectrum of choices from
which to choose, increasing the prob-
lem-solving complexity in terms of the
design of the task. This complexity is a
part of OO design in general, but arises
mainly in the specific context of SDs.

Choosing among Multiple
Candidate Solutions

The large number of choices available
when assigning responsibilities results
in a large number of candidate solu-
tions. While many of these solutions
might be incorrect in terms of syntax
or semantics, many will also be accept-
able as solution SDs. The fact that mul-
tiple solutions are possible introduces
problem-solving complexity into the

SD-building task in that the goal is not
precisely defined—there are no specific
guidelines in the literature that will
guarantee that the analyst will be able
to narrow the candidate solution pool to
a single SD, particularly when there is
more than one acceptable solution. Here,
the novice analyst may recognize that
there are multiple possible acceptable
solutions, but may lack the expertise
to recognize that one solution is better
than another, or that two solutions are
equally good. The lack of a precise goal
definition introduces uncertainty into
the process. This issue is due to both
the characteristics of SDs as well as
the overall design process. Design, by
its very nature, does not presuppose a
goal. This is further complicated by the
factthat minor differences in SD syntax
choice canlead to major quality and cor-
rectness differences between candidate
solutions, where a novice may have
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difficulty identifying the most correct
or highest quality design.

Rate of Information
Presentation

Most OOAD texts provide a wealth of
information about SDs. As noted in the
previous sections, many characteristics
of the SD-building process are sources
of cognitive complexity. The beginner
analyst must digest a large amount of
SD-building informationinashorttime.
Here, information is asignificantsource
of cognitive complexity, in the sense
that the novice analyst is unlikely to
be able to internalize and make use of
all the information on building SDs at
the same time.

For example, an analyst building
a first SD might be able to model only
a very simple scenario using a few
guidelines. At this level of expertise,
providing sophisticated SD-building
heuristics introduces significant cogni-
tive complexity because the novice is
not prepared to incorporate them, but
feels as though it is required.

With more experience in build-
ing SDs, the student becomes better
prepared to apply more complicated
techniques and model more detailed
scenarios. While the new information
does increase the complexity of the
task, this complexity is useful because
it will generally result in more detailed
and higher quality SDs, and better
overall designs. This complexity is
due primarily to the overall complex-

ity of SD building, rather than design
in general.

Designing for Quality

The quality of an SD is difficult for a
novice to evaluate. For example, the
notions of coupling and cohesion, which
refer to the quality of an overall design
(encompassing not only SDs, but also
class and other diagrams), are often in-
troduced in texts, for example, (Stumpf
& Teague, 2005) aimed at the beginner
analyst in the course of the discussion
ofbuilding SDs. These concepts are dif-
ficult for the novice to apply, especially
early in the analyst’s introduction to
OOAD. These concepts are subject to
the “too much information too quickly”
cognitive complexity issue.

Once the analyst is prepared to ap-
proach coupling and cohesion, there is
additional complexity introduced by the
relationship between the two concepts.
Designing for low coupling tends to
increase responsibility assignments to
anobject, while designing for high cohe-
sion tends to reduce them. Thus, there
is a clear trade-off between coupling
and cohesion—reducing coupling tends
to increase cohesion and vice versa.
This introduces interrelationship and
dependency-based problem-solving
complexity in that the novice analyst
must find a good balance between the
two properties. Generally, quality is an
issue for the overall design process, but
theissueis exacerbated by the complexi-
ties associated with building SDs.
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The Cumulative Effect

To see the overall effect of these com-
plexity factors, let us consider what
happens when a student analyst is actu-
ally building an SD. At each step, the
student must be able to answer several
questions:

* What is the next bit of behavior/
processing required?

* Have I broken down the use case
narrative step into sufficient detail,
or have I glossed over something
important? Have I missed any de-
pendencies?

*  Where is the focus of control right
now? Is it in the correct place?
Have 1 incorporated all returns
required?

* Does the current focus of control
match the next caller object? If not,
how do I get the focus to the correct
object?

*  When I add the message for the
next bit of behavior, am I using
the correct syntax and semantics?
Dashed or solid line arrow? Many
syntax-related questions are pos-
sible here.

* Havel given the message an appro-
priate name, one that fully describes
and limits the scope of responsibil-
ity? Does the called object fully
perform that scope of responsibility,
and no more?

* Does the next bit of behavior
represent the start of if-then-else
processing (needing an alt box)?

» Ifthe current focus of control is in-

side an alternative within an alt box,
does the next bit of behavior belong
inside or outside the alt box?

At this point, the student is rapidly
approaching Miller’s (Miller, 1956)
“seven plus or minus two” limit on
information processing capacity, but
hasn’t yet considered the full scope
of possible syntax- and semantics-re-
lated questions, or considered design
quality.

OVERCOMING THE
COGNITIVE COMPLEXITY
OF BUILDING SEQUENCE
DIAGRAMS

We introduce a set of recommenda-
tions aimed at reducing the cognitive
complexity of learning to build SDs
based on the LCD principles described
earlier.

Build on the learner’s knowledge
level. Asdescribed earlier, information
presented to the novice analyst before
it can be processed and applied is not
useful; however, as the student gains
experience, additional information can
be helpful and increase the quality of
SDs.

In the context of learning to build
SDs, we suggest focusing on different
dimensions of SD-quality separately,
from simpler to more complicated mea-
sures of SD-quality. Here, we suggest
thinking aboutthe quality ofan SD using
a(partially) language-based model simi-
lar to that described in Lindland, Sindre
& Solvberg (1994). Specifically, we can
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think of the quality of an SD as varying
along three general dimensions:

1. Syntax quality: how well an SD
conforms to the rules for using SD
notation.

2. Semantic quality: how well an SD
conforms to the scenario described
in the high-level requirements, use
case narratives, and any domain
knowledge available.

3. Design quality: how well an SD
can be executed in a high-qual-
ity software implementation (e.g.,
using concepts like coupling and
cohesion).

In order to reduce the complexity
associated with giving the beginner too
much information too quickly, we sug-
gestthat SD-related information be pre-
sented first focusing on syntax, then on
semantics, and finally on quality. Here,
syntactic quality provides a foundation
for the other quality dimensions—ifthe
SD’s syntax is not correct, it will never
have high semantic or design quality.
Similarly, once the novice has mastered
SD syntax, if the SD does not match
the requirements document (semantic
quality), there is no point in thinking
about design quality.

This recommendation makes use
of the LCD principle of scaffolding to
directly address the cognitive complex-
ity associated with the rate of informa-
tion presentation and evaluating design
quality, and help to address the other
issues by assuring that information is

notpresented before the learneris ready
to use it.

Provide a Wide Variety of
Exercises for Each Stage

To support the development of varying
dimensions of quality (syntax, semantic,
and design quality), we can reduce the
complexity of developing skills in each
area by providing focused exercises
specific to each dimension of quality.

For example, an exercise focusing
on syntax may provide both an ordered
set of logical steps, as well as a map-
ping that describes which object should
perform each step, and ask the novice
to simply draw the diagram. Similarly,
an exercise focusing on semantics may
provide aflowchartofthe logicand a set
of objects participating in the SD, and
ask the student to assign responsibili-
ties to objects. A design quality-focused
exercise might ask a student to compare
and contrast two SDs in terms of cou-
pling and cohesion, or to modify an SD
to improve its design quality.

This recommendation makes use of
the LCD principles of scaffolding and
extensive use of exercises to address
the cognitive complexity associated
with many of the SD-building com-
plexity issues, including unfamiliar
metaphors, working with SD syntax,
omitting returns, decomposing high-
level requirements, choosing between
centralization and decentralization,
choosing among candidate solutions,
and quality evaluation.
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Consider Intermingling the OOAD
and OO Programming Learning
Experiences

The programming roots of some SD
syntax and semantic elements introduce
complexity for some students, particu-
larly those with little or no previous
exposure to programming. This is a
bit of a chicken-and-egg problem—the
student needs to become familiar with
these concepts, but the question arises:
teach programming or design first? One
proposal (Tabrizi, etal., 2004) suggests
incorporating design and programming
into single cohesive learning experience.
This allows the student to see the goal of
the design process—finished software
(and all that it takes to turn design into
implementation)—while concurrently
building expertise in design.

This uses a form of scaffolding,
making the end goal clear, and poten-
tially enabling the student to foresee
the consequences of design decisions in
the implemented software, and helps to
address the cognitive complexity associ-
ated with unfamiliar metaphors, work-
ing with SD syntax, omitting returns,
decomposing high-level requirements,
and choosing between centralization
and decentralization.

Separate Logical Flow Design
from Responsibility Assignment

Many SD-building guidelines suggest
working through the logic required for
a use case and assigning responsibility
for these logical steps at the same time.

This requires the analyst to have a clear
view of both the data structure of the
to-be software as well as a strong sense
of the detailed logic required to satisfy
the use case scenario, and to be able to
map these logical steps to the objects
that will be responsible for them—all
at once.

One way ofreducing the complexity
associated with this is for the begin-
ner analyst to separate out the task
of detailed logical flow development
from that of responsibility assignment.
This is useful when the use case steps
require further decomposition into
system-internal logic steps, because it
allows the novice analyst decompose
a less-detailed logic description in the
use case into more detailed logical steps
without worrying immediately about
which object will be responsible for a
given step.

Many texts (Fowler, 2004; George,
et al., 2006) suggest taking advantage
of any available useful tools in build-
ing analysis and design models, even
if those tools are not part of the UML.
In separating logic from responsibility
assignment, a useful tool for the novice
analyst is the familiar flowchart. This
allows the analyst to map out individual
logical steps, including conditional and
repeating logic, without thinking about
specific objects. Once this is done, the
student can then consider responsibility
assignment for each step.

This recommendation makes use
of the LCD principles of scaffolding
and decomposition and recomposition,
by suggesting the separation of logic
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and structure, to address the cognitive
complexity associated with decompos-
ing high-level requirements into logic
steps.

Actively Think the Problem
Through

Another potential mechanism for reduc-
ing the complexity of the responsibility-
assignment task, one that would work
best primarily in an educational setting,
is to have a group of students role-play
to work through which object should
be responsible for which logical steps.
Here, each student is assigned a role as
anobject, and given a list of the object’s
attributes. A token of some sort repre-
sents the focus of control, and students
must ask one another to perform tasks,
passing around the token, to fulfill the
requirements of a particular use case.
(The authors have applied this technique
in the classroom with good results.)

This approach allows multiple
student analysts to contribute to the
group’s common model of the logic
flow and responsibility assignment
set, reducing the cognitive load on any
given individual, while simultaneously
ensuring that all students are engaged
in the learning process.

For a large group of students, it
is possible to ask the larger group to
break the problem into smaller pieces.
Smaller groups can then attack each
sub-problem, and the group as a whole
can then integrate the solutions to the
sub-problems into a larger solution to
the whole problem.

This recommendation makes use
of the LCD principles of engaging
the learner actively, using exercises
extensively, and decomposition and
recomposition to address the cognitive
complexity associated with several of
our SD complexity characteristics:
decomposing high-level requirements
into logic steps, choosing among mul-
tiple candidate solutions, assigning
responsibilities, and choosing between
centralization and decentralization.

Document and Use Patterns

Applying apatternisawell-known way
of reusing previous work and reducing
the overall workload of a task. Patterns
can reduce the cognitive complexity of
the SD-building process for an analyst
who has mastered SD syntax and se-
mantics by providing a starting point
of a known quality design for a stan-
dard organizational scenario (e.g., the
workflow for processing paychecks).
While a pattern might not apply com-
pletely to a given scenario, it can still
provide a modifiable starting point to
the analyst that would otherwise have
required significant thought to produce
from scratch.

Design patterns have been discussed
in the literature (France, Kim, Ghosh &
Song, 2004), and are cited in some text-
books, for example Stumpfand Teague
(2005). These abstract patterns provide
a basis for solving particular design
patterns (e.g., using a singleton class to
represent an interface), and are meant
to provide the experienced designer
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with generally applicable solutions.
For a novice, however, applying these
patterns presents a major challenge:
the patterns are described at a level of
abstraction that makes it difficult for
the novice to recognize where they can
be applied, partially due to the fact that
these patterns have their origins in cod-
ing design patterns.

Fowler (1997) introduced the idea
of detailed domain-specific analysis
patterns. This book contains a set of
highly-detailed analysis patterns de-
scribing common situations from ac-
counting and health-care domains, and
provides data and behavior models for
each situation. This book was written
priorto the development of UML, so the
models in this book are not built using
the familiar UML syntax. However, the
idea of reuse of detailed analysis-stage
modelsholds. The availability ofaset of
tried-and-true analysis patterns, cover-
ing a large number of domains, could
significantly reduce the complexity of
designing logic fora frequently-encoun-
tered domain.

This recommendation makes use of
the LCD principle ofthe use of examples
to address the cognitive complexity
associated with several SD-building
complexity issues: omitting returns,
decomposing high-level requirements,
choosing objects when assigning re-
sponsibilities, choosing between cen-
tralization and decentralization, and
quality evaluation.

CONCLUSION

In this article, we have considered the
question of why SDs are difficult to
learn to build. We have described a set
of characteristics of the SD-building
task that add complexity to the task,
and identified why each of these adds
difficulty using concepts from cogni-
tive complexity theory. Further, we
developed a set of recommendations
aimed at reducing the difficulty as-
sociated with the task of learning to
build SDs by applying concepts from
the theory of LCD. We believe these
recommendations will be of interest to
educators, experienced analysts mentor-
ing novices, and others.

Future work includes empirical
testing to determine the efficacy of our
recommendations in practice, as well as
developing a set of reusable foundation
SDs that provide novice analysts with
a strong starting point for learning to
build their own SDs.
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