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Abstract

The Unified Modeling Language has been shown to be complex and difficult to learn. 
The difficulty of learning to build the individual diagrams in the UML, however, has 
received scant attention. In this article, we consider the case of the UML sequence 
diagram. Despite the fact that these diagrams are among the most frequently used in 
practice, they are difficult to learn to build. In this article, we consider the question of 
why these diagrams remain so difficult to learn to build. Specifically, we analyze the 
process of learning to build sequence diagrams in the context of cognitive complexity 
theory. Based on this analysis, and drawing on the theory of learner-centered design, 
we develop a set of recommendations for presenting the sequence diagram building task 
to the student analyst to reduce the complexity of learning how to build them.

Keywords:	 cognitive complexity; learner-centered design; sequence diagrams; systems 
analysis and design, unified modeling language (UML)
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Introduction

Object-oriented analysis and design 
(OOAD) is the dominant software de-
sign method among practitioners. The 
Unified Modeling Language (UML) is 
an ISO standard graphical modeling lan-

guage used in OOAD (International Or-
ganization for Standardization, 2005).
The UML consists of a set of diagrams 
and associated notations, where each 
diagram represents a different view of 
a software analysis and design model—
structure, interaction, or state (Blaha & 
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Rumbaugh, 2005; Dori, 2002). In the 
OOAD process, analysts develop a set 
of objects, where each object has a set 
of attributes (data that the object knows 
about) and behaviors (operations that 
the object can perform). Objects interact 
by invoking one another’s operations to 
fulfill the high-level behaviors required 
of the system, representing the business 
logic of the to-be software system. 
The analyst captures this logic in a set 
of UML sequence diagrams (SDs). 
Figure 1 shows an example of such a 
diagram (all diagrams in this article 
were developed using Visual Paradigm, 
a software tool from Visual Paradigm 
International).

SDs are crucial building blocks in 
system design. Analyst errors in build-
ing them lead to significant rework 
efforts or serious software defects at 
implementation time, which in turn 
leads to increased costs. Thus, it is 
critical that analysts have the skills to 
produce high-quality SDs. While se-
quence diagrams are among the most 
widely used diagrams in the UML in 
practice (Dobing & Parsons, 2006, 
2008; Fowler, 1997) and are critical to 
the design process, they are difficult to 
learn to build (Bolloju & Leung, 2006; 
Siau & Loo, 2006).

The OOAD process consists of five 
basic steps: (1) developing high-level 
requirements, (2) use case analysis, (3) 
domain data modeling, and (4) building 
sequence diagrams (George, Batra, Va-
lacich, & Hoffer, 2006), and (5) building 
a class diagram. In steps (1) and (2), the 
analyst develops a description of what 

the system should do. In step (3), the 
analyst develops the structure of the 
system from a data perspective and, in 
step (4), defines how the system should 
achieve the behaviors required. In step 
(5), the analyst refines the structure of 
the system to include both data and 
behavior. Good, clear techniques and 
heuristics are available for steps (1), 
(2), (3), and (5) through many textbooks 
and other sources. Textbooks covering 
OOAD (George et al., 2006), as well 
as other sources (Fowler, 1997), offer a 
sizeable set of advice on step (4). Even 
with so many useful guidelines and 
heuristics, however, learning to build 
these diagrams remains difficult.

In this article, we consider the task 
of learning to build SDs. Although much 
thinking has been done on the problem 
of developing guidelines and heuristics 
for building a good SD, and much work 
has been done on the difficulties of learn-
ing OOAD, there has not been much 
discussion of the process of learning 
to build SDs in particular. This is our 
focus in this article. Specifically, we 
concentrate on two questions:

•	 What are the complexity factors 
inherent in the process of learning 
to build SDs?

•	 How can these factors be mitigated 
to minimize the cognitive load of 
learning to build SDs?

In this article, we apply Reeves’ 
Learner-Centered Design (LCD) 
framework (Reeves, 1999) to the task 
of learning to build SDs. We chose 
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this framework for two major reasons. 
First, it provides both a way to describe 
the cognitive complexity of learning to 
perform a task, in this case learning to 
build SDs, as well as several learner 
models and recommendations for re-
ducing cognitive loads for each learner 
type—making it directly applicable 
to our research question. Second, it is 
grounded in more than thirty years of 
research in cognitive science, informa-
tion systems, and design theory, and thus 
provides a strong theoretical foundation 
for our work.

The two main contributions of this 
article are as follows: (1) we present 
a qualitative analysis of cognitive 
complexity of learning to build SDs to 
identify the characteristics of the task 

that increase its difficulty; and (2) we 
develop a set of recommendations for 
mitigating the complexity of the task 
of learning to build SDs, based on the 
theory of LCD. These recommendations 
focus primarily on how to present the 
SD-building task to beginners, rather 
than on redesigning the actual SD-build-
ing task itself.

Example

We present an example based on a 
video rental store scenario. This serves 
as the basis for examples throughout 
the article. Suppose a portion of the 
requirements reads as follows:

Figure 1. Example UML sequence diagram

14: displayUpdatedTransaction

13: notifyTransactionUpdate

12: addMovieToRentalTransaction

11: addMovieToRentalTransaction

10: getRentalPrice

9: displayMovieRestricedMessage

8: notifyMovieRestriced

7: verifyMovieNotRestricted

�: getContentLabels

5: getRating

4: getRating

3: getRestrictions

2: MovieScanned
1: scanMovie

Employee RentalUI RentalControl Family Member Movie RentalTransaction

loop

alt

sdScanMovie
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The rental chain allows families to 
give separate membership cards to all 
family members, and to restrict a given 
family member’s access to movies by 
movie rating, e.g., a child in the family 
cannot rent an ‘R’ rated movie on his 
own, or content, e.g., a child in the fam-
ily cannot rent a movie that is labeled 
with an ‘L’ for potentially objectionable 
language. At rental time, the software 
must enforce any restrictions associated 
with the family member presenting his 
membership card.

Based on these requirements, one 
might write a use case narrative simi-
lar to the one shown in Figure 2, and 
develop a partial class diagram similar 
to the one shown in Figure 3. Based on 
these diagrams, Figure 1 shows one pos-
sible solution SD for this scenario.

The remainder of this article is 
organized as follows. We first describe 
related work, and then provide an 
overview of cognitive complexity and 
learner-centered design. We then pres-
ent an analysis of the cognitive com-
plexity of learning to build sequence 
diagrams, and propose a set provide a 
set of recommendations aimed at reduc-
ing the complexity of learning to build 
SDs based on LCD principles. Finally, 
we conclude the article and describe 
future work.

Related Work

Compared to structural techniques (de-
veloped prior to OO methods), OOAD is 
cited as a more natural method of design 
(Rosson & Alpert, 1990). Booch (1986) 
proposed one of the earliest generalized 
OO design methods, providing a starting 
point for the development of what we 
know today as OOAD. Others refined 
and expanded these notions, defining 
key OO concepts, for example, reusabil-
ity (Johnson & Fotte, 1988; Micallef, 
1988). To support the OOAD process, 
several early modeling languages were 
proposed, for example, (Rumbaugh, 
Blaha, Premerlani, & Lorensen, 1991); 
over time, these languages were assimi-
lated together and extended by others 
to produce the current UML specifica-
tion (International Organization for 
Standardization, 2005).

Since we are interested in the com-
plexity of UML SDs in this work, it is 
useful to consider other work describing 
UML complexity and related difficul-
ties. As a language, UML is known to 
be complex (Siau & Cao, 2001; Siau, 
Erickson & Lee, 2005), as well as dif-
ficult to learn (Bolloju & Leung, 2006; 
Siau & Loo, 2006) and use (Agarwal 
& Sinha, 2003).

Siau & Cao (2001) present a 
quantitative analysis of the theoretical 

Figure 2. Example use case narrative
FamilyMember FamilyAccount RentalTransaction

Movie

-restriction 0..*
-rentalPrice
-rating
-contentLabels 0..*

isMemberOf rentsMoviesThrough isRentedThrough
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mathematical complexity of UML. This 
study considered both individual dia-
grams as well as the UML in aggregate, 
comparing both the diagrams and the 
aggregate UML to other OO methods. 
This analysis concluded that, while 
individual diagrams are approximately 
as complex as other OO methods, the 
UML as a whole is 2 to 11 times more 
complex than other OO methods. In 
a follow-on study (Siau, et al., 2005), 
the authors begin to consider the com-
parative complexity among pairs of 
diagrams, looking specifically at class 
diagrams and use case diagrams, and 
finding that class diagrams are more 
complex than use case diagrams. Our 
work differs from this work in two ways. 
First, we are interested in the cognitive 
complexity of the task of learning to 
build SDS, rather than the structural 
complexity (defined mathematically) of 
the diagrams themselves. Second, we 
are interested in the complexity of SDs, 
rather than class or use case diagrams, 
or the UML as a whole.

Siau & Loo (2006) present the 
results of an empirical study aimed at 
identifying the factors that make learn-

ing UML difficult. This study surveyed 
students in OOAD courses to identify 
what they found difficult, using concept 
mapping to categorize the results. This 
study identifies several specific areas 
students found difficult in building 
SDs as well as other UML diagrams. In 
(Bolloju & Leung, 2006), the authors 
study a set of projects produced by 
OOAD students in a university setting 
to identify the typical mistakes that 
novices make in building the four most 
commonly-used diagrams in UML.

In Sheetz (2002), the author pres-
ents the results of an empirical study 
examining the difficulties professional 
developers experience when using 
OO techniques. This study surveyed 
several groups of developers, from 
novices to experts, to determine what 
aspects of OO development they found 
difficult. The subject matter scope 
of this study is much larger than our 
scope—this study considers not only 
technical issues (e.g., analysis, design, 
implementation), but also managerial 
and organizational issues (e.g., project 
estimation, managing user expectations, 
stakeholder buy-in), whereas our focus 

Figure 3. Example UML class diagram
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is on novice-level analysts learning to 
build SDs. The results detail specific 
aspects of OO development that spe-
cific experience groups found difficult 
(i.e., what novices found difficult, what 
intermediates found difficult, etc.), and 
what aggregated groups found difficult 
(i.e., what novices and intermediates 
found difficult, what intermediates and 
experts found difficult, etc.).

In (Agarwal & Sinha, 2003), the 
authors present a survey-based study 
of developers, focused on questions 
of UML usability and ease-of-use. Of 
particular interest here are the results 
for novice developers, which indicate 
that this class of developers found the 
UML diagrams difficult to use. This 
study advocates simplifying the UML 
to make it more user-friendly.

Work on teaching OOAD and UML 
also is related. In (Beck & Cunning-
ham, 1989), the authors introduce one 
of the earliest studies of teaching OO 
techniques to students, focusing on OO 
thinking. More recent research (Brewer 
& Lorenz, 2003; Burton & Bruhn, 2004) 
considers how teaching UML along with 
OOAD can improve learning in OOAD 
overall. Tabrizi, Collins, Ozan & Li 
(2004) extend this work by proposing 
that OO concepts and UML should be 
integrated into beginning programming 
courses. In a similar vein, Wei, Moritz, 
Parvez & Blank (2005) advocate an 
automated tutoring method to provide 
immediate feedback to students while 
learning OOAD and programming.

Our work differs from these efforts 
in its focus and method. These studies 

focus on identifying what is difficult 
within OOAD and UML and how OOAD 
education in general can be improved, 
while we focus on why it is difficult 
to learn, with a specific focus on SDs. 
These studies are complementary to our 
work in that they identify the difficul-
ties we will consider in our analysis of 
the cognitive complexity of learning to 
build sequence diagrams. 

Cognitive Complexity and 
Learner-Centered Design

We base our analysis of the cognitive 
complexity of learning to build se-
quence diagrams on the Reeves model 
(Reeves, 1999) and develop our recom-
mendations for reducing the complexity 
of learning to build SDs on LCD theory. 
We provide overviews of cognitive 
complexity and LCD in this section.

Cognitive Complexity

Reeves’ model of cognitive complexity 
considers different sources of complex-
ity in learning to perform a task with the 
aim of identifying the concrete factors 
that make it difficult to understand. By 
exposing these factors, we can then 
modify the task to reduce the complex-
ity of learning to perform it using the 
principles of learner-centered design.

Reeves’ model considers multiple 
different potential sources of cognitive 
complexity, some of which, for example 
metasocial forces, are not relevant to the 
topic at hand, and are omitted from this 
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discussion. We consider each of the rel-
evant potential sources of complexity.

Information about the Task

The information available regarding 
a task falls into two categories:  (1) 
process-related information about how 
to perform the task in general; and (2) 
domain-specific information about the 
task at hand. In the context of learning to 
build SDs, process-related information 
refers to the specific steps to follow in 
building an SD, while domain-specific 
information refers to the actual problem 
scenario to be modeled, as described in 
a high-level requirements document.

The level of cognitive complexity 
arising from information sources is de-
pendent on the quantity of information 
as compared to the utility of the infor-
mation presented. Not all information-
based complexity is bad—considering 
additional complexifying information 
can lead to a higher-quality design. 
However, complexifying information 
that the task performer cannot use to 
improve the design is simply noise, 
where increasing noise leads to increas-
ing difficulty in selecting the useful 
information, and hence additional 
cognitive complexity.

The Design of the Task

We consider the difficulties introduced 
by the task itself, in terms of the process 
steps and guidelines provided to lead 
the analyst from the problem formula-
tion to the goal solution. Generally, the 

design of a task introduces cognitive 
complexity if it exhibits one or more 
of the following characteristics.

•	 The task process does not pro-
vide enough information for task 
performer to build a complete 
mental model. A mental model of 
a task is a framework that allows 
the task performer to deduce new 
information about the task or predict 
the future effects of a choice made 
during the task. With an incomplete 
mental model, the task performer 
may make incorrect inferences 
about the task.

•	 The next step in the process is not 
always evident. If a task process is 
not sufficiently detailed, and the task 
performer must guess at the next 
step in the process, the probability 
of error is high.

•	 A lack of constraints among 
choices forces the task performer 
to choose from too many options. 
As the number of possible choices 
increases, the task performer must 
attempt to search through the option 
space for the optimal choice. As the 
size of the option space increases, 
the difficulty for the task performer 
in finding the optimal choice in-
creases significantly.

In each of these cases, the task 
performer is forced to make decisions 
without an adequate basis for the 
choice, making each decision more 
difficult and thus introducing cognitive 
complexity.
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Problem Solving Within the Task

Problem-solving refers to the process 
of transforming a problem formulation 
into a goal solution. In the context of 
this article, the problem faced by the 
novice analyst is to produce an SD that 
is both correct and of a high quality. The 
complexity of solving a problem can 
be defined along multiple dimensions, 
where a problem formulation can vary 
from simple to complex along each 
dimension. A problem becomes less 
complex as:

•	 Sufficient information is provided 
about the problem. A lack of crucial 
information increases the cognitive 
complexity of solving a problem. 
The simplifying aspect of additional 
information applies only so far as 
the added information is useful (as 
described above).

•	 The goal is defined more precisely. 
The less clearly the expected solu-
tion is defined, the more difficult it 
is for the learner to work toward the 
goal solution.

•	 There are fewer variables, and 
fewer interrelationships and de-
pendencies among them. Larger 
numbers of variables and increasing 
numbers of relationships among 
those variables leads to increased 
numbers of decisions the prob-
lem-solver must make in working 
toward a goal solution, increasing 
the potential for errors.

•	 Significant expertise is not re-
quired to solve the problem. The 

more experience a problem-solver 
requires to reach a quality solution 
to a problem formulation, the more 
complex it is for the novice to ap-
proach. Essentially, the novice must 
develop expertise before being able 
to confidently produce quality solu-
tions. 

•	 There are fewer possible solutions. 
A larger number of potential solu-
tions makes a problem more difficult 
to solve, particularly when some 
solutions are of higher quality than 
others, or when there is a trade-off 
between competing priorities.

•	 Logic and known patterns/exper-
tise from other domains can be 
applied to solve the problem. The 
applicability of existing expertise 
from other domains tends to sim-
plify the problem-solving task.

Learner-Centered Design

Learner-Centered Design theory pres-
ents a set of design principles aimed at 
reducing the cognitive complexity of 
learning how to perform a task through 
the redesign of the task itself. Once 
we have determined the root causes of 
complexity, we can apply the relevant 
LCD principles to ensure that the 
learner experiences as little confusion 
as possible.

In his LCD theory, Reeves (1999) 
proposes several models of learners, 
classified by the goal of the learning pro-
cess at hand. For example, the learner 
as categorizer model considers ways 
to help learners filter and categorize 
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large amounts of information, while 
the learner as searcher model suggests 
ways to help learners search through an 
information space to identify high-qual-
ity, useful and relevant information. For 
each model, he then proposes a set of 
techniques for reducing cognitive com-
plexity for tasks that fit the model.  

The learner model most useful to 
the problem of helping beginner ana-
lysts learn to build SDs is the learner 
as expert problem solver model. Ef-
fectively, we can think of the analyst’s 
progress from novice to intermediate 
to expert SD-builder as one of building 
expertise.

Reeves (1999) defines the charac-
teristic difference between an expert 
problem solver and a novice problem 
solver can be summarized as follows: 
novices have small amounts of infor-
mation of varying quality in a loose 
organization, while experts have a high 
quantity of highly relevant information 
in an intricate web of interconnections. 
Empirical studies (Wiedenbeck, Fix, 
& Scholtz, 1993; Wiedenbeck, Ra-
malingam, Sarasamma, & Corritore, 
1999) show that the mental models for 
novice and expert programmers differ 
significantly, where an expert typically 
has built an intricate, pattern-oriented 
mental model that the novice lacks.

The question that arises in terms 
of LCD for the task of building SDs is 
this: How can we help the novice analyst 
(a) build a strong knowledge base; (b) 
filter out low-quality information; and 
(c) build a mental model of the task 

with high-quality relationships among 
information elements?

To help reduce the complexity of 
developing expertise in problem solv-
ing, Reeves suggests several recom-
mendations for organizing the relevant 
material:

Provide Scaffolding

We can think of the “scaffolding” here 
as providing a knowledge framework 
upon which a learner can learn while 
gaining expertise, as a way to help the 
user climb the learning curve. This sug-
gests organizing content to build on the 
learner’s accumulated knowledge.

Decompose and Recompose

Smaller problems are easier for the 
learner to solve than larger ones. Solv-
ing a large problem becomes easier 
if it can be broken down into smaller 
problems, where the solutions to the 
smaller problems can be combined into 
a complete solution.

Use Examples and Exercises 
Extensively

A novice develops expertise by reason-
ing from the specific to the abstract. 
Exercises and examples, provided each 
exposes some new information or varia-
tion, add new knowledge to the learner’s 
mental model of the task. The larger the 
number of exercises and examples the 
novice encounters, the more opportuni-
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ties there will be to build a better abstract 
task model, and the greater the resulting 
expertise level will be.

Engage the Learner Actively

Engaging learners actively, through 
spoken questions and interactive ex-
ercises, forces them to “think on their 
feet,” which helps the learner actively 
construct a mental model of the task. 
This type of interaction not only moti-
vates the learner to think in the desired 
direction, but it also allows the educa-
tor/mentor to determine the learner’s 
current level of expertise and provide 
feedback in real time.

Analysis of the Cognitive 
Complexity of Learning 
to Build UML Sequence 
Diagrams

In this section, we enumerate several 
characteristics of the SD-building task 
that make learning to build SDs difficult 
for the beginner analyst. These char-
acteristics were drawn primarily from 
work in identifying typical errors and 
difficulties in OOAD and programming, 
as described in our earlier discussion of 
related work.

For the purpose of this analysis, we 
consider the beginner to be a student 
with no prior knowledge of OOAD or 
programming experience (a worst-case 
scenario). We also assume that the stu-
dent has progressed in the course to the 

point where SDs arise—after use case 
analysis and domain data modeling dis-
cussions. For students with some prior 
experience, some parts of this discussion 
may not apply. We also assume that the 
learner has the basic building blocks for 
an SD (i.e., requirements, use case nar-
ratives, domain data model) in place at 
the start of the SD building task.

For each characteristic, we: (1) de-
scribe why it makes the task difficult; (2) 
identify the type of cognitive complex-
ity associated with the difficulty, and (3) 
discuss whether the  complexity stems 
from the design process in general, or 
from SDs in particular. We then apply 
the LCD principles to recommend ways 
to mitigate the complexity associated 
with these characteristics.

Unfamiliar Metaphors

A number significant metaphor in SD 
syntax and semantics refers to OO 
programming, including concepts such 
as message passing, parameters, and 
returns. However, not every student 
learning OOAD techniques has been 
exposed to programming.

Students without prior program-
ming experience increased complexity 
in learning SDs, primarily coming from 
problem-solving complexity—knowl-
edge from domains other than program-
ming cannot be applied; rather some 
level of expertise is required. This 
complexity is not related to the design 
process, but is introduced by the SDs 
themselves.
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Working with SD Syntax

SDs have a detailed and very specific 
syntax. At every step in the SD-building 
process, the student’s choice of syntac-
tic element makes a specific statement 
about the design of the to-be software. 
Message arrows are a good example 
of this—should the arrow line be solid 
or dashed? Each has its own specific 
meaning, respectively, message call or 
return. A solid-line arrow placed on an 
angle has yet another meaning. Model-
ing alternative flows is another example. 
SDs are inherently linear diagrams, but 
if-then-else branching is a very com-
mon software structure in practice. One 
method of handling this within the SD 
syntax is to use alt boxes. If the logic 
within each branch is complex, these alt 
boxes quickly become large and very 
cumbersome.

Working with the SD syntax creates 
a combination of task design complex-
ity and information complexity: the 
student must apply a complex set of 
syntax rules from the very outset of 
learning to build SDs. This complexity 
stems from SD syntax, not the overall 
design process.

Omitting Explicit Returns

The notion of flow of control through 
the logic is not evident in an experienced 
analyst’s SDs, since explicit return nota-
tions are often omitted to reduce clutter 
and fit more logic into a given space. If 
returns are added to the diagram, one 

can trace the flow of logic through the 
SD with a pencil as the focus of control 
moves from one object to another.

A student who omits these returns 
may mistakenly leave the focus of con-
trol at the recipient object, rather than 
returning it to the calling object, once 
processing is complete. As a result, the 
novice will often mistakenly assign re-
sponsibility for initiating some process-
ing (i.e., sending a message to another 
object), to an inappropriate object.

For example, Figure 4 shows a 
fragment of an SD representing the 
first few interactions of the main video 
store checkout SD (shown in Figure 3). 
Here, after the RentalControl object 
asks the FamilyMember object for its 
restriction set, rather than implicitly 
returning its restriction set and the focus 
of control back to the caller object, the 
FamilyMember object instead sends a 
message to the Movie object asking for 
its rating. While this is not necessarily 
incorrect, this places the responsibility 
for obtaining the movie’s rating on the 
FamilyMember object.  This is likely 
not the analyst’s intention, given that 
the FamilyMember object was only 
asked to return its restriction set, and 
no more.

The requirement that the focus of 
control should return to the calling ob-
ject comes directly from programming, 
where an explicit return call at the end of 
each method returns the focus of control 
to the caller. A student, however, may 
have little or no exposure to coding. 
When building the first few SDs, then, 
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a novice who is not advised to explicitly 
include returns may apply a more famil-
iar “connect-the-dots” metaphor. 

Here, we can see problem-solving 
cognitive complexity issues arising:  
the novice analyst cannot apply famil-
iar metaphors; rather, some domain-
specific knowledge of programming 
is required. Task design complexity 
is also evident: without this domain 
knowledge, the novice cannot build an 
appropriate mental model of the task, 
so the next step the novice should take 
is not evident. This complexity is due 
to SD-building conventions in practice, 
and not to OO design in general.

Decomposing High-Level 
Requirements into Logic Steps

For a given step in the use case narra-
tive, the analyst must decompose the 

system-side requirements into more 
detailed responsibilities to define the 
step-by-step business logic. For ex-
ample, consider the use case narrative 
fragment for step 2 as presented in Fig-
ure 2. Here, some object in the system 
must be responsible for (1) obtaining 
the movie’s rating and content labels, 
(2) obtaining the restriction set for 
the cardholder, and (3) comparing the 
movie rating and content labels to the 
cardholder’s restriction set to determine 
if the cardholder should be permitted to 
rent the movie.

This is a logical jump in abstrac-
tion from a lower granularity of detail 
to a higher granularity of detail, where 
the student analyst must add detail not 
explicitly provided in the requirements 
document or use case narrative. This 
can seem like making up information. 
A more experienced analyst, however, 

Figure 4. Focus of control remains on the called object

4: getRating

3: getRestrictions

2: MovieScanned
1: scanMovie

Employee RentalUI RentalControl Family Member Movie

sdFocusOfControlError
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will recognize that the design process 
inherently involves adding new detail 
at each stage, and that not all detail can 
be mapped directly back to explicit 
statements from documents developed 
earlier in the OOAD process.

Here, we can see cognitive com-
plexity arising from the design of the 
SD-building task in two ways. First, the 
next step in assigning responsibilities is 
not always obvious, since the high-level 
requirements often do not explicitly 
enumerate the low-level steps of the 
business logic. Second, this lack of 
explicit step-by-step logic leaves the 
analyst free to choose among all avail-
able options with very few constraints. 
This complexity is part of the design 
process, as has been noted in previous 
work (Sheetz, 2002), but arises notice-
ably in SD-building process.

Choosing to Centralize or
Decentralize Responsibility 
Assignments

While the responsibilities for know-
ing information are relatively easy to 
assign (e.g., the Movie object should 
be responsible for answering queries 
about its own rating), it is less obvious 
which object should be responsible for 
initiating processing.

We consider step 2 in Figure 2, 
where we can decompose the required 
behavior of the system into three respon-
sibilities: (1) obtaining the movie’s rat-
ing and content labels, (2) obtaining the 
restriction set for the cardholder, and (3) 
comparing the movie rating and content 

labels to the cardholder’s restriction set 
to determine if the cardholder should be 
permitted to rent the movie.

Which object should be responsible 
for initiating this processing? Many 
introductory texts suggest assigning 
this responsibility to a centralized 
controller object, which contains the 
main flow of logic for responding to 
a specific external event, and make all 
other objects responsible only for pro-
viding information about their attributes 
or doing simple calculations. Figure 1 
shows an example of centralization of 
responsibility for initiating processing, 
where the RentalControl object is as-
signed these responsibilities.

Centralization doesn’t necessarily 
represent good OO design because it 
places virtually all the responsibility 
for initiating processing on a single 
object (the controller object). When 
implemented, the code for the central-
ized controller class would likely be 
significantly more complicated than 
that of other objects. Assigning entity 
objects responsibility for initiating mes-
sages is not necessarily incorrect. In fact, 
such messaging assignments can lead 
to a more decentralized assignment of 
responsibilities.

Consider, for example, Figure 5, 
which shows a decentralized logic flow. 
Here, the RentalControl object asks the 
FamilyMember object to determine 
whether or not the movie is acceptable to 
rent based on the movie’s ID code. This 
places the responsibility for obtaining 
the movie’s rating and content informa-
tion, as well as checking this information 
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against the cardholder’s restriction set, 
on the FamilyMember object, rather 
than the controller object.

This freedom presents the beginner 
with a wide spectrum of choices from 
which to choose, increasing the prob-
lem-solving complexity in terms of the 
design of the task. This complexity is a 
part of OO design in general, but arises 
mainly in the specific context of SDs.

Choosing among Multiple 
Candidate Solutions

The large number of choices available 
when assigning responsibilities results 
in a large number of candidate solu-
tions. While many of these solutions 
might be incorrect in terms of syntax 
or semantics, many will also be accept-
able as solution SDs. The fact that mul-
tiple solutions are possible introduces 
problem-solving complexity into the 

SD-building task in that the goal is not 
precisely defined—there are no specific 
guidelines in the literature that will 
guarantee that the analyst will be able 
to narrow the candidate solution pool to 
a single SD, particularly when there is 
more than one acceptable solution. Here, 
the novice analyst may recognize that 
there are multiple possible acceptable 
solutions, but may lack the expertise 
to recognize that one solution is better 
than another, or that two solutions are 
equally good. The lack of a precise goal 
definition introduces uncertainty into 
the process. This issue is due to both 
the characteristics of SDs as well as 
the overall design process. Design, by 
its very nature, does not presuppose a 
goal. This is further complicated by the 
fact that minor differences in SD syntax 
choice can lead to major quality and cor-
rectness differences between candidate 
solutions, where a novice may have 

Figure 5. Decentralization example

4: getRating

3: getRestrictions

2: MovieScanned
1: scanMovie

Employee RentalUI RentalControl Family Member Movie

sdDecentralization

5: getContentLabels

�: verifyMovieNotRestricted
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difficulty identifying the most correct 
or highest quality design.

Rate of Information 
Presentation

Most OOAD texts provide a wealth of 
information about SDs. As noted in the 
previous sections, many characteristics 
of the SD-building process are sources 
of cognitive complexity. The beginner 
analyst must digest a large amount of 
SD-building information in a short time. 
Here, information is a significant source 
of cognitive complexity, in the sense 
that the novice analyst is unlikely to 
be able to internalize and make use of 
all the information on building SDs at 
the same time.

For example, an analyst building 
a first SD might be able to model only 
a very simple scenario using a few 
guidelines. At this level of expertise, 
providing sophisticated SD-building 
heuristics introduces significant cogni-
tive complexity because the novice is 
not prepared to incorporate them, but 
feels as though it is required.

With more experience in build-
ing SDs, the student becomes better 
prepared to apply more complicated 
techniques and model more detailed 
scenarios. While the new information 
does increase the complexity of the 
task, this complexity is useful because 
it will generally result in more detailed 
and higher quality SDs, and better 
overall designs. This complexity is 
due primarily to the overall complex-

ity of SD building, rather than design 
in general.

Designing for Quality

The quality of an SD is difficult for a 
novice to evaluate. For example, the 
notions of coupling and cohesion, which 
refer to the quality of an overall design 
(encompassing not only SDs, but also 
class and other diagrams), are often in-
troduced in texts, for example, (Stumpf 
& Teague, 2005) aimed at the beginner 
analyst in the course of the discussion 
of building SDs. These concepts are dif-
ficult for the novice to apply, especially 
early in the analyst’s introduction to 
OOAD. These concepts are subject to 
the “too much information too quickly” 
cognitive complexity issue.

Once the analyst is prepared to ap-
proach coupling and cohesion, there is 
additional complexity introduced by the 
relationship between the two concepts. 
Designing for low coupling tends to 
increase responsibility assignments to 
an object, while designing for high cohe-
sion tends to reduce them. Thus, there 
is a clear trade-off between coupling 
and cohesion—reducing coupling tends 
to increase cohesion and vice versa. 
This introduces interrelationship and 
dependency-based problem-solving 
complexity in that the novice analyst 
must find a good balance between the 
two properties. Generally, quality is an 
issue for the overall design process, but 
the issue is exacerbated by the complexi-
ties associated with building SDs.
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The Cumulative Effect

To see the overall effect of these com-
plexity factors, let us consider what 
happens when a student analyst is actu-
ally building an SD. At each step, the 
student must be able to answer several 
questions:

•	 What is the next bit of behavior/
processing required?

•	 Have I broken down the use case 
narrative step into sufficient detail, 
or have I glossed over something 
important? Have I missed any de-
pendencies?

•	 Where is the focus of control right 
now? Is it in the correct place? 
Have I incorporated all returns 
required?

•	 Does the current focus of control 
match the next caller object? If not, 
how do I get the focus to the correct 
object?

•	 When I add the message for the 
next bit of behavior, am I using 
the correct syntax and semantics? 
Dashed or solid line arrow? Many 
syntax-related questions are pos-
sible here.

•	 Have I given the message an appro-
priate name, one that fully describes 
and limits the scope of responsibil-
ity? Does the called object fully 
perform that scope of responsibility, 
and no more?

•	 Does the next bit of behavior 
represent the start of if-then-else 
processing (needing an alt box)? 

•	 If the current focus of control is in-

side an alternative within an alt box, 
does the next bit of behavior belong 
inside or outside the alt box?

At this point, the student is rapidly 
approaching Miller’s (Miller, 1956) 
“seven plus or minus two” limit on 
information processing capacity, but 
hasn’t yet considered the full scope 
of possible syntax- and semantics-re-
lated questions, or considered design 
quality.

Overcoming the 
Cognitive Complexity 
of Building Sequence 
Diagrams

We introduce a set of recommenda-
tions aimed at reducing the cognitive 
complexity of learning to build SDs 
based on the LCD principles described 
earlier.

Build on the learner’s knowledge 
level.  As described earlier, information 
presented to the novice analyst before 
it can be processed and applied is not 
useful; however, as the student gains 
experience, additional information can 
be helpful and increase the quality of 
SDs.

In the context of learning to build 
SDs, we suggest focusing on different 
dimensions of SD-quality separately, 
from simpler to more complicated mea-
sures of SD-quality. Here, we suggest 
thinking about the quality of an SD using 
a (partially) language-based model simi-
lar to that described in Lindland, Sindre 
& Solvberg (1994). Specifically, we can 
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think of the quality of an SD as varying 
along three general dimensions:

1.	 Syntax quality:  how well an SD 
conforms to the rules for using SD 
notation.

2.	 Semantic quality:  how well an SD 
conforms to the scenario described 
in the high-level requirements, use 
case narratives, and any domain 
knowledge available.

3.	 Design quality:  how well an SD 
can be executed in a high-qual-
ity software implementation (e.g., 
using concepts like coupling and 
cohesion).

In order to reduce the complexity 
associated with giving the beginner too 
much information too quickly, we sug-
gest that SD-related information be pre-
sented first focusing on syntax, then on 
semantics, and finally on quality. Here, 
syntactic quality provides a foundation 
for the other quality dimensions—if the 
SD’s syntax is not correct, it will never 
have high semantic or design quality. 
Similarly, once the novice has mastered 
SD syntax, if the SD does not match 
the requirements document (semantic 
quality), there is no point in thinking 
about design quality.

This recommendation makes use 
of the LCD principle of scaffolding to 
directly address the cognitive complex-
ity associated with the rate of informa-
tion presentation and evaluating design 
quality, and help to address the other 
issues by assuring that information is 

not presented before the learner is ready 
to use it.

Provide a Wide Variety of 
Exercises for Each Stage

To support the development of varying 
dimensions of quality (syntax, semantic, 
and design quality), we can reduce the 
complexity of developing skills in each 
area by providing focused exercises 
specific to each dimension of quality.

For example, an exercise focusing 
on syntax may provide both an ordered 
set of logical steps, as well as a map-
ping that describes which object should 
perform each step, and ask the novice 
to simply draw the diagram. Similarly, 
an exercise focusing on semantics may 
provide a flowchart of the logic and a set 
of objects participating in the SD, and 
ask the student to assign responsibili-
ties to objects. A design quality-focused 
exercise might ask a student to compare 
and contrast two SDs in terms of cou-
pling and cohesion, or to modify an SD 
to improve its design quality.

This recommendation makes use of 
the LCD principles of scaffolding and 
extensive use of exercises to address 
the cognitive complexity associated 
with many of the SD-building com-
plexity issues, including unfamiliar 
metaphors, working with SD syntax, 
omitting returns, decomposing high-
level requirements, choosing between 
centralization and decentralization, 
choosing among candidate solutions, 
and quality evaluation.
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Consider Intermingling the OOAD 
and OO Programming Learning 
Experiences

The programming roots of some SD 
syntax and semantic elements introduce 
complexity for some students, particu-
larly those with little or no previous 
exposure to programming. This is a 
bit of a chicken-and-egg problem—the 
student needs to become familiar with 
these concepts, but the question arises: 
teach programming or design first? One 
proposal (Tabrizi, et al., 2004) suggests 
incorporating design and programming 
into single cohesive learning experience. 
This allows the student to see the goal of 
the design process—finished software 
(and all that it takes to turn design into 
implementation)—while concurrently 
building expertise in design.

This uses a form of scaffolding, 
making the end goal clear, and poten-
tially enabling the student to foresee 
the consequences of design decisions in 
the implemented software, and helps to 
address the cognitive complexity associ-
ated with unfamiliar metaphors, work-
ing with SD syntax, omitting returns, 
decomposing high-level requirements, 
and choosing between centralization 
and decentralization.

Separate Logical Flow Design 
from Responsibility Assignment

Many SD-building guidelines suggest 
working through the logic required for 
a use case and assigning responsibility 
for these logical steps at the same time. 

This requires the analyst to have a clear 
view of both the data structure of the 
to-be software as well as a strong sense 
of the detailed logic required to satisfy 
the use case scenario, and to be able to 
map these logical steps to the objects 
that will be responsible for them—all 
at once.

One way of reducing the complexity 
associated with this is for the begin-
ner analyst to separate out the task 
of detailed logical flow development 
from that of responsibility assignment. 
This is useful when the use case steps 
require further decomposition into 
system-internal logic steps, because it 
allows the novice analyst decompose 
a less-detailed logic description in the 
use case into more detailed logical steps 
without worrying immediately about 
which object will be responsible for a 
given step.

Many texts (Fowler, 2004; George, 
et al., 2006) suggest taking advantage 
of any available useful tools in build-
ing analysis and design models, even 
if those tools are not part of the UML. 
In separating logic from responsibility 
assignment, a useful tool for the novice 
analyst is the familiar flowchart. This 
allows the analyst to map out individual 
logical steps, including conditional and 
repeating logic, without thinking about 
specific objects. Once this is done, the 
student can then consider responsibility 
assignment for each step.

This recommendation makes use 
of the LCD principles of scaffolding 
and decomposition and recomposition, 
by suggesting the separation of logic 
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and structure, to address the cognitive 
complexity associated with decompos-
ing high-level requirements into logic 
steps.

Actively Think the Problem 
Through

Another potential mechanism for reduc-
ing the complexity of the responsibility-
assignment task, one that would work 
best primarily in an educational setting, 
is to have a group of students role-play 
to work through which object should 
be responsible for which logical steps. 
Here, each student is assigned a role as 
an object, and given a list of the object’s 
attributes. A token of some sort repre-
sents the focus of control, and students 
must ask one another to perform tasks, 
passing around the token, to fulfill the 
requirements of a particular use case. 
(The authors have applied this technique 
in the classroom with good results.)  

This approach allows multiple 
student analysts to contribute to the 
group’s common model of the logic 
flow and responsibility assignment 
set, reducing the cognitive load on any 
given individual, while simultaneously 
ensuring that all students are engaged 
in the learning process.

For a large group of students, it 
is possible to ask the larger group to 
break the problem into smaller pieces. 
Smaller groups can then attack each 
sub-problem, and the group as a whole 
can then integrate the solutions to the 
sub-problems into a larger solution to 
the whole problem.

This recommendation makes use 
of the LCD principles of engaging 
the learner actively, using exercises 
extensively, and decomposition and 
recomposition to address the cognitive 
complexity associated with several of 
our SD complexity characteristics: 
decomposing high-level requirements 
into logic steps, choosing among mul-
tiple candidate solutions, assigning 
responsibilities, and choosing between 
centralization and decentralization.

Document and Use Patterns

Applying a pattern is a well-known way 
of reusing previous work and reducing 
the overall workload of a task. Patterns 
can reduce the cognitive complexity of 
the SD-building process for an analyst 
who has mastered SD syntax and se-
mantics by providing a starting point 
of a known quality design for a stan-
dard organizational scenario (e.g., the 
workflow for processing paychecks). 
While a pattern might not apply com-
pletely to a given scenario, it can still 
provide a modifiable starting point to 
the analyst that would otherwise have 
required significant thought to produce 
from scratch.

Design patterns have been discussed 
in the literature (France, Kim, Ghosh & 
Song, 2004), and are cited in some text-
books, for example Stumpf and Teague 
(2005). These abstract patterns provide 
a basis for solving particular design 
patterns (e.g., using a singleton class to 
represent an interface), and are meant 
to provide the experienced designer 
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with generally applicable solutions. 
For a novice, however, applying these 
patterns presents a major challenge: 
the patterns are described at a level of 
abstraction that makes it difficult for 
the novice to recognize where they can 
be applied, partially due to the fact that 
these patterns have their origins in cod-
ing design patterns.

Fowler (1997) introduced the idea 
of detailed domain-specific analysis 
patterns. This book contains a set of 
highly-detailed analysis patterns de-
scribing common situations from ac-
counting and health-care domains, and 
provides data and behavior models for 
each situation. This book was written 
prior to the development of UML, so the 
models in this book are not built using 
the familiar UML syntax. However, the 
idea of reuse of detailed analysis-stage 
models holds. The availability of a set of 
tried-and-true analysis patterns, cover-
ing a large number of domains, could 
significantly reduce the complexity of 
designing logic for a frequently-encoun-
tered domain.

This recommendation makes use of 
the LCD principle of the use of examples 
to address the cognitive complexity 
associated with several SD-building 
complexity issues: omitting returns, 
decomposing high-level requirements, 
choosing objects when assigning re-
sponsibilities, choosing between cen-
tralization and decentralization, and 
quality evaluation.

Conclusion

In this article, we have considered the 
question of why SDs are difficult to 
learn to build. We have described a set 
of characteristics of the SD-building 
task that add complexity to the task, 
and identified why each of these adds 
difficulty using concepts from cogni-
tive complexity theory. Further, we 
developed a set of recommendations 
aimed at reducing the difficulty as-
sociated with the task of learning to 
build SDs by applying concepts from 
the theory of LCD. We believe these 
recommendations will be of interest to 
educators, experienced analysts mentor-
ing novices, and others.

Future work includes empirical 
testing to determine the efficacy of our 
recommendations in practice, as well as 
developing a set of reusable foundation 
SDs that provide novice analysts with 
a strong starting point for learning to 
build their own SDs.
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