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1. Introduction

Virtualization is a growing part of the overall information tech-
nology market. The 451 Group predicts that the virtualization mar-
ket overall will grow from $2.2B in 2008 to nearly $11B in 2013
(Kusnetzky, 2009). A particular type of virtualization, middleware
virtualization, also known as Platform as a Service, allows an appli-
cation to run on a set of middleware resources such that the
resource-to-application binding can be changed dynamically on
the basis of each application’s resource requirements. In other
words, middleware resources can be deployed and un-deployed
to support an application’s workload needs as demand rises and
falls. Here, the term middleware refers to application middleware
software platforms (e.g., WebSphere (IBM Inc., 2006b), IIS (Micro-
soft Inc., 2009), WebLogic (BEA Systems Inc., 2004), others) that
provide generic application services (e.g., database connection
management, thread pool management, naming and directory ser-
vices, and other application support services), as well as other
application support systems, e.g., database servers or transaction
servers. Applications written to run on application middleware
platforms need only implement their specific business logic to take
advantage of the generic services available from the middleware,
i.e., they need not re-implement the same generic functions
themselves.

In a middleware virtualization scenario, middleware stacks
consisting of middleware software and the operating system and
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hardware resources supporting it (e.g., as depicted in Fig. 1),
can be provisioned as needed to support any application written
for the platform (i.e., Java EE platforms can support Java-based
applications written to the Java EE standard, while IIS can
support .NET-based applications). Indeed, by installing multiple
middleware frameworks on each middleware stack instance, it is
possible for a middleware stack to support any application simply
by starting the appropriate middleware software and deploying
the application.

Middleware virtualization differs significantly from server vir-
tualization, which allows multiple guest operating systems to
run on a single host machine, accessing a common set of hardware
resources (with the attendant additional delays associated with the
extra layer of indirection imposed by the guest operating system).
In contrast, middleware virtualization technologies allow multiple
applications to share a pool of middleware stacks. This enables
data center managers to dynamically allocate and deallocate appli-
cation resources without interrupting the runtime processing of an
application.

Typically, several application clusters supported by middleware
stacks reside within a data center, where each application cluster
supports a single application. Instead of permanently sizing appli-
cation clusters for peak loads, managers should be able to reallo-
cate resources such as application servers, database servers and
storage servers in response to the current demand for each appli-
cation. Because different applications are unlikely to experience
peak demand simultaneously, managers can save money by reduc-
ing the total number of units deployed and moving idle resource
units from cluster to cluster as demand dictates. If total demand
exceeds the available resources, applications can be prioritized to
ensure that critical systems do not starve. Then, if increased
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Fig. 1. Middleware virtualization resource stack.

demand persists, administrators can boost their capacity by adding
new resource units to the existing infrastructure pool.

Consider the case of a major credit card company (the name has
been withheld in order to honor confidentiality agreements) in
New York that has several applications running in multiple data
centers. The merchant credit (MC) and credit card bill check-
payment (CCB) applications are two important applications in the
company’s data centers. These applications use various resources
like database servers, remote web services, security services, appli-
cation servers and storage services. A number of instances of each
of these resources are located in multiple data centers located in
four geographically separated cities in the United States. At any gi-
ven time the number of applications running in these data centers
ranges between 90 and 120. Over the course of a day, the MC appli-
cation reaches its peak load between 8 a.m. and 12 noon, when
merchant activity is heavy. The CCB application reaches peak loads
between 4 p.m. and 8 p.m., when large numbers of customers
check and pay credit card bills. During peak loads, both applica-
tions combined use approximately 85% of available physical re-
sources. During non-peak periods, these applications use on
average 20-30% of the resources. Clearly, there is often a significant
under-utilization of resources. This scenario is typical of IT data
centers.

In order to better utilize resources, what is needed is a mecha-
nism to allow the MC and CCB applications to temporarily expand
within a common set of resources during their peak loads. Such a
mechanism would increase the average utilization of resources
and enable the company to run a larger set of applications on the
same set of resources. Middleware virtualization technologies present
the possibility of achieving this goal. In this context, the application
set must be mapped to a set of specific middleware stack re-
sources. Here, the following question arises: on what basis should
we decide which application to assign to which middleware stack?
For many enterprises, the main motivation for deploying middle-
ware virtualization technology is to manage costs. Thus, the prob-
lem of resource-to-application allocation needs to be tackled in
both a cost-effective and QoS-friendly manner. The key problem
businesses face in using virtualization technology is how the virtual-
ized resources can be utilized to promote cost and business priorities
(Business Wire, 2007). There is a gap between technical know-
how and the achievement of business goals that has not been ad-
dressed in detail in the literature - while managers would like to
ensure minimum-cost resource-to-application allocations, they
currently have no way to determine the cost implications of alloca-
tions due to the complexity of the decision.

This complexity is based on a number of factors, starting with
the difficulty of optimizing over a wide variety of applications
and resources. This problem is exacerbated by the complexity intro-
duced by multiple geographically separate data centers, where each
location has a different cost profile, based on a variety of factors. We
cite two examples of cost-differentiating factors, the costs of pow-
ering data centers and the cost of human IT resources, below.

Power usage is a significant cost differentiator — data centers are
notorious power consumers, both to run the servers as well as to
cool the server rooms. In fact, recent research indicates that the
cost of powering and cooling a data center actually exceeds the
cost of the IT equipment the data center houses (Belady, 2007).
Further, power costs differ substantially across regional areas —
in January 2010, the average cost per kilowatt-hour for commercial
use was $0.15 in the state of New York, but only $0.074 in Oregon
and $0.063 in North Dakota (US Energy Information Administra-
tion, 2010). Such disparities in power costs have led many data
center operators, e.g., Google and Microsoft, to consider locations
with low-cost power sources, e.g., based on hydrodynamic
(Scheier, 2007) or geothermal (Hancock, 2009) sources.

The cost of human IT resources also varies significantly on a
regional basis. This is clearly demonstrated by the fact that most
major IT salary surveys report average on a regional basis - Com-
puterWorld reports average salaries on a multi-state regional basis
(ComputerWorld, 2009), while salary.com provides wage esti-
mates by metropolitan regional area (Salary.com, 2010). For exam-
ple, based on salary.com data, a systems administrator in New York
costs 14% more than one in Portland, Oregon.

These difficulties are compounded by the problem of varied
incentives — application users want fast response times regardless
of cost, application owners want the fast response times without
spending too much money, and data center managers seek to
reduce the cost of running all applications within their service
agreements, regardless of ownership. These competing incentives
raise the question - whose incentives should be paramount in
the resource-to-application mapping decision?

These incentives can play out in a variety of managerial scenar-
ios, with slightly differing implications based on how application
owners are charged for their applications. Essentially, application
owners are responsible for the final cost, whereas the resource
managers are responsible for managing costs.

In the first scenario, in-house IT staff make allocation decisions,
and IT operations costs are not tied back to application resource
usage. IT staff are incentivized to reduce costs across the board
to minimize budget requirements for upper management. Applica-
tion owners want maximum performance for their applications,
without regard to cost.

In the second scenario, in-house IT staff make allocation deci-
sions, but with a charge-back policy (McKinnon and Kallman,
1987) in place to tie application usage costs back to the application
owners. IT staff is still incentivized to reduce costs across the
board, but application owners are now incentivized to minimize
cost of owned applications, regardless of cost or performance im-
pacts on other applications.

In the third and final scenario, applications are hosted in out-
sourced data centers (e.g., perhaps Amazon’s Elastic Compute
Cloud (Amazon Web Services, 2010)), where application owners
are charged based on actual usage (Stone and Vance, 2010). Data
center managers have an incentive to maximize profit, while appli-
cation owners have an incentive to minimize their own costs.

In all three scenarios, application users will tolerate little in the
way of delays, regardless of application workloads. However, these
stakeholders have little or no control over the main parameters
that drive the allocation decision - the cost of resources and allo-
cation events, application budget limits, and demand for applica-
tions - and no way of understanding the interactions between
these parameters without assistance. In this work, we take a first
step toward helping stakeholders understand implications of virtu-
alization, and develop a set of insights to help them understand
what they can expect as the values of these parameters change.

In such complex scenarios, it is virtually impossible to make
resource allocation decisions without a formal framework, thus
motivating this research. We attempt to address this gap, providing
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managers with a set of tools to help make decisions about virtual-
ization, taking into account performance requirements, costs, and
business priorities.

The primary focus of this paper is the application of formal
modeling techniques to reduce costs in IT middleware virtualiza-
tion scenarios. The specific contributions of the paper can be stated
as follows: (a) we identify the different factors impacting costs in a
virtualization framework, and develop a formal mathematical cost
model that takes into account both cost and quality of service un-
der varying demand conditions; (b) we develop runtime models of
three virtualization decision-making paradigms: (1) a historical
model that assumes that future load patterns will closely follow
past load trends, (2) a staged model that is able to handle unfore-
seen load patterns, and (3) a mixed model that attempts to combine
the benefits of both the historical and staged models; (c) we de-
scribe the cost implications of each runtime model, based on the
cost model, to help managers decide which decision-making ap-
proach to use; (d) we present a computational analysis of the im-
pact of various managerial and situational factors on the overall
cost of a virtualization infrastructure, and develop a set of insights
to help IT managers to select appropriate resource and application
parameters.

Our experiments demonstrated that the staged approach will
result in about 20-30% higher costs than the near-optimal result.
To combine the benefits of both the staged approach and the his-
torical load based approach, we developed a mixed approach,
and demonstrated that the mixed approach results in total cost
within 7% of the near-optimal cost at moderate deviations from
historical loads. In a set of sensitivity experiments, we show the
impact of variation in allocation/deallocation costs, demand, and
budget. Further, we include with our results a series of managerial
insights that managers can use to decide which approach to use for
resource allocations in a virtualized environment, including situa-
tions where the choice may vary based on stakeholder incentives.

The remainder of this article is organized as follows. Section 2
describes closely related work. Section 3 describes the problem,
introduces our cost model. Section 4 describes our solution ap-
proach, and develops an efficient solution procedure based on a
modification of dynamic slope scaling techniques. Section 5 dis-
cusses approaches to handle unforseen load scenarios. In Section
6, we describe some insights. In Section 7, we conclude the paper.

2. Related work

In this section, we describe related work in (a) scheduling and
(b) grid computing, and contrast these approaches with our
approach.

2.1. Scheduling

One pertinent research stream is scheduling, or the allocation of
limited resources to optimize certain objective functions, such as
on-time delivery of jobs (for a detailed treatment of the scheduling
literature, see (Lee et al., 1997; Herroelen et al., 1998; Mokotoff,
2001; Cai and Zhou, 1999)). Recent developments in scheduling
theory (Chen and Vairaktarakis, 2005) focus on more practical con-
straints, most of which are A/P-hard and demand the heuristic
methods that have been the focus of attention for the past decade.
Resource-constrained project scheduling refers to the scheduling
of activities subject to precedence and resource constraints. The
scheduling problem as related to production planning (Pochet
and Vyve, 2004; Vollmann et al., 2004) also appears to be relevant.

There are, however, several major differences between the
scheduling and planning research areas and the virtualization
problem we are studying. We describe these below.

First, in most scheduling problems, each job has a well-defined
start and end time, unlike in a virtualized application environment
where applications run continuously under varying demand condi-
tions. Requests arrive in a stream, and the processing time required
to service a given request in the stream is not known a priori.

Second, production planning work considers labor and equip-
ment as fixed costs. In IT environments, however, labor is often a
direct cost for the purposes of chargeback frameworks (McKinnon
and Kallman, 1987). For outsourced data centers, the hosting com-
pany assesses personnel-based charges based on the actual time
required to service/maintain resources. Further, IT hardware and
software resources become outdated quickly, and need to be refur-
bished or replaced every few years. In many cases, these resources
are not purchased, but leased. Thus, unlike traditional manufactur-
ing and production engineering, IT operational costs are not sunk
costs.

Third, unlike many existing scheduling scenarios, the parties
responsible for IT applications and the resources on which they
will run may be different. This leads to a situation where the each
application owner is responsible for the final cost of the applica-
tions they own, whereas it is the resource owners’ responsibility
to manage the cost of resources.

Finally, the heterogeneity of cost structure across various loca-
tions makes the middleware virtualization model complex. Unlike
other resource scheduling problems, where resources reside
together in a single location, a virtualized IT environment allows
resources from multiple locations to be combined to achieve the
desired demand of the application. This makes the modeling of
our problem unique.

While our problem requires specialized attention, as we dem-
onstrated above, there are several aspects of scheduling and
planning research that can inform our middleware virtualization
cost optimization problem.

In middleware virtualization, there is a cost to bind application
to resources (we will define this cost formally in Section 3). In this
respect, existing scheduling literature that considers setup costs,
such as Havill and Mao (2008) and Allahverdi et al. (2008), is rele-
vant. As demonstrated in Allahverdi et al. (2008), most of these
problems are NP-hard and require custom heuristics, which in-
forms our approach in this work.

In our middleware virtualization problem, quality of service
(QoS) is a concern - for example, applications must provide re-
sponse times within an agreed-to average response time. In Yao
et al. (2008), the authors model resource allocation in wireless net-
work by applying queuing theory. This is difficult to apply in an IT
scenario due to the systems-oriented nature of the problem. In our
model, we take a different approach by considering the application
demand for various types of resources, and treating response time
QoS as a constraint that must not be violated.

The online nature of the applications is a key aspect of the mid-
dleware virtualization resource allocation problem. In such a sce-
nario, any solution approach must run quickly (i.e., on the order
of seconds, not hours) so that it can run frequently to recognize
and respond to changes in demand. Some recent scheduling work,
such as Havill and Mao (2008), Ridouard et al. (2008), Averbakh
(2010) and Kumar et al. (2006), considers online scenarios, and is
therefore relevant. In these works, the authors propose heuristics
to address online scheduling problems. In this work, we follow
their lead, and develop heuristics for our own online problem.

Finally, some recent scheduling research (Polyakovsky and
M'’Hallah, 2009) takes an agent-based approach. Here, each agent
is responsible for solving a version of the scheduling problem that
maps to a portion of the whole problem. In the virtualization
domain, an agent-based approach might map to each application
owner making application binding decisions for owned applica-
tions. However, in industry, it is the data center manager who
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makes allocation decisions based on the states of all applications
and resources. Therefore, we take a centralized approach, where
all decisions are made with the support of the application place-
ment decision support module we propose in this paper, depicted
in Fig. 2.

2.2. Grid computing and server virtualization

Grid computing and server virtualization problems are similar
to middleware virtualization problems in that both problem areas
look to make resource allocation decisions. In this section, we con-
sider the similarities and differences between these areas in the
context of our virtualization problem.

The authors of Santos et al. (2002) propose a scheme to assign
resources to applications that is similar to our approach. However,
these authors do not consider the business costs associated with
running applications in a virtual data center, though these costs
represent a key decision-making factor for most businesses.
Rather, the authors assume that the network cost is the main com-
ponent of application performance in a virtualized system and pro-
vide optimal allocation recommendations of applications to
different parts of the network. However, given the glut of band-
width (gigabit-sized ethernets are common in IT data centers)
and declining prices of telecommunications infrastructures, net-
work costs are not as significant as other costs. In contrast to this
work, we focus on the dollar costs of maintaining and running
applications in multiple data centers.

IBM, as part of its Alphaworks project, proposes a scheme called
“Application Performance Evaluator and Resource Allocator” (IBM
Inc., 2006a), which uses a mean value analysis and queuing theory
approach based on performance metrics, such as CPU and disk uti-
lization, as a basis for allocation decision-making. This approach,
though innovative, does not consider important operational costs
in the decision process as we do in our approach.

In Wolski et al. (2001), the authors investigate the economics of
controlling resource allocation in a computational grid setting at a
macro level. They consider the overall market of grid computing
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and study its viability and stability. Others (Bapna et al., 2008;
Buyya et al., 2002) consider economic optimization models that
ensure fairness among buyers and sellers of computing time.

Much research (Abramson et al.,, 2000; Berman and Wolski,
1997; Litzkow et al., 1998; Shao et al., 2000) in the grid computing
literature postulates a resource selector service that can selects the
application-to-resource binding on the basis of an application’s
characteristics. The service assists the mapping of the application
workload to virtual machine resources and consists of three inter-
related steps: selection, configuration, and mapping. Only after a
mapping has been determined can the selector gauge whether
one selection is better than another. In our case, the cost of chang-
ing resource-to-application bindings precludes us from consider-
ing approaches where mappings are evaluated only after the
mapping has been tried.

Several authors (He et al., 2003; Liu et al., 2002; Min and
Maheswaran, 2002) have presented frameworks that pertain to re-
source selection and scheduling, but none considers the problem
from an optimization perspective where the goal is to minimize
costs while meeting performance requirements. In Kumar et al.
(2009), the authors describe scheduling computational jobs in grid
computing from an economic stand-point. In this scenario, the jobs
have a fixed start time and end time. In contrast, our research fo-
cuses on multiple resources required to run complex 24 x 7 enter-
prise applications. In our opinion, thus, the problem of resource
allocation in middleware virtualization from the operational cost
perspective has not been addressed in detail.

While the scheduling and grid/virtualization literature serves as
a strong starting point for addressing our middleware virtualiza-
tion problem, we cannot directly apply this work because the
assumptions underlying traditional scheduling work do not carry
over to the middleware context (as we describe above). In this
work, we develop an optimization model and heuristic that, while
based on existing work, will address the middleware context and
incorporate the particular variables that impact it.

Most work in virtualization optimization and, indeed in
scheduling in general, considers the technology in isolation of the
organizational context, e.g., in our problem scenario, without con-
sidering how organizational factors can impact the realization of
the economic benefits promised by virtualization. We present a
discussion of some of these factors in Section 1, where we discuss
how differing incentives across stakeholders and different operat-
ing models can confound the problem. While addressing all of
these factors is outside the scope of our work here, we note that
these and other factors represent a broad area of potential future
research for the Operations Research community. We intend to
pursue this line of inquiry in our future work.

3. Problem model

A typical middleware virtualization environment consists of a
set of resources servicing a set of applications, as depicted in
Fig. 2. Multiple types of resources may be available in such an envi-
ronment, such as Application Servers (AS), Message Servers (MS),
Database Servers (DB), and others. These resources are distributed
across various geographically separated data centers, as denoted
by the different locations in Fig. 2. A networked communication
channel connects these locations to facilitate communication be-
tween resources at different locations.

An Application Placement Decision Support (APDS) module
monitors activity in each data canter to help the data center man-
ager allocate resources to applications requiring those resources.
The goal of this paper is to describe a scheme that the APDS module
can use to provide data center managers with the information they
need to allocate resources to minimize total cost of ownership.
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To model the variation of the different costs over time effec-
tively, we segment the duration under consideration (e.g., a day
or half of a day) into several time periods, e.g., night, early morning,
morning, noon, afternoon, and evening (time can be segmented as
needed, depending on the variation of load in a particular data cen-
ter setting). We assume that the costs remain fairly constant with-
in a time period. This assumption is realistic because it represents
widely acceptable and applied practice for various data centers and
in the literature (Bapna et al., 2008; Ransbotham et al., 2010). We
also assume that the time periods are of equal length (i.e., if there
are six time periods in a 24-hour day, each time period represents
4 hours). We use T to denote the number of time periods and N to
denote the duration of each period.

Our model’s treatment of time, as described above, is generic,
and can be adapted for demand variation based on seasonality,
weekday/weekend loads, or other needs. Such an adaptation would
require domain-specific knowledge of expected load trends for
applications and data centers, which could be stored in a database
or flat file and retrieved by the model to segment time as appropri-
ate at runtime.

3.1. Resources

Resources are elements that are used by applications to run.
Resources can be defined at various levels. Fig. 1 defines a typical
resource stack. At the bottom of the resource layer is a set of
hardware, such as memory, CPU, and storage. An operating system
runs on the hardware to provide generic computing services. With-
in the operating system, various middleware software instances
(e.g., database server, web server, application server) provide gen-
eric application support services. Applications are deployed to
these middleware stacks at runtime. The application-to-resource
binding of interest in this work happens at these top two layers,
i.e., we are interested in binding applications to middleware stack
resources.

In this paper, we focus on these middleware runtime environ-
ments and refer them as resources. In our discussion, the cost of
these runtime environments includes the cost of underlying layers.
For example, the cost of a database server will include the cost of
the database server, the cost of the operating system where the
database server is running, and the cost of the hardware where
the operating system is running.

We consider only full allocation of a particular resource to an
application; we do not consider any partial allocation. For example,
if an application server is allocated to an application during a cer-
tain period, the application server is dedicated to that application
for that period-no other application will share the same resources
during the same period. Although the same resource can techni-
cally be shared by multiple applications at any time, there are
certain risks associated with this, e.g., the low-level resource
requirements (e.g., CPU usage) for one application may affect other
applications running on the same resource at the same time.
Therefore, large data centers typically isolate resources in terms
of application service. Thus, for our model, resources are time-
shared, but dedicated to at most one application at a given time
(Rackspace Hosting, Inc., 2010).

3.1.1. Resource cost

Although some may argue that IT resources are sunk costs,
recurring operating costs are often in excess of 80% of the IT bud-
get, far outweighing capital spending (Masiero, 2006; Acey, 2006).

For our model, we are interested in the costs associated with the
resources, the capacity of these resources, and communication
costs associated with communication between resources support-
ing an application virtualized across multiple locations.

The cost of a resource typically consists of two parts: capital
cost and operating cost. The capital cost includes the costs associ-
ated with leasing space, and leasing/interest payments. These costs
occur on a per-machine basis, e.g., when placing equipment in a
co-location facility, the cost is assessed on a per-server basis. We
denote f,; as the capital cost associated with the resource r at loca-
tion i. The operational cost for a resource represents the cost of
maintaining it. This cost includes the cost of power and the cost
for the operational staff involved, which is typically charged to
the application owner on a time and materials basis via a charge-
back system (McKinnon and Kallman, 1987). This cost varies by
geographical location.

Based on the above discussion, we denote the variable cost of a
single unit of resource r at location i at time t as ¢!; per unit time.

We assume that there are sufficient resources to handle all de-
mand. The model can be extended to handle resource-constrained
scenarios by incorporating a penalty constraint to ensure that
high-priority applications meet demand.

3.1.2. Resource capacity

A limited number of resources are available at each location,
and applications obviously cannot be allocated to more resources
than are available. We define this conflict as the maximum capac-
ity of a resource at a particular location. For instance, if a location
has twenty middleware stack instances, its capacity is 20. We use
C,; to denote the capacity of resource r at location i, i.e., the maxi-
mum number of instances of the resource available at a location.

In real scenarios, some resources may be partially available at
certain times, e.g., for maintenance. For the sake of our model,
we assume that the total capacity of a resource at a particular loca-
tion remains constant over time. The unavailability of a resource
(or the variance of the total capacity of a resource at a particular
location) can be modeled with a “ghost” application that requires
that resource.

We assume that resources in the data centers are homogeneous,
which enables the resources to be considered as a pool of re-
sources, any one of which can be bound to an application. This
binding decision is complex, because these data centers are geo-
graphically located at various locations, and the cost of resources
in each of these data centers varies by location.

It is possible to consider heterogenous resources, where each
resource type may have a different configuration (e.g., more
RAM, or less storage space) in different resource instances. This
would require that the model have access to the specific character-
istics of each resource, and an additional set of constraints to en-
sure that an application’s demand requirements do not exceed
the capacity of the resources where it will run.

3.1.3. Communication

The data centers are connected with a communication network.
The network is used to communicate across applications deployed
in multiple locations/data-centers. Typically the network is leased
line (like a T1 or T3 line), the cost of which is fixed over a month or
a year. Therefore, we do not include any representation of commu-
nication costs in our model. We further assume that the communi-
cation links between data centers have sufficient bandwidth to
handle traffic to and from the data center. We could extend our
model to handle constrained bandwidth with an additional con-
straint to ensure that the sum of expected data traffic for all appli-
cations running in a data center does not exceed the capacity of the
channel.

3.2. Applications

Applications exhibit various demand characteristics over time
that affect resource usage for the application. When demand
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decreases, some resources may be freed and reallocated to other
applications. However, when a resource is deallocated from one
application and allocated to another, a cost ensues. Typically, this
two-part de-and re-allocation cost involves human and/or tool
intervention to set up the new application-to-resource binding.

3.2.1. Cost of allocation/deallocation of applications to/from resources

The cost of deallocating a resource from an application refers to
the costs associated with unbinding the application from the re-
source. Similarly, the cost of allocating a resource to an application
refers to the costs associated with binding the application to the
resource.

Both allocation and deallocation costs consist of fixed and vari-
able components. Consider deallocation as an example. If an appli-
cation is using 100 application server instances, and the new
demand level requires only 50 instances, 50 instances can be freed.
Although various software tools provide assistance, human effort is
needed to interact with the software to actually deploy/undeploy
the application, and verify the outcome of the stop/start action.
The deallocation cost is the cost of the tool and human effort in-
volved in freeing 50 application server instances from the applica-
tion binding. A fixed amount of work must occur, regardless of how
many instances are deallocated, e.g., in undeploying the applica-
tion from the 50 application server instances. The variable cost de-
pends on how many instances are being deallocated, e.g., checking
each application server instance to ensure proper behavior after
the deallocation.

Based on this discussion, the deallocation cost of x units of re-
source r from application j can be given as o, + X, where, o; is
the fixed and p,;x is the variable part of the deallocation cost. Sim-
ilar to the variable operating cost, because personnel costs may
vary depending on the time and location at which the deallocation
occurs, we generalize the cost of deallocating x units of resource r
from an application j at time t and location i to be o; + ﬁﬁ,-jx.

The formulation for the allocation cost parameter is similar to
that of the deallocation cost. For example, allocating additional
application server instances to an application consists of a fixed
component (deploying the application to the new resources) and
a variable component (checking the newly allocated instances for
proper behavior after deployment). Considering both the fixed
and variable costs, the allocation cost of x units of resource r to
application j at time ¢ and location i is given as y;; + (Sﬁijx, where
7% is the fixed portion of the allocation cost and ¢; is the variable
part of the allocation cost. Note that allocation and deallocation
costs are expressed on a per-event basis in the model.

3.2.2. Application demand

Each application places a specific level of demand on different
types of resources, where demand represents the number of re-
sources required to meet Quality of Service (QoS) levels, e.g., as
specified in a service level agreement. For example, if an applica-
tion requires ten application servers and two database instances
in order to meet response-time service level requirements, the de-
mand for application server resources is 10 units, and the demand
for database server resources is 2 units.

We denote dfj as the demand of application j for resource r dur-
ing time period t. Because a given unit of a resource is allocated to a
single application at a given time, the amount of resource that can
be allocated or freed is an integer. Thus, our model requires a con-
straint to ensure that the demand for a resource type across all
applications at a particular location is less than or equal to the
maximum capacity of that resource at that location.

3.2.3. Budget of the application
In many enterprise scenarios, an application is owned by a spe-
cific department, which is responsible for bearing the cost of the

application. These costs are allocated to an application through
chargeback schemes (McKinnon and Kallman, 1987; Vanover,
2007; Pearlson and Saunders, 2006). A budget (B;) is allocated for
each individual application (j) by the application owner, and the
total cost of running the application must remain within that
budget.

The application owners are responsible for paying the usage
cost of the resource, which in our model includes: (a) the opera-
tional cost of usage across all resources and (b) the allocation
and deallocation cost for each such event. The capital cost of the re-
source is incurred by the resource owners irrespective of applica-
tions’ use of the resource. If a resource is not being utilized at all,
it can be taken out of service, thus saving the fixed dollar costs
for the space, lease payment, etc.

3.3. Decision problem at application placement controller

The decision problem for the APDS module can be stated as fol-
lows: Given a set of resources located at a set of locations and a set of
applications with a demand for resources and set budget levels, deter-
mine the resource-to-application binding in such a way that the total
cost of allocation of the various resources to applications is minimized
while demand and budget constraints from all applications are also
satisfied at all times.

We assume that the set of applications changes infrequently.
For example, in the credit card company’s data centers, applica-
tions are added, updated or removed relatively rarely (e.g., approx-
imately once a month), and only during very low usage periods,
e.g., very early in the morning.

3.4. Cost optimization model

In this section, we concentrate on the business goal of minimiz-
ing the dollar cost of running a set of applications in a virtual IT
environment with specific QoS expectations irrespective of de-
mand workload, budget constraints, and resource capacity con-
straints. Before delving into the details, we first provide a list of
the notation we use throughout the rest of the article.

Indices

r index for resources r=1,...,R

i index for locations i=1,...,I

j index for applications j=1,...,J

t index for time periods t=1,...,T

Parameters

dﬁj units of demand for resource r from application j in period t

fri capital cost for using resource r at location i for the dura-
tion of the period (cents)

VL operating cost of using resource r at location i in period t
(cents/second)

ocgij fixed cost for deallocating resource r at location i from
application j in period t (cents)

ﬁﬁij variable cost for deallocating one unit of resource r at loca-
tion i from application j in period t (cents)

yﬁij fixed cost for allocating capacity resource r at location i
from application j in period t (cents)

5;]» variable cost for allocating one unit of resource r at loca-
tion i from application j in period t (cents)

G number of units of resource r at location i

T number of time periods

N duration of time period

B; budget of application j for the duration of the period
(cents)

Xrij initial units of resource r at location i that is allocated to

application j
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Variables

Fﬁ,-j capacity of resource r at location i deallocated from appli-
cation j at the end of period ¢t

Aﬁu capacity of resource r at location i allocated to application j
at the beginning of period t

Wy =1 if F; > 0, and 0 otherwise

Vi =1if A§; > 0, and 0 otherwise

Y =1 if resource r at location i is ever used, and 0 otherwise

3.4.1. Minimum dollar cost model
Problem P models the cost optimization as an integer program.

Problem P
t—1
= min anY +Y v N(ZA”J > F +an>
rijt =1
37 (o Wiy By 9V + Ol (1)
rijt
subject to
t
Z <Xrlj + ZA ZF,—U> X Th vr? i7 t7 (2)
j 7=1
t t
=1 7=1
Z <er + ZA,,] ZF,,]> >dy, Vi, 4)
<er + ZAm ZF ) MyYe, Vrijt, (5)
Fiy < MfutWt vr,ij,t, (6)
Ay < Mf,ﬁv;], vr,ij,t, (7)
t-1
Xrif + ZA;["U - ZF M:}l][zf‘[ﬁ vrv i7j7 ta (8)
=1 7=1
t t—1
T
> v <ZArv‘ - ZFfiJ +"ﬂ'f‘)
it =1 =1
+y (oc Wi+ BriFri + V5 Vi + 5£UA;,> <B;, Vi 9)
rit
A;U,F;J > 0 & integers, Vr,ij,t, (10)
: ..
Y an, i €10,1},  vrijt, Vkel. (11)

My, M., M}, and My, are big-M coefficients to create relationships
between integer variables and corresponding binary variables.

The total dollar cost of running an application consists of (a) the
capital cost of using a resource, (b) the operational cost of using a
resource for an application, and (c) the costs of deallocating or allo-
cating a resource. The first term in the objective function is the cap-
ital cost associated with the use of resource r at location i, which
depends only on whether the resource at that location is used.
The second term is the operational cost associated with the use of
a particular resource at a location by an application, which depends
on the use of the resource by each application allocated to it. The
third term in the objective function captures the variable and fixed
cost of allocation and deallocating resources to/from applications.

Constraint (2) ensures that resource allocations never exceed
the available capacity for any time period. Constraint (3) ensures
that the amount deallocated from a resource is less than the
amount allocated to a resource. Constraint (4) ensures that the de-
mand of an application for a particular resource is always met.
Constraint (5) ensures that if a resource is allocated to an applica-
tion, the fixed cost for that resource (f;;) is assessed. Constraint set

(6) and (7) guarantees that if a resource is allocated or deallocated,
the appropriate variables to account for the fixed allocation-
deallocation costs are triggered. Constraint (9) restricts the cost
of an application owner to the budget of the application. Constraint
set (10) and (11) specifies the range of values for the decision
variables.

Finally, we note that it is possible to further tighten the big-M
coefficients; however, this is straightforward, and is left as an exer-
cise for the reader.

4. Solution approach

In this section, we consider how we might enable the APDS
module to use the model to support a data center manager’s
decision-making process. We first consider the complexity of our
model (discussed in Section 3) and show that it maps to the
fixed-charge transportation problem, an A’P-hard problem, making
a direct application of the model intractable. We then consider
recent work in developing heuristics for similar problems, and
show why these cannot be directly applied. Finally, we develop a
heuristic for our problem based on the Dynamic Slope Scaling
Procedure and show that our heuristic produces an allocation that
is close to optimal, with running times fast enough to support
interactive decision support.

We first show that the allocation problem described above is a
NP-hard problem.

Theorem 1. The minimum cost problem P is N'P-hard.

Proof. The proof is based on a reduction of the AP-hard fixed-
charge transportation problem,

min Y Y cix +fiyy
i
s.t. ZXU <S; Vl.
J
ZX,‘}‘ > D; vj,

O Xl] Myy VI7J~
v €{0,1}  Vij,

where i € {1,...,I} are indices for supply locations, j €({1,...,J} are
indices for demand locations, S; is the supply at location i, D; is
the demand at location j, ¢;; is the per-unit transportation cost from
i to j, f; is the fixed transportation cost from i to j, and M is a big
number. Given any case of this fixed-charge transportation prob-
lem, we can construct an instance of problem P with the following
restrictions:

o There is single period T=1;

e There is a single resource R=1;

e The cost parameters f1, =0}, = w = 51:] =0 for all i,j;

o The cost parameters y}; = f; and o;; = Gy for all i,j;

e The capacity Cy;=S;, and the demand d = D; for all i,j;

e The initial allocation x4;; = 0 and,

[ ] B] = 0, VJ.

In this case, the variables Y, Fj;;, and Wy; and the constraints 3,

6, 7, 9 can be eliminated; the resulting instance of P is equivalent
to the fixed-charge transportation instance. The construction is
polynomial, and the result then follows. O

Corollary 1.1. The minimum cost problem P is N'P-hard, even under
the following conditions: a single time period; one resource, infinite
budget for applications; the fixed cost of resource usage is zero; the
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application incurs only allocation cost, no de-allocation costs. The cor-
ollary follows from the details of the proof.

Even though we have shown above that our problem is AP-
hard, we attempted to solve it for small-to-medium problem sizes
using CPLEX 12.0 (ILOG, 2009) on a 2.2 GHz dual processor Win-
dows XP machine with 4 GB RAM. We found that it took on the or-
der of 30-60 minutes to obtain an optimal solution for a single
instance of a small problem size (number of locations = 5, number
of applications = 30, number of time periods = 4 and number of re-
sources = 4) in this environment. These running times are far too
long for an interactive decision support environment. We tried
problem sizes closer to expected real-world problem sizes (num-
ber of locations = 10, number of applications = 100, number of time
periods =6 and number of resources =6), but could not obtain
optimal solutions (we ran out of memory in the test environment).
Therefore, we consider alternate approaches and heuristics to solve
the problem.

The virtualization problem can be considered to be a multi-
stage fixed-charge network flow problem. Each stage of this
network flow denotes a time-period. In each time-period we have
several applications, represented by nodes. An arc from node i to
another node j denotes a resource is being deallocated from node
i and is being allocated to node j. There is a cost associated with
each arc that includes the fixed cost and variable cost of allocation
and deallocation as described before. The two popular approaches
to solving the fixed charge network flow problem are the Hybrid
approach proposed by Kim and Hooker (2002) and the Dynamic
Slope Scaling Procedure (DSSP) proposed by Kim and Pardalos
(1999).

The Hybrid approach (Kim and Hooker, 2002) takes about
32 hour to solve a problem size of 18 origin and 18 destination
nodes, which is very small compared to the problem size we are
addressing. A 100-application virtualization problem would have
100 origins and 100 destinations in a single time period. With mul-
tiple time periods and resources, the virtualization problem
becomes so complex that the Hybrid approach proposed in Kim
and Hooker (2002) cannot solve it, even in a few hours. This, too,
is too slow for interactive decision support.

While we can apply the broad DSSP approach to solve problem
P, some of the problem’s characteristics require modification to the
base DSSP approach to be able to develop solutions.

The original DSSP is motivated by an economic viewpoint (mar-
ginal concept) of the fixed cost. It approximates a solution for the
fixed charge network flow problem by solving successive LP prob-
lems with recursively updated objective functions, where fixed
costs are replaced by a variable cost. In each iteration, the fixed
cost is updated based on the LP result that effectively reflects the
current marginal variable cost and the fixed cost of the solution.
These LP problems can be solved efficiently since the set of con-
straints is not changed and all the binary variables from the mixed
integer formulation are removed. In this approach, solving a fixed-
charge problem can be interpreted as finding a break-even point
(level of activities) to justify the investment of fixed costs. Itera-
tions proceed until there is no further improvement, or until the
number of iterations reaches a preset maximum. At this point,
the linear approximation costs of the final solution correspond to
the true objective function.

Algorithm 1 is a modified version of DSSP designed to suit prob-
lem P. We describe the three main modifications to the base DSSP
logic below.

First, unlike many other multicommodity problems, the vari-
ables associated with variable cost, A and F, are integer variables.
Demand is also an integer variable. Therefore, we cannot use an
intermediate LP formulation in our modified DSSP approach to

solve the problem P (as is usually the case when applying DSSP).
Rather, we need an IP formulation - mDSSP (P), given below in
Expression (12).

Second, typical applications of the DSSP approach do not in-
clude cost functions within the constraint set. Expression (12) in
the IP mDSSP (P) is a modification to the budget constraint given
in Expression (9) to appropriately represent fixed costs. We solve
mDSSP (P) by iteratively applying relaxation and integer approxi-
mation to generate a near-optimal solution of DSSP (P). This ap-
pears in Algorithm 1 in lines 8-19 (in a typical DSSP approach,
this would be a simple LP).

Problem mDSSP(P)
Z(mDSSP(P)) = min  »_fiAy;
rijt

t -1
+ Z (vﬁ,-N (xn-,- + ZA;] - ZF%))
rijt =1 =1

+ Z ((Of/rgj + ﬁ;j)F;j + (/’rz + 5;}_)A£ﬁ) (12)

rijt

subject to
t t—1
S (3 - 55 )
rit =1 =1
+ 3 (o + BigFrg + O + 05)A) < B, V] (13)

rit

and (2)-(5), (8), (10), (11).

Third, the solution approach using an IP formulation includes
the possibility that intermediate problems may become infeasible.
Algorithm 1 includes verification logic (lines 21 and 39) to check
for this condition and ensure that processing proceeds.

Algorithm 1. (Modified DSSP).

1: Initialize fixed costs

7 fri fooglt “:u
L S AR I SR A

rirSj

L,V iLg;
/ Vri P
L SR e ALY
2: Set DSSP_Iteration_Counter := max_dssp_iterations
3: Set UpperBound := +INFINITY
4: set LowerBound := —INFINITY
5: while DSSP_Iteration_Counter > 0 do
6: Set DSSP_Iteration_Counter := DSSP_Iteration_Ccounter — 1
7: Set IP_Iteration_Counter := max_ip_iterations
8: while IP_Iteration_Counter > 0 do
9: Set IP_Iteration_Counter := IP_Iteration_Counter — 1
10:

Solve integer relaxation solution of problem
mDSSP(P)
11: if Integer relax solution available then
12: for vr,i,j,t do
13: if (ceil (Afy) — Aty < 0.15) Fix Ay = ceil Ay )
14: if (ceil (Fiy) — Fiy < 0.15) Fix Fyy := ceil (Fiy)
15: if (A7 — floor (A;) < 0.15) Fix Ay = floor(Afy)
16: if (Fiy — floor (Fiy) < 0.15) Fix Fiy i floor(Fiy)
17: end for
18: end if

19: end while
20: Solve the problem mDSSP(P)
21: if integer solution available then

(continued on next page)
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Algorithm 1. (Modified DSSP).

22: currentUB is set to the solved value of
mDSSP(P)

23: if currentUB < UpperBound then

24: Set UpperBound := currentUB

25: Mark the current solution as the Upper-

Bound solution of the problem DSSP(P)
26: end if
27: for vr,ij,t do

28: if (A > 0) Fix Vi =1 else Fix Vi := 0

29: if (Fij > 0) Pix Wiy =1 else Fix Wy := 0

30: end for

31: for vr,i do

32: if Yo% + YogAr + > qFr; > O then

33: Fix Y,i:=1

34: else

35: Fix Y,;:=0

36: end if

37: end for

38: Solve integer relaxation of the problem P

39: if LP solution available for problem P then

40: currentLB is set to the solved value of the LP
relaxation ofP.

41: if currentLB > LowerBound then

42: Set LowerBound := currentLB

43: end if

44: end if

45: end if

46: Update the fixed cost values

rij

i if Y AL >0
jt

To test the effectiveness of our solution procedures, we ran
our solution method with various parameter values. The param-
eter values were chosen on the basis of data collected while
working with the credit card company and other industries (a
major communication company, a major online retail company
and a virtualization company). These parameter values were also
justified by data provided by various reports on virtualization
implementations and case studies (Intel Inc., 2008; Aberdeen
Group, 2008).

In the situation of the credit card company, each application
uses several available resources, including database servers
(DB2), remote web services, security services, LDAP services, trans-
actional services (WebSphere MQ), application servers (Web-
Sphere), and storage systems. Instances of these resources are
located in multiple data centers in four locations (New Jersey,
Dallas, San Jose, and Atlanta). Each location has two physically sep-
arate data centers, for a total of eight data centers (locations in our
model). The number of applications the data centers run at any
particular point in time varies between 90 and 120. The application
demand variation over the course of a day can be segmented into
multiple time slots. This architecture is typical for large
enterprises.

To demonstrate the efficacy of the modified DSSP, we first ran a
set of experiments to demonstrate the effectiveness of our solution
procedure for small problems, where it is possible to obtain an
optimal solution, comparing the cost obtained by the Modified-
DSSP approach with that obtained by the optimal IP solution (using
CPLEX). We found that the average gap between the modified DSSP
case and the optimal IP case is below 0.3%. The average gap be-
tween modified DSSP case and the lower bound is below 4%. This
demonstrates that our modified DSSP approach generates a near-
optimal solution to the minimum cost problem.

Based on these results, we now show the effectiveness of our
solution procedure for large problems for which it was not possible

g .. ! ! - -
i =4 Michy vr,ij,t to obtain an optimal solution. We select problem sizes based on
0, otherwise realistic infrastructures, using two values for number of locations
f_ﬁ,j fF. >0 (8,10), two values for number of applications (80,100), two va}ues
OC;% ={ Fy ’ il vr,ij,t for number of resources (6,8) and two values for number of periods
0 otherwise (6,8), for a total of 16 cases. For each case, we generate 10 problem
~,r_,_ ~ instances by randomly selecting various parameters within ranges
" ﬁ, if Al >0 vr i determined by the data collected from the data center of the credit
N — -
Vri g ) L card company. The ranges are C; < [50,100], 2% € [3,8], f; €
0, otherwise. 19,24], ﬁﬁ,j €[3,8], 5;.1- € [3,8], o €19,24], y;; €[9,24], and Bje
47: end while (8000,9000].
Table 1
Model accuracy results.
# Locations # Applications # Resources # Period mDSSP Large size problems Staged approach
Avg % LP gap Time (second) Avg % LP gap Time (second)
8 80 6 6 29 28 24 2
8 80 6 8 24 29 25 2
8 80 8 6 29 27 23 2
8 80 8 8 2.8 28 24 2
8 100 6 6 2.7 29 25 2
8 100 6 8 3.1 29 27 2
8 100 8 6 32 29 27 2
8 100 8 8 29 27 26 2
10 80 6 6 33 30 27 3
10 80 6 8 3.2 30 28 4
10 80 8 6 3.1 31 28 3
10 80 8 8 2.8 30 28 3
10 100 6 6 3.1 38 29 4
10 100 6 8 34 38 30 4
10 100 8 6 35 37 30 4
10 100 8 8 33 38 29 4
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For such problem sizes, it is not feasible to obtain IP solutions
using CPLEX, so we compare the solutions from our modified DSSP
approach to that of the lower bound solution obtained by DSSP
(line 42 of Modified DSSP Algorithm), and present minimum, max-
imum, and average gaps between the solutions from these two ap-
proaches. Table 1 presents these results, along with the running
time for the Modified DSSP algorithm on a Pentium 2.1 GHz
processor.

The average gap lies below 3.1%, with a maximum gap of 4.4%
across all cases. Based on results from small problem sizes, we
anticipate that the larger gap percentage is mostly due to the larger
gap between the lower bound and IP solutions, i.e., we expect that
the modified DSSP algorithm produces near-optimal results for lar-
ger problem sizes. The average running time for the modified DSSP
algorithm is around 35 seconds for all problem instances. This en-
ables the Modified DSSP algorithm to be run more frequently. For
example, if the variation of load for an application is high, it is pos-
sible to have a larger number of stages of shorter duration.

5. Handling variation in load

The solution approach presented in Sections 3 and 4, like all
scheduling approaches of this type, assumes good knowledge of
expected workloads. Thus, its effectiveness depends on the accu-
racy with which the actual load matches historical load trends.
While application loads typically follow historical load trends in
general, unforseen peaks and shallows do occur. In this section,
we describe methods for handling such variation. We first present
two modifications of our model that can be applied periodically, as
needed, to determine resource allocations and run a set of experi-
ments to determine the cost implications of using this approach.
Second, we describe how this modification can be used along with
the original model approach for improved results, shown experi-
mentally. Finally, we develop a set of managerial insights based
these experiments.

5.1. Staged approach

Here, we take a staged approach. Instead of solving the model
for a long future duration based on predicted variation across mul-
tiple periods, we solve the model for a very short duration y, where
the value of y is selected in such a way that the demand can be ex-
pected to remain stable during the period. At the beginning of the
y-length period, we solve the model Z(P) with the number of time
periods T =1, and the duration of a time period N =y. Because we
do not know whether the demand will rise or fall at the end of
the y-length period, we consider either allocation or deallocation
at the beginning of period y. If the demand rises at the beginning
of y (compared with the previous period), we consider the cost of
allocating resources; if the demand falls at the beginning of y, we
consider the cost of deallocating resources at the beginning of per-
iod y. After each y-length period, the model is again solved for next
y-length period, and so on.

To judge the accuracy of the above approach, we compare the
solutions generated by the staged algorithm with the solutions ob-
tained by the Modified DSSP algorithm. We generate several prob-
lem instances by randomly selecting various parameters within
ranges determined by the data collected from the data center of
the credit card company. The ranges are G;¢[50,100], vj; €
3,8], fri€[9.24], B €3,8], 0 € 3,8, o € [9,24], yr; € (9,24,
and B; € [8000,9000]. In Table 1, we report the gaps between the
solutions obtained by staged approach and the Modified DSSP algo-
rithm, as well as the per-stage running time required for the staged
approach.

The result obtained by staged algorithm is within 20-30% of the
solution obtained by Modified DSSP algorithm. In terms of running

time, each run of the staged algorithm takes 2-4seconds, com-
pared to 35 seconds for the Modified DSSP algorithm for all stages.

Insight 1: In a pure staged approach, IT managers can expect to
incur 20-30% higher costs, as compared to near optimal costs in
the original model. These costs represent the costs associated with
not knowing the future load, and the associated some incorrect
allocation/deallocation decisions.

5.2. Mixed approach

In the mixed approach, we superimpose the staged approach on
the Modified DSSP approach to balance the near optimality avail-
able using historical load trends and the need to handle unforseen
demand. In this approach, the system derives an initial solution
based on historical load. While running, if the actual load of a sub-
set of the full application set deviates from the historical load, we
solve the problem Z(P) for that subset of applications only. In mod-
eling Z(P) for that subset of applications, we follow the staged ap-
proach described in Section 5.1. The value of N =y is chosen based
on expected duration of the peak or shallow. In this case, problem
Z(P) needs to be solved only for those applications whose load var-
ies from predicted levels and number of time periods T =1, which
results in a reduction of the solution generation time for Z(P) to
single-digit seconds. When the load of the application returns to
the historical load, the predetermined allocation is followed.

Such an approach has two main advantages. First, since applica-
tion demand tends to follow historical trends in general, it is unli-
kely that all applications will deviate greatly at the same time.
Based on this, the runtime instance of Z(P) is much smaller than
the instance of Z(P) that needs to be solved to determine the allo-
cation scheme for the entire application set for several time peri-
ods. This results in lower running times. Second, the dynamic
part of the approach focuses only on the application(s) where the
actual demand varies from the predicted value, rather than on
the full set of applications, thus accommodating any variation in
actual load values from the historical trend with minimal overall
deviation from the pre-determined allocation scheme.

To demonstrate the accuracy of the mixed approach, we gener-
ate several instances of the model. Each instance has six time peri-
ods, number of locations = 10, number of applications = 100 and
number of resources = 8. For each combination of number of loca-
tions and number of applications (25 combinations), we generate
three instances, for a total of 75 problem instances.

First, we solve the base model to pre-determine the allocation
scheme based on expected demand values based on historical
trends. Next, at runtime we introduce variations in actual load
for a percentage of applications, and apply the staged approach
and mixed approach to determine the actual cost incurred by the
system due to these two approaches, respectively.

We introduce these load variations using two parameters theta
and Theta. We use theta to introduce small variations in load to
model stable, but not constant, load over a period of time. We
use Theta to introduce major changes in load that occur at the start
of a new period of stability. Every y seconds, we vary the load of
each application by *theta or +Theta (with appropriate safeguards
in place to prevent negative workloads). The frequency of selecting
Theta-sized load changes models the variability of load against his-
torical trends. As a baseline, we start with Theta changes that
match expected loads based on historical trends. We then vary
the frequency of introducing Theta changes by selecting a change
period z, where z is the number of seconds until the next Theta
change. We set z based on a variability parameter w, where large
values of w indicate high variability (frequent load changes), and
small values of w indicate more stable workloads, i.e., less frequent
load changes. We choose z from a normal distribution with a mean
of Njw.
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By tracking the variations that occur in each problem instance
while running, we can use the actual load values to develop a
near-optimal solution for comparison purposes (using the actual
loads as the historically-expected loads in the model). This allows
us to model and compute the near optimal cost for the actual load
scenarios after the fact, for comparison purposes, despite the fact
that the reliance on historical loads becomes untenable when loads
vary widely.

We compute the percentage gap for the staged approach and
the mixed approach with respect to the near-optimal solution from
the model. In Table 2, we report these two gaps (averaged), along
with the percentage of applications for which the actual load varies
from the historical load, and the average deviation of the actual
load from the historical load for these applications.

The percentage gap of the staged approach does not vary with
the percentage application for which actual load differs from the
predicted load, or the average deviation of the actual load from his-
torical load. This gap lies between 20% and 30%, the same range
seen in Table 1. Clearly, the amount of deviation from the histori-
cally predicted load value does not impact the staged approach.

The gap between the solution obtained by the mixed approach
and the near-optimal solution increases with both the percentage
of applications that deviate and the average deviation. As the per-
centage of applications that deviate from predicted load increases,
the gap increases. Similarly, as average load values deviate further
and further from predicted values, the gap increases. The maxi-
mum gap of about 17% occurs when 50% of applications deviate
from predicted load by an average of 50% from the predicted load
value. In moderate cases, e.g., when 30% of applications deviate
from predicted values, with an average deviation of about 30%,
the gap is just 7%. When the actual load of only 10% of applications
vary from the predicted load with average deviation of just 10%,
the gap between the mixed approach and the near optimal ap-
proach from the model is 2%.

Insight 2: At moderate and low variations of the actual load
from the predicted historical load, the mixed approach will incur
about 6% higher costs than the near optimal cost found by the
model on average. At higher variations, the advantage of using
the mixed approach decreases because the effort of taking histori-

Table 2
Accuracy for the mixed approach.

Percentage Average Avg % gap of staged  Avg % gap of mixed
applications deviation approach approach
10 10 23 2
10 20 22 3
10 30 27 3
10 40 22 5
10 50 22 7
20 10 25 2
20 20 26 4
20 30 28 5
20 40 29 9
20 50 28 9
30 10 27 2
30 20 21 6
30 30 22 7
30 40 30 10
30 50 29 12
40 10 21 3
40 20 25 8
40 30 22 9
40 40 21 11
40 50 22 13
50 10 27 4
50 20 21 7
50 30 22 12
50 40 27 12
50 50 28 17

cal trends into account is wasted, and associated cost implications
approach those of the staged approach. For dynamic applications,
there is no point in comparing the actual load with the historical
trend. Here, the staged approach can be used, incurring 25-30%
higher costs, as compared to the near optimal cost. IT managers
can use Table 2 as a reference to decide which scheme to use for
resource allocation decision.

6. Effect of variation in parameters

In this section, we describe the effect of various parameters for
resources and applications in the system in order to develop a set
of managerial insights to help managers understand the cost impli-
cations of virtualization technology.

To draw some meaningful insights, we look at the cost implica-
tions from the perspective of both the data center manager and the
application owner. We try to understand the implications on the to-
tal cost value if parameter values controlled by the data center
manager and the application owner are modified. Allocation-
deallocation cost, operational and capital expenditure costs are con-
trolled by data center manager, while budget and demand (and the
effect of QoS constraints) for various resources for an application is
controlled by the application owner. Though we ran a variety of
experiments, we report only those that show interesting results.

For all experiments, we ran the modified DSSP using a baseline
set of parameter values: C; € [500-800], 2, € [6—11], f;; € [30—55],
By € 6—11], 6y € [6—11], otfy; € [30—-55],9%; € [30—55],B; € [10000
—15000] and dﬁj € [5—10] with number of locations = 10, number
of applications = 100, number of resources = 8 and number of peri-
ods = 8. These baseline values are somewhat higher than the corre-
sponding values used to compare the historical, staged, and mixed
models in Sections 4 and 5 in order to magnify the effects of vary-
ing parameter values. In each experimental description, we specify
variations from these baseline values. To report results within a
single graph in a concise manner, we normalize result values be-
tween the range [0,1].

6.1. Data center manager: effect of allocation-deallocation cost

We present the results of two experiments. In the first, we vary
ranges for the allocation-deallocation cost of all resources. In the
second, we vary the allocation-deallocation cost of a single
resource.

In the first experiment, the range for the variable allocation-
deallocation cost is varied from [0-10] to [400-410], and the ratio
of fixed allocation-deallocation cost to variable allocation-deallo-
cation cost is kept constant at 5. For each range of variable alloca-
tion-deallocation cost, we generate five problem instances and
compute the average total cost (“Total Cost”), where the total cost
refers to the objective function from the model, and the total num-
ber of allocations/deallocations (“#Alloc-Dealloc”) across all prob-
lem instances. Because the ratio of fixed allocation-deallocation
cost to variable allocation-deallocation cost is kept constant at 5
throughout all experiments, the increased variable allocation-
deallocation cost will result in an overall increase in allocation-
deallocation cost.

The results appear in Fig. 3. As the allocation-deallocation cost
is increased, the number of allocations/deallocations decreases and
the total cost increases. When the variable allocation-deallocation
cost is in the range of [250-260], the number of allocations/deallo-
cations reduces to the minimum value. Beyond this range, further
increases in allocation-deallocation cost result in increased total
cost; however, no allocation changes occur. At this point, alloca-
tions/deallocations occur to sustain the application demand for re-
sources, not to reduce the total cost.
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Fig. 3. Effects of allocation/deallocation cost.

In the second experiment, the variable allocation-deallocation
cost for a single resource is increased from [0-10] to [60-70],
and the ratio of fixed allocation/deallocation cost to variable allo-
cation-deallocation cost is kept constant at 5. In Fig. 4, we plot
how the cost associated with the resource (“Resource Cost”) and
the number of allocations/deallocations for that resource (“#Al-
loc-Dealloc”) vary with the variable allocation-deallocation cost
of the resource.

As the variable allocation-deallocation cost of the resource in-
creases, the number of resource allocation-deallocation events de-
creases and reaches a minimum value, whereas the cost associated
with the resource increases along with the allocation-deallocation
cost.

At very high alllocation/deallocation costs, an allocation/deallo-
cation event (if any) occurs only to support the application’s re-
source demand, not to decrease the data center’s cost. If a
technology requires significant human interaction, and thus has a
sizable allocation/deallocation cost, the cost savings from the
deployment of virtualization technology may be nullified by the
additional cost of maintaining it. IT managers can use this model
to predict the total cost and determine the applicability of virtual-
ization technology in their data centers from a cost perspective.
We summarize the two boundary conditions of the allocation/deal-
location costs as follows.

Insight 3: If the allocation and deallocation costs are high, the
resource-to-application allocation remains unchanged unless there
is a change in demand or other constraints on the resources.

This demonstrates the current scenario in most organizations,
where virtualization technology is not used. Here, resources are
allocated on the basis of peak demand and the application-to-
resource binding is so tight that allocation changes are expensive.
In these scenarios, unless the peak demand requires additional
hardware or resources, the bindings are not altered. With middle-
ware virtualization technology, however, deallocation and alloca-
tion are less expensive. This encourages the dynamic allocation
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Fig. 4. Effects of allocation/deallocation cost for a single resource.

and deallocation of resources, enabling companies to minimize
the total infrastructure costs so that more applications can run
on fewer resources.

Insight 4: If the allocation/deallocation cost is 0, the model be-
comes a resource allocation problem that can be solved dynami-
cally within seconds, enabling integration with tools so that
resources are automatically allocated to or deallocated from
applications.

In an ideal virtualized environment, there are no costs associ-
ated with allocation and deallocation, and allocation and dealloca-
tion events take place purely based on the needs of the systems
(similar to dynamic memory allocation schemes in modern operat-
ing systems). Present-day technology can reduce costs enough to
make dynamic allocation and deallocation economically desirable,
but not to reduce these costs to 0.

6.2. Application owner: effect of demand

In this experiment, we demonstrate how the demand for vari-
ous resources by a single application j = 1, changes the application
cost. We vary the demand of application j = 1 for various resources,

ﬁr Demand values are selected from a set of ranges from [3-6] to
[27-30]. For each of these ranges for d.,, we generate five problem
instances and compute the average of number of allocations/deal-
locations for the application (“#Alloc-Dealloc”), the cost of the
application (“Application Cost”), and the cost of the application
per unit resource (“Application Cost per Resource Unit”). We plot
these against the ranges for d', in Fig. 5.

The cost of the application and the number of allocations/deal-
locations both increase almost linearly with the demand of the
application. However, it is interesting to consider the variation of
application cost per resource unit. Initially, until the range
[15-18], the application cost per resource unit decreases due to in-
creased utilization of resources, which reduces fixed costs per re-
source. However, as demand increases, the application is forced
to acquire comparatively costly resources for running the applica-
tion, resulting in increasing application cost per resource. Beyond
the range [15-18], further increases in the application demand,
using more costly resources, negate the decreases in cost related
to improved utilization. This results in increased application cost
per resource unit along with the demand from range [15-18] to
[27-30].

Insight 5: As an application begins to make use of more expen-
sive resources at higher demand levels, the fixed-cost savings ac-
crued by improving the utilization of resources can be negated
by the cost of using expensive resources.

6.3. Application owner: effect of budget

In this section, we vary the budget (B;) of a single application
j=1 in the range B; € [5000 — 10000]. For each value of B;, we
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Fig. 5. Effect of demand for a single application.
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Fig. 6. Effect of budget for a single resource.

generate 5 problem instances and compute the average total cost
(“Total Cost”), the number of allocations/deallocations (“#Alloc—
Dealloc”) and the application cost (“Application Cost”), i.e., the
objective cost produced by the model. We plot the results in
Fig. 6, showing the small range of budget values where variation
occurs. As the budget of a single application increases, the total
cost and the number of allocations/deallocations of the application
decreases, while the cost of that particular application increases.
This occurs because the application is moved to costlier resources
while still remaining within the budget, while other applications
are allowed to use less expensive resources. This will result in in-
creased application cost for the single application, while the total
cost of the system decreases. Effectively, the additional budget dol-
lars allocated to the single application provide no benefit to that
application; rather, they are used to reduce the costs of other appli-
cations and thus the overall cost of the system.

Insight 6: In situations where an IT manager is responsible for
all application costs, the IT manager should allocate higher budgets
for all applications - this will reduce the total cost of the system, as
the model produces a cost-optimal allocation for the overall sys-
tem. However, in situations where each application’s budget is
set and paid by an individual application owner, the application
owner should be careful not set too high a budget - this will allow
the cost of the application to increase with no incremental benefit
to that application. Rather, the additional budget will be used to
optimize the total cost of the system by reducing the expense in-
curred by other applications.

7. Summary and conclusions

In this paper, we developed a model to minimize the cost of
running applications in an middleware virtualization framework
for IT data centers. We modified the existing Dynamic Slope Scal-
ing Procedure using historical load trends as a guide to future loads
to develop an efficient solution technique for our model. We dem-
onstrated the accuracy of our solution approach. To counter unfor-
seen load we developed a staged approach, where resources are
allocated based on observed actual loads. We demonstrated that
the staged approach will result in about 20-30% higher costs than
the near-optimal result. To combine the benefits of both the staged
approach and the historical load based approach, we developed a
mixed approach, and demonstrated that the mixed approach re-
sults in total cost within 7% of the near-optimal cost at moderate
deviations from historical loads. In a set of sensitivity experiments,
we show the impact of variation in allocation/deallocation costs,
demand, and budget. Further, we include with our results a series
of managerial insights that managers can use to decide which ap-
proach to use for resource allocations in a virtualized environment,
including situations where the choice may vary based on stake-
holder incentives.

Our work here is focused on the middleware virtualization con-
text, and takes a first step toward incorporating operational factors
such as salary, power, and variations across locations that are not
traditionally considered in scheduling work. We further suggest
that incorporating such factors in scheduling models represents a
broad avenue for future research for the Operations Research com-
munity in general. We intend to continue pursuing this area of re-
search in future work.
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