Bayesian Data Analytics for Reliability Modeling Improvement

Mingyang Li

Department of Industrial and Management Systems Engineering
University of South Florida

Jan 26st, 2018

DSSI Laboratory

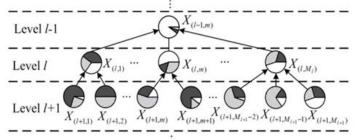
Industrial and Management Systems Engineering

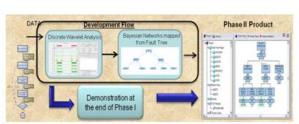
Mingyang Li, Ph.D. Assistant professor: Dept. of Industrial and Management Systems Engineering (IMSE) Director: Data Science and System Informatics (DSSI) laboratory mingyangli@usf.edu

Some of Current and Former Team Members in DSSI Lab at Dept. of IMSE:

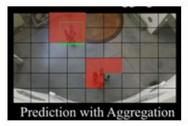
Research Expertise and Highlights:

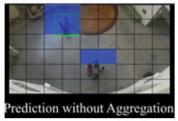
Multi-level Data Integration and Analytics for Mission Critical System Reliability Assessment, Testing, Diagnosis, Prognosis and Real-Time Health Management.

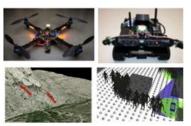




Multi-fidelity Data Integration and Analytics for Crowd Surveillance Improvement.







Various Data Science and System Informatics Methods Development and Diverse Applications.

Quality & Reliability Healthcare

HVAC

Wind energy

Water

Outline

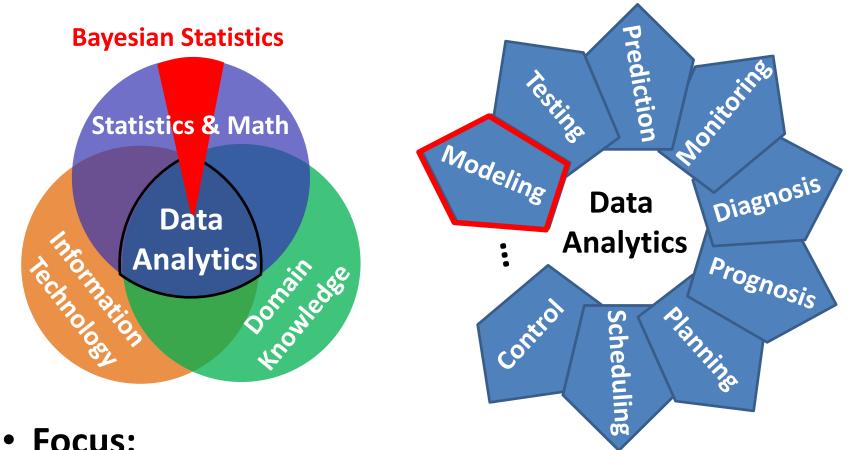
Background

Part I - Multi-level Data Fusion

Part II - Heterogeneous Data Quantification

Summary

Data Analytics



Focus:

Bayesian Data Analytics for Reliability Modeling Improvement

Key Word: Bayesian

Parameter Learning

Classic Statistics

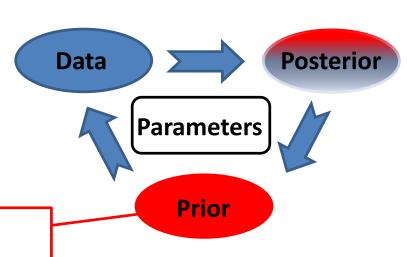
Parameters

Limited Data or No Data

- External data sources
- Domain knowledge
- Non-informative prior

•••••

Bayesian Statistics



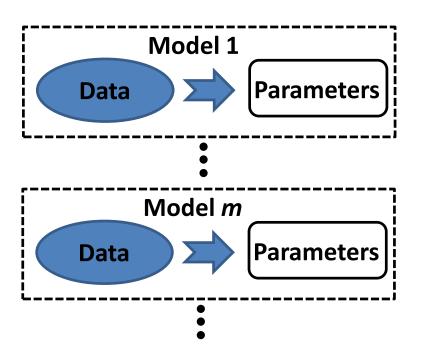
Flexible & Coherent

Methodology I: Multi-level Data Fusion

Key Word: Bayesian (Cont'd)

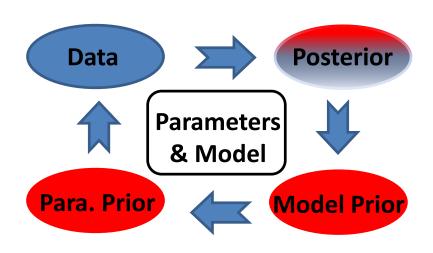
Model Learning

Classic Statistics



- Underfitting/Overfitting
- Inefficient

Bayesian Statistics



Efficient & Effective

Methodology II: Heterogeneity Quantification

Key Word: Reliability Modeling

Reliability: product quality over time^[1]

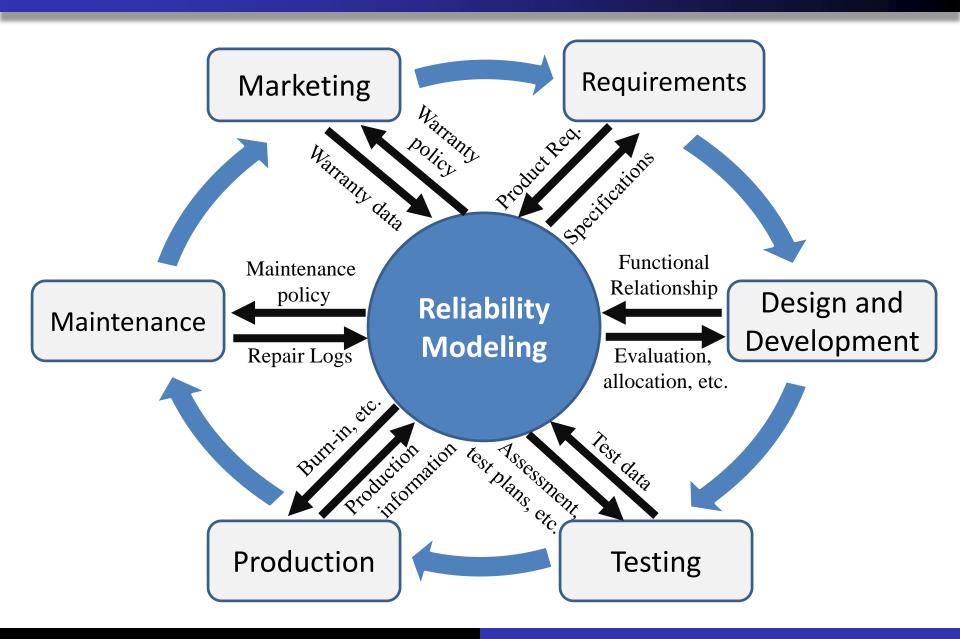
Reliability modeling

- Data Feature
 - Non-negative and asymmetric
- Censoring

Covariates

Others: availability, heterogeneity, etc.

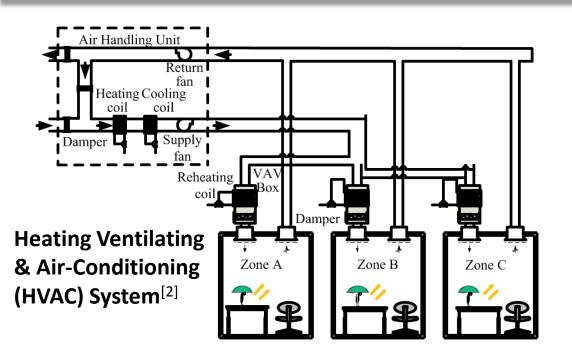
Lifecycle View of Reliability Modeling

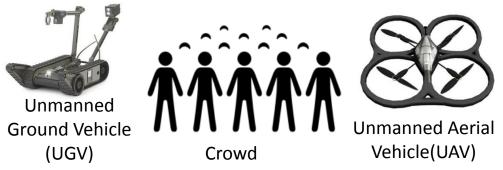


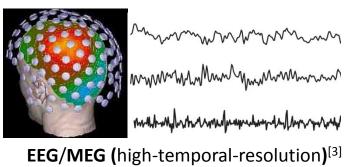
Part I - Multi-level Data Fusion:

Bayesian Multi-level Information Aggregation for Hierarchical Systems Reliability Modeling Improvement

Vision







EEG/MEG (nign-temporal-resolution)

fMRI (high-spatial-resolution)^[3]

Data-rich Environment: Data Fusion

Brain

Focus: System Reliability

Performance index: system reliability

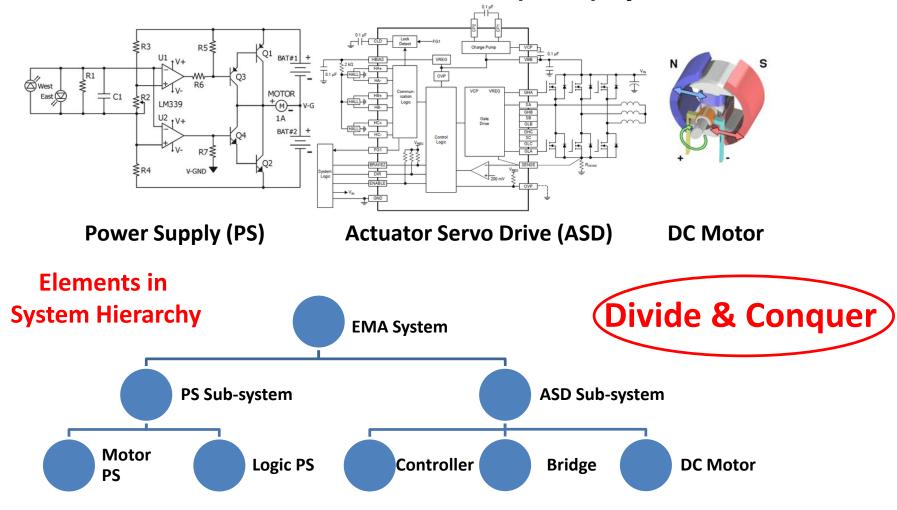
Modeling Challenges:

- Expensive system-level tests
- Scarce/absent engineering knowledge
- Complex failure relationship
- High requirement on reliability assessment

Improve system-level reliability modeling by utilizing all reliability information throughout the system in a systematic and coherent manner.

Opportunity I: Hierarchical System Structure

Electro-Mechanical-Actuator (EMA) System

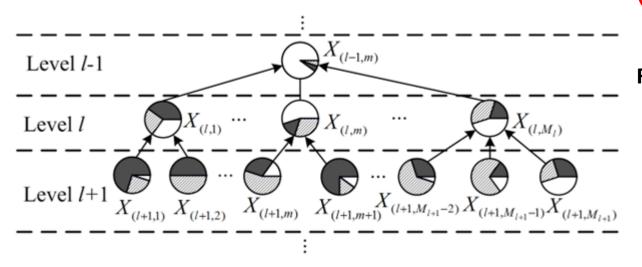


Opportunity II: Multi-source Multi-level Data

• Multi-source reliability information: prior knowledge (e.g., domain knowledge, historical studies, etc.) + ongoing reliability test data.

Elements	Prior knowledge	Reliability Test Data
Lower-level	Familiar	(1) Abundant (2) Limited but easy to collect
Upper-level	Unfamiliar or unknown	(1) Absent (2) Limited and/or expensive/hard to collect

Multi-level information imbalance



Reliability Information:

- Prior knowledge
- Reliability test data
- Absent information

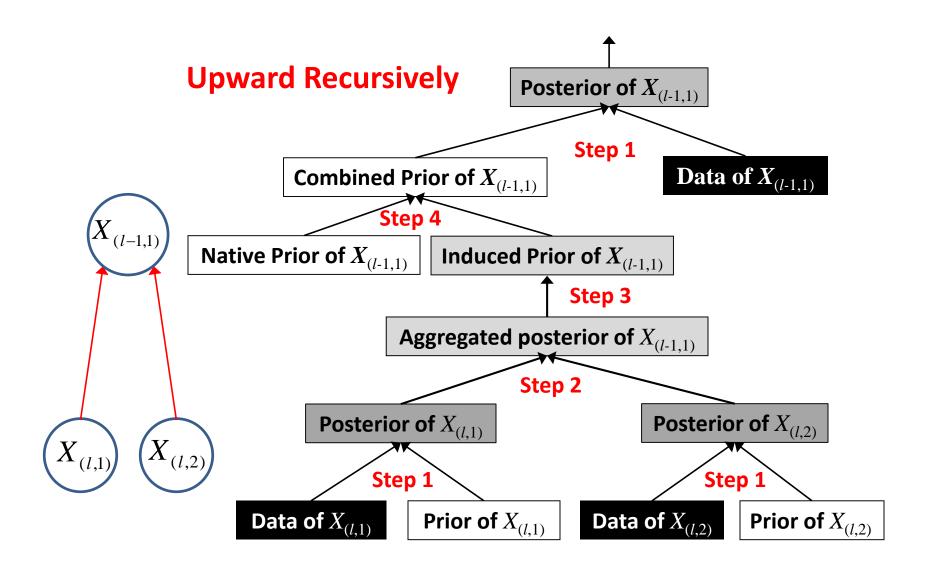
State of the Art

Methodology Summary		System Reliability Modeling		
		Parametric methods	Semi-parametric/non- parametric methods	
Multi-level information aggregation	No	Ramamoorty ^[5] , Camarda <i>et al</i> . ^[6] , Cui <i>et al</i> . ^[7] , Hoyland and Rausand ^[8] , Coit ^[9] , Jin and Coit ^[10] , Martz and Walker ^[11] , Hamada <i>et al</i> . ^[12] , etc.	Klein and Moeschberger ^[13] , Meeker and Escobar (Chapter 3) ^[14] , Ibrahim <i>et al</i> . ^[15]	
	Yes	Martz <i>et al</i> . ^[16] , Martz and Walker ^[17] , Hulting and Robinson ^[18]	To be presented	

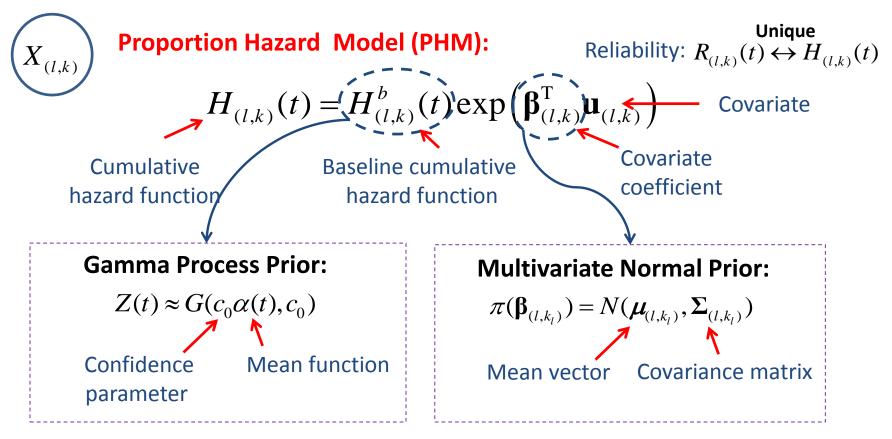
Features of the proposed model:

- Failure-time data with covariates and censoring
- Semi-parametric modeling
- Information aggregation from lower levels

Overview of the Proposed Work



Modeling of Individual Element



Baseline cumulative hazard increments:

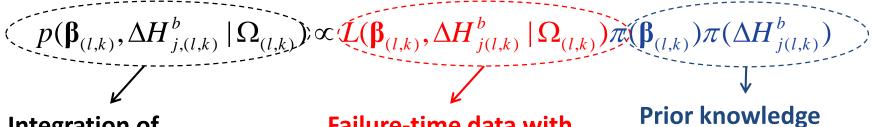
$$\Delta H^b_{j,(l,k)} \sim Gamma(c_0(\alpha(s_j) - \alpha(s_{j-1})), c_0)$$

Carry information for aggregation

Aggregation Procedure: Step 1

Step 1 – Compute the posterior (lower-level element):

Joint Posterior \propto Likelihoods \times Joint Priors:

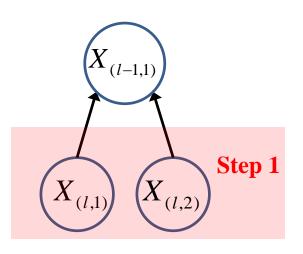


Integration of data and prior

Failure-time data with covariates and censoring

 t_n : the actual failure time stamp of test unit n

Bayesian PHM integrates the reliability prior knowledge and failure data



Aggregation Procedure: Failure Relationship

Failure relationship between two levels:

General Relationships

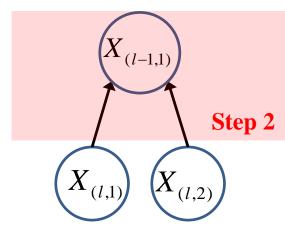
Reliability functions:

$$R_{(l-1,k)}(t) = f(R_{(l,\kappa)}(t)), \ \kappa \in \mathbf{Q}_{(l-1,k)}$$

$${}^{A}\Delta H_{j,(l-1,k)}^{b} = g(\Delta H_{j,(l,\kappa)}^{b}), \ \kappa \in \mathbf{Q}_{(l-1,k)}$$

Baseline cumulative hazard increments:

$${}^{A}\Delta H_{j,(l-1,k)}^{b} = g(\Delta H_{j,(l,\kappa)}^{b}), \ \kappa \in \mathbf{Q}_{(l-1,k)}$$



Example: Series configuration

Aggregated
$$^{A}R_{(l-1,1)}(t) = R_{(l,1)}(t)R_{(l,2)}(t)$$

$$^{A}\Delta H^{b}_{j(l-1,1)}(t) = \Delta H^{b}_{j(l,1)}(t) + \Delta H^{b}_{j(l,2)}(t)$$

Information is aggregated through ΔH_i^b based on failure relationships

Aggregation Procedure: Steps 2-3

• **Step 2** - Aggregate the posterior:

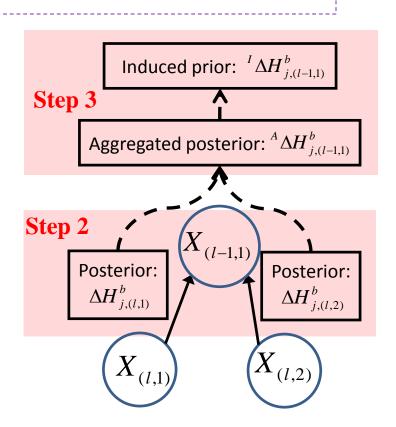
Aggregated posterior:
$${}^{A}\Delta H^{b}_{j,(l-1,1)} = g(\Delta H^{b}_{j,(l,\kappa)}), \ \kappa = 1,2$$

Step 3 - Approximate the induced prior:

Induced prior:
$${}^{I}\Delta H^{b}_{j,(l-1,1)} \leftarrow {}^{A}\Delta H^{b}_{j,(l-1,1)}$$

$${}^{I}\Delta H^{b}_{j,(l-1,1)} \sim Gamma({}^{I}\eta_{j,(l-1,1)}, {}^{I}\lambda_{j,(l-1,1)})$$

(Validate by K-S goodness fitness test)



Aggregation Procedure: Step 4

• **Step 4** – Combine the native prior and the induced prior:

Combined prior:
$${}^{C}\Delta H^{b}_{j,(l-1,1)} \sim Gamma({}^{C}\eta_{j,(l-1,1)}, {}^{C}\lambda_{j,(l-1,1)})$$

$${}^{C}\eta_{j,(l-1,1)} = w^{I}\eta_{j,(l-1,1)} + (1-w)^{N}\eta_{j,(l-1,1)}$$

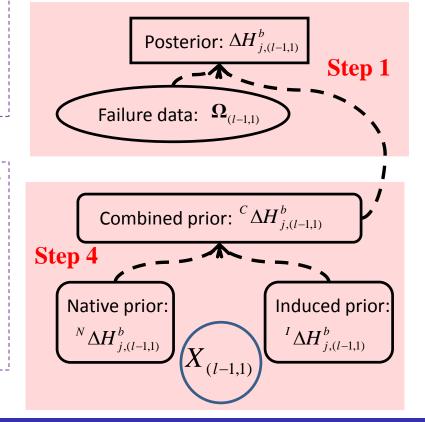
$$^{C}\lambda_{j,(l-1,1)} = w^{I}\lambda_{j,(l-1,1)} + (1-w)^{N}\lambda_{j,(l-1,1)}$$

w: balance native prior and induced prior

 Step 1 – Compute the posterior (higher-level element):

Similar Bayesian inference

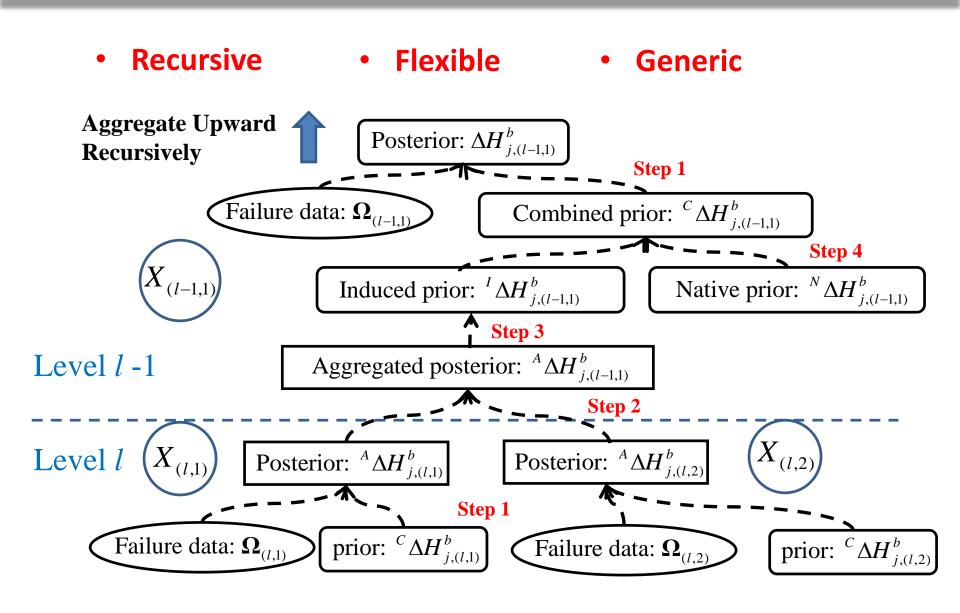
$$^{C}\Delta H^{b}_{j,(l-1,1)} \sim Gamma(^{C}\eta_{j,(l-1,1)}, ^{C}\lambda_{j,(l-1,1)})$$



M. Li

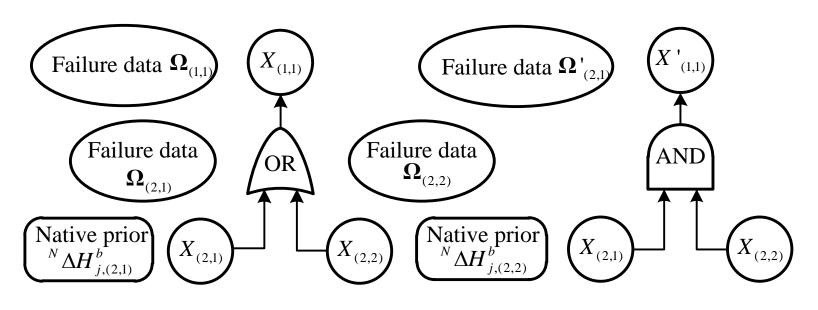
Weighting factor: $0 \le w \le 1$

Information Aggregation: Procedure Review



Numerical Case Study

- A two-level hierarchical system with 3 elements
- One covariate u is considered with binary values: 0/1
- Test data are simulated with 30 intervals



Series system

Parallel system

Information Aggregation

 Steps 1-2: Compute and aggregate the posteriors of components:

$${}^{A}\Delta H_{j,(l-1,k)}^{b} = g(\Delta H_{j,(l,\kappa)}^{b}), \ \kappa \in \mathbf{Q}_{(l-1,k)}$$

Step 3: Approximate the aggregated posteriors into the induced priors:

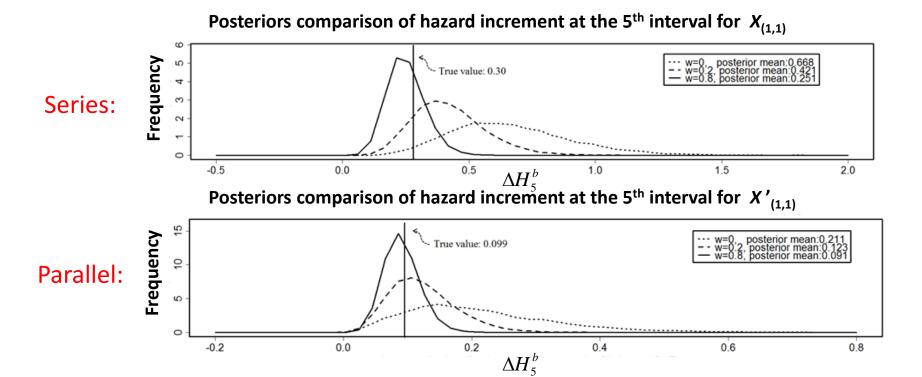
	Series structure			Parallel structure		
Variable	Shape parameter	Rate parameter	p-value of K-S test	Shape parameter	Rate parameter	p-value of K-S test
${}^{I}\Delta\!H_{\cdot,(2,1)}^{b}$	27.4611	107.8274	0.4829	7.7291	547.8775	0.6664
${}^{I}\Delta_{(1,1),(2,1)}^{H^{b}}$	26.7808	93.0126	0.5727	13.3783	309.2855	0.5727
${}^{I}\Delta H^{b}_{3,(2,1)}$	29.0416	69.9600	0.4489	17.9232	187.4683	0.5727
(1,1)	•••	•••		•••	•••	
${}^{I}\Delta \!$	2.8181	10.1614	0.4489	2.6652	19.7447	0.6852
$^{I}\Delta H^{b}_{30,(2,1)}$	2.7292	9.7480	0.9011	2.6277	19.2961	0.7410

Information Aggregation (Cont'd)

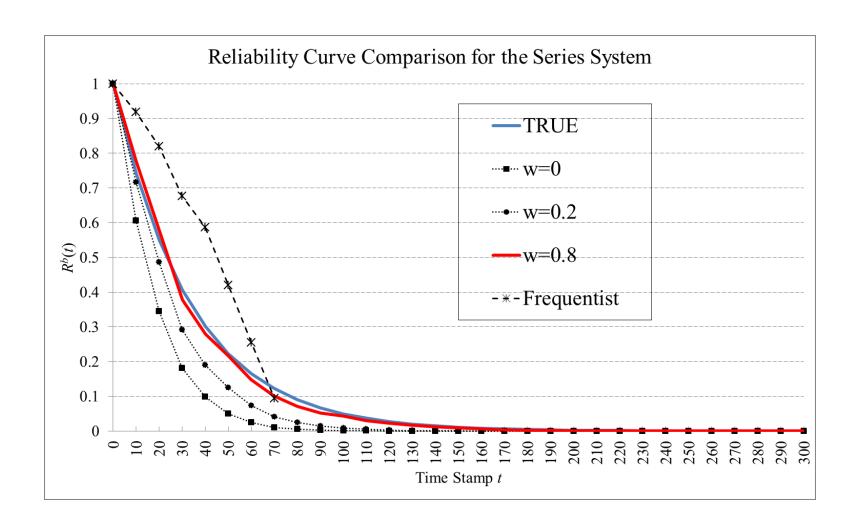
Step 4: Combine the induced priors and the native priors

w=0, 0.2, 0.8 Different effects of information aggregation

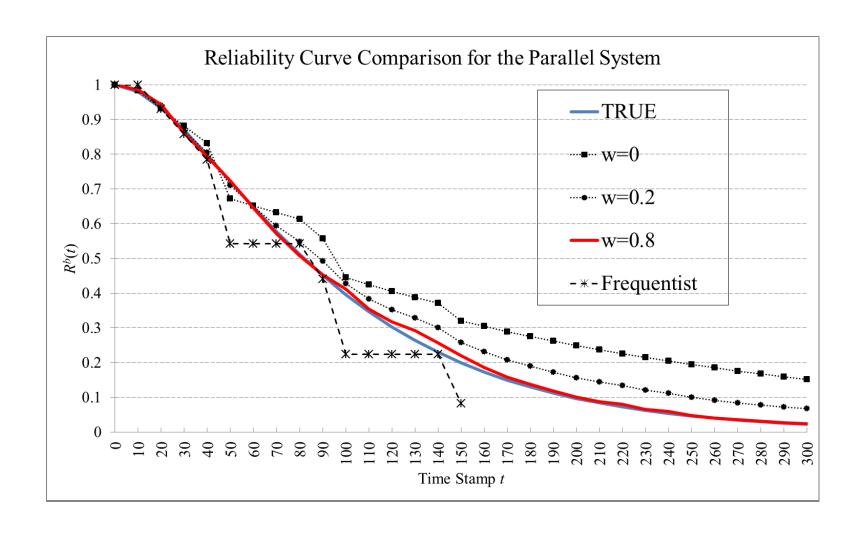
Step 1: Compute posteriors for the system



Series System Reliability Curve Comparisons



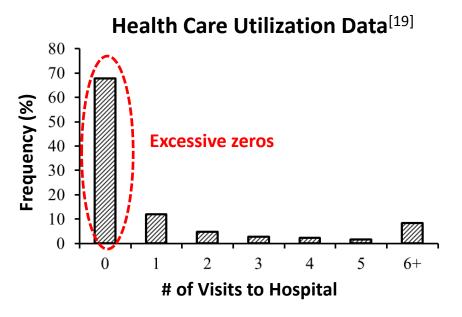
Parallel System Reliability Curve Comparisons

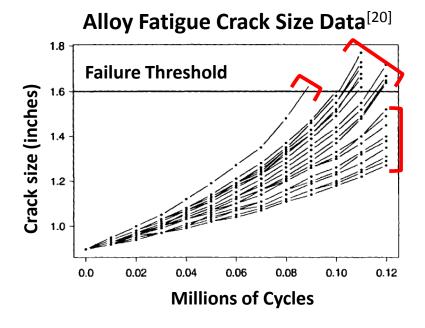


Part II - Heterogeneous Data Quantification:

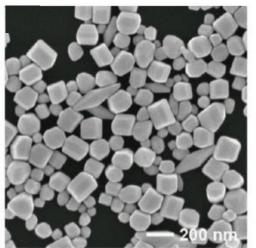
Bayesian Modeling and Learning of Heterogeneous Time-to-Event Data with an Unknown Number of Sub-populations

Vision





Nanocrystals Growth Data^[21]



Heterogeneous Populations:
Heterogeneous Data
Quantification

How to model?

Focus: Time-to-Event Data

Time-to-event (TTE) data is important

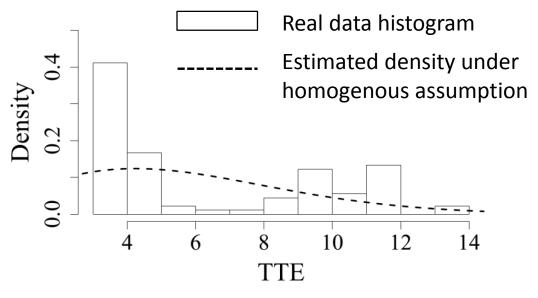
TTE: Time to occurrence of an event of interest

GENERAL & CRITICAL

TTE Heterogeneity

TTE: assembly time

Intelligent Robotic Assembly System^[22]



Histogram of data at the **SAME** process setting

- Homogeneus assumption
- Reason: heterogeneous products quality, etc.

TTE Heterogeneity (Cont'd)

- Reliability examples
- **Semiconductor industry**^[23]: infant mortality failures

Reason: manufacturing defects, assembly errors, etc.

Automobile industry^[24]: early failures

Reason: material quality, unverified design changes, etc.

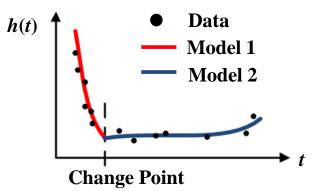
• **Industry with evolving technology**^[25]:heterogeneity especially critical

Reason: immature technology

Q: How to model TTE heterogeneity?

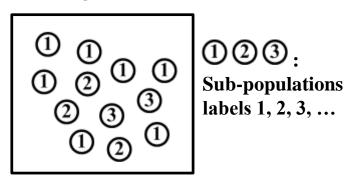
Heterogeneity Modeling of TTE

• Change point model^[26-28]: •

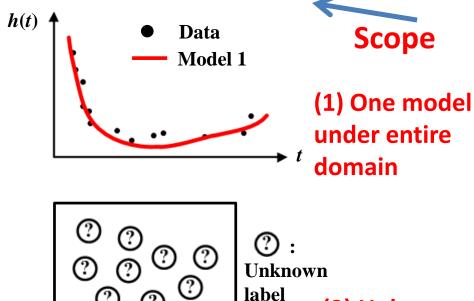


Limitation: different domains

Frailty model^[29,30]:



Limitation: known membership



Mixture model^[31,32]:

- (3) Meaningful interpretation;
- (4) Feedback information.

M. Li

(2) Unknown

membership

Mixture Model: Gaps and Solutions

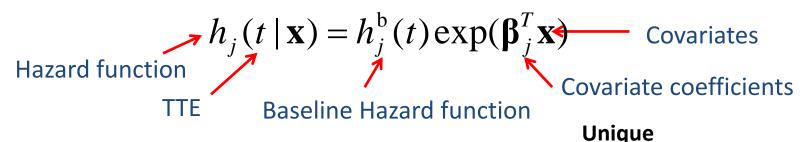
Existing Method	Limitation	Advantage	Solution
Known the number of sub-populations (<i>m</i>) ^[33,34]	subjective	Unknown m, learned from data	objective
Model estimation + model selection (e.g., LRT, AIC) ^[35,36]	Two-step	Bayesian formulation	Joint model estimation and selection
Mixtures of distributions ^[32,37,38,41]	w/o covariates	Mixtures of regressions	w/ covariates
Conjugate prior ^[39,40]	Restrictive	Non-conjugate prior	Generic

Expected Features of the Proposed Work

- Assuming an unknown # of sub-populations
- Considering influence of possible covariates
- Achieving joint model estimation and model selection
- Comprehensive treatment of non-conjugate priors

Mixture Model: Known m

• jth homogenous sub-population:



Benefits: (1) Covariates; (2) Flexible; (3) $h_j(t) \leftrightarrow f_j(t)$

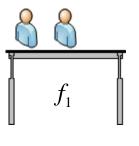
The overall heterogeneous population:

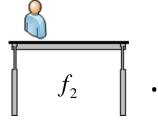
Population pdf
$$g(t | \mathbf{\Theta}^m, \mathbf{x}) = \sum_{j=1}^m w_j f_j(t | \mathbf{\theta}_j, \mathbf{x})$$
 Sub-population pdf All unknowns Sub-population Sub-population unknowns proportion

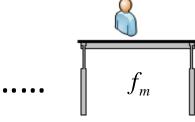
Mixture Model: Unknown m

Finite mixture model:

$$g(t \mid \mathbf{\Theta}^{m}, \mathbf{x}) = \sum_{j=1}^{m} w_{j} f_{j}(t \mid \mathbf{\theta}_{j}, \mathbf{x})$$

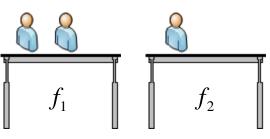


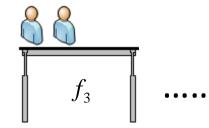




infinite choices

 t_{i}





Solution: Dirichlet Process

Mixture Model: Unknown m (Cont'd)

Bayesian hierarchical formulation:

$$t \mid \mathbf{x}, \mathbf{\theta} \sim f(\cdot \mid \mathbf{x}, \mathbf{\theta}),$$

$$\mathbf{\theta} \mid P \sim P$$

$$g(t \mid \mathbf{\Theta}, \mathbf{x}) = \sum_{j=1}^{\infty} w_j f_j(t \mid \mathbf{\theta}_j, \mathbf{x})$$

$$P \mid \alpha, P_0 \sim \mathbf{DP}(\alpha P_0(\cdot))$$
 Base distribution Dirichlet process Positive scalar

finite mixture: $\sum_{j=1}^{m}$

$$\sum_{j=1}^{m}$$

infinite mixture: $\sum_{i=1}^{\infty}$

$$\sum_{j=1}^{\infty}$$

New formulation:

- (1) **no restriction** on *m*
- (2) *m* learned **objectively**
- (3) Joint model estimation and model selection

Estimation Challenges

Data:
$$\mathbf{D} = \{t_i, \Delta_i, \mathbf{x}_i\}_{i=1}^n$$

Right-censored indicator

Unknowns: $\mathbf{\Theta} = \{w_j, \mathbf{\beta}_j, k_j, \eta_j\}_{j=1}^{\infty}$

Weibull baseline shape

scale

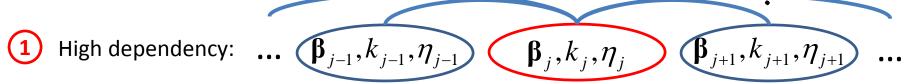
Joint posterior:

$$\pi(\mathbf{\Theta} \mid \mathbf{D}) \propto \prod_{i=1}^{n} \left(\sum_{j=1}^{\infty} w_{j} f_{j}(t_{i} \mid \boldsymbol{\beta}_{j}, k_{j}, \boldsymbol{\eta}_{j}, \mathbf{x}_{i}) \right)^{\Delta i} \cdot \left(\sum_{j=1}^{\infty} w_{j} R_{j}(t_{i} \mid \boldsymbol{\beta}_{j}, k_{j}, \boldsymbol{\eta}_{j}, \mathbf{x}_{i}) \right)^{1-\Delta i} \cdot \pi(\mathbf{\Theta})$$

- High dependency
- Slow/failed convergence

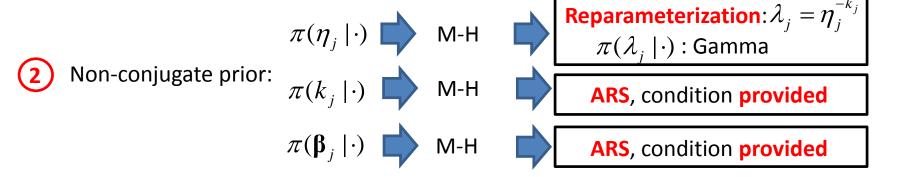
- **Challenges:**
- Non-conjugate prior
- Sampling difficulty
- **Infinite** # of unknowns
- Computationally formidable

Estimation Solutions



$$\mathbf{Z} = \left\{ z_i \right\}_{i=1}^n$$

labels for t_i 's



Metropolis-Hasting (M-H)[41]:

- Pros: General purpose
- Cons: Tuning problem, samples autocorrelated
- **Adaptive Rejection Sampling** (ARS)^[42]:
- Condition-based
- No turning, samples independent

(3) Infinite # of unknowns: slice-sampling techniques^[40]: $j=1,2,...,J^*$, where J^* is finite

Realized Features of the Proposed Work

- Unknown # of sub-populations: Dirichlet process
- Covariates: hazard regression
- Joint model estimation & selection: Bayesian model
- Non-conjugate priors: a series of sampling techniques

Numerical Case Study: Effectiveness

Simulation setup

- 2-mixture of Weibull regression
- Single covariate X~Unif(0,5)
- Right-censored time 1.0e+5

2 sub-populations

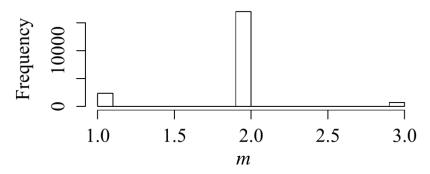
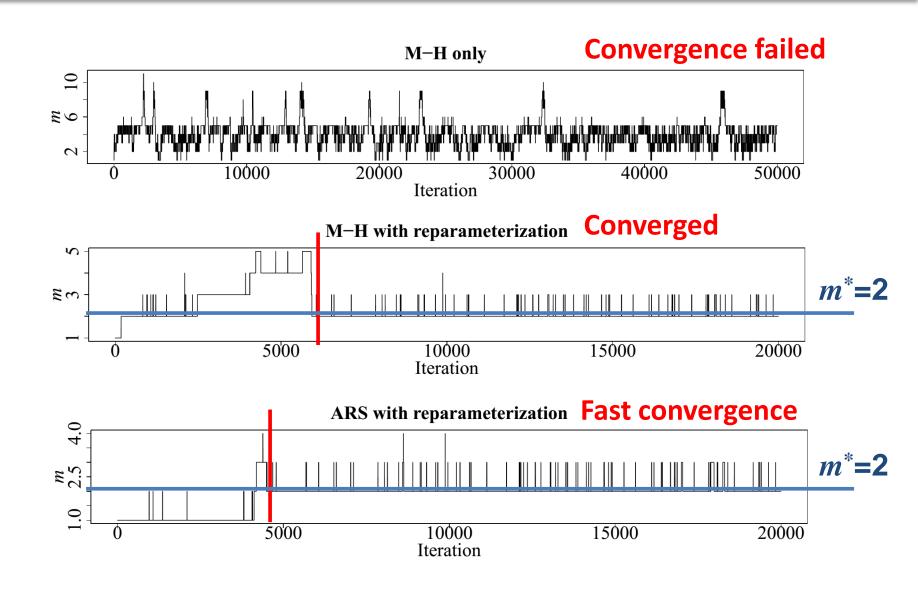


Figure 1. Model selection results

Table 1. Model estimation results

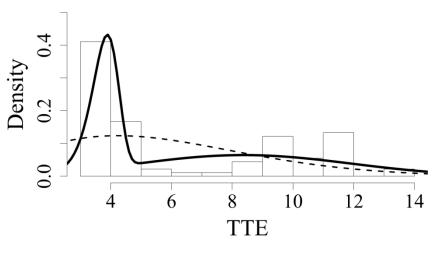
	Sub-population 1				Sub-population 2			
Parameter	p_1	k_1	$\eta_{_1}$	eta_1	p_2	k_2	$\eta_{\scriptscriptstyle 2}$	eta_2
True value	0.3	0.7	2.0e+3	1	0.7	3	8.0e+4	0.5
Estimate	0.28	0.66	1.95e+3	0.94	0.66	2.97	8.14e+4	0.51

Efficiency



Real data analysis

Assembly time data



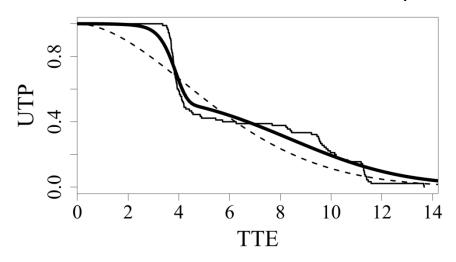
Real data histogram

--- Model ignoring heterogeneity

Model considering heterogeneity

(a) Estimated densities comparison

UTP: Unfinished Task Probability



Kaplan-Meier curve

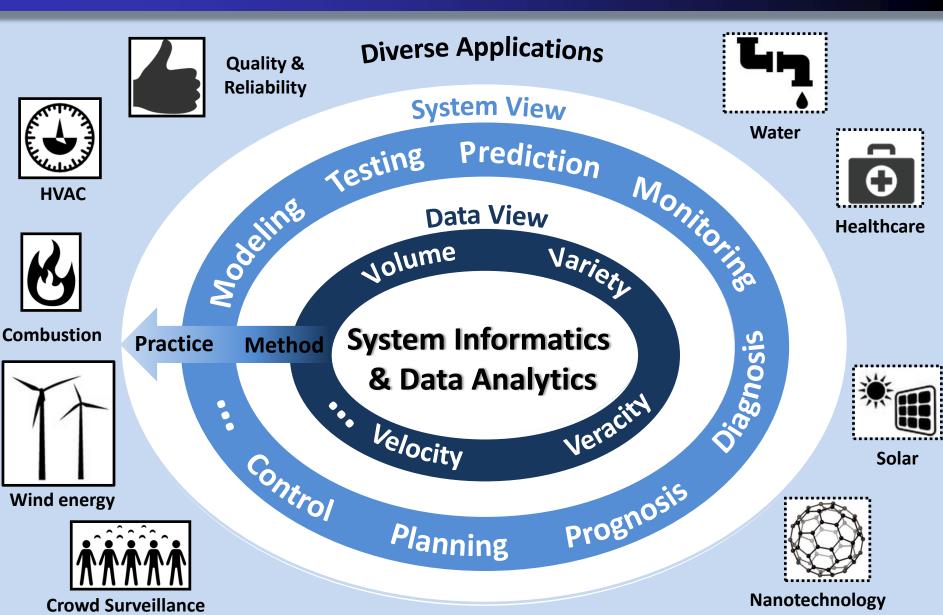
---- Model ignoring heterogeneity

Model considering heterogeneity

(b) UTP curves comparison

Figure 4. Comparisons of models w/ and w/o considering heterogeneity

Summary



Thanks ©

Reference

- 1. William Q. Meeker, Luis A. Escobar, "Reliability: The Other Dimension of Quality", 2003.
- 2. Li, M., "Application of computational intelligence in modeling and optimization of HVAC systems", Master's thesis, 2009, University of Iowa.
- 3. Zhongming Liu, Lei Ding, and Bin He, "Integration of EEG/MEG with MRI and fMRI in Functional Neuroimaging", IEEE Eng Med Biol Mag. 2006; 25(4): 46–53. NIH
- 4. A. M. Khaleghi, D. Xu, Z. Wang, M. Li, A. Lobos, J. Liu and Y-J. Son, "A DDDAMS-based Planning and Control Framework for Surveillance and Crowd Control via UAVs and UGVs," Expert Systems with Applications, Vol. 40, No. 18, pp. 7168-7183, 2013.
- 5. Ramamoorty, M., Block diagram approach to power system reliability. Power Apparatus and Systems, IEEE Transactions on, 1970(5): p. 802-811.
- 6. Camarda, P., F. Corsi, and A. Trentadue, An efficient simple algorithm for fault tree automatic synthesis from the reliability graph. Reliability, IEEE Transactions on, 1978. 27(3): p. 215-221.
- 7. Cui, L., Y. Xu, and X. Zhao, Developments and Applications of the Finite Markov Chain Imbedding Approach in Reliability. Reliability, IEEE Transactions on, 2010. 59(4): p. 685-690
- 8. Høyland, A. and M. Rausand, System reliability theory: models and statistical methods. 2004: J. Wiley.
- 9. Coit, D.W., System-reliability confidence-intervals for complex-systems with estimated component-reliability. Reliability, IEEE Transactions on, 1997. 46(4): p. 487-493.
- 10. Jin, T. and D.W. Coit, Variance of system-reliability estimates with arbitrarily repeated components. Reliability, IEEE Transactions on, 2001. 50(4): p. 409-413.

Reference (Cont'd)

- 11. Martz, H. and Waller, R. (1982)Bayesian Reliability Analysis, John Wiley & Sons, New York, NY
- 12. Hamada, M., Wilson, A.G., Reese, C.S. and Martz, H. (2008) Bayesian Reliability, Springer Verlag, New York, NY
- 13. Klein, J. and Moeschberger, M. (1997)Survival Analysis: Techniques for Censored and Truncated Data, Springer, New York, NY
- 14. Meeker, W.Q. and Escobar, L. (1998)Statistical Methods for Reliability Data, Wiley-Interscience, New York, NY.
- 15. Ibrahim, J.G., Chen, M.H. and Sinha, D. (2001)Bayesian Survival Analysis, Springer, New York, NY.
- 16. Martz, H., R. Waller, and E. Fickas, Bayesian reliability analysis of series systems of binomial subsystems and components. Technometrics, 1988: p. 143-154.
- 17. Martz, H. and R. Waller, Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components. Technometrics, 1990: p. 407-416.
- 18. Hulting, F.L. and Robinson, J.A. (1994) The reliability of a series system of repairable subsystems: a Bayesian approach. Naval Research Logistics, 41(4), 483–506.
- 19. Partha Deb and Pravin K. Trivedi, "Demand for Medical Care by the Elderly: A Finite Mixture Approach", Journal of Applied Econometrics, Vol. 12, No. 3, 1997.
- 20. William Q. Meeker, Luis A. Escobar, "Statistical Methods for Reliability Data", ISBN: 978-0-471-14328-4
- 21. Toan Trong Tran and Xianmao Lu, "Synergistic Effect of Ag and Pd Ions on Shape-Selective Growth of Polyhedral Au Nanocrystals with High-Index Facets", The Journal of Physical Chemistry, 2011.

Reference (Cont'd)

- 22. FANUC Robot M-1iA, http://www.fanucamerica.com/products/robots/assembly-robots.aspx
- 23. W. Kuo, W. K. Chien and T. Kim, Reliability, Yield and Stress Burn-in: A Unified Approach for Microelectronics Systems Manufacturing and Software Development, Springer, 1998
- 24. H. Wu and W. Q. Meeker, "Early Detection of Reliability Problems Using Information From Warranty Databases," Technometrics, Vol. 44, No. 2, pp. 120-133, 2002.
- 25. Xiang, Y., Coit, D. W. and Feng, Q., 2013, "N Subpopulations Experiencing Stochastic Degradation: Reliability Modeling, Burn-in, and Preventive Replacement Optimization," IIE Transaction, Vol.45: 391-408.
- 26. J. A. Achcar and S. Loibel, "Constant hazard function models with a change point: A Bayesian analysis using Markov chain Monte Carlo methods," Biometrical Journal, vol. 40, no. 5, pp. 543–555, 1998.
- 27. K. Patra and D. K. Dey, "A general class of change point and change curve modeling for life time data," Annals of the Institute of Statistical Mathematics, vol. 54, no. 3, pp. 517–530, Sep. 2002.
- 28. T. Yuan and Y. Kuo, "Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-In Time for Electronic Devices," IEEE Transaction on reliability, Vol. 59, No. 1, MARCH 2010, pp.132-138
- 29. Vaupel, J. W., Manton, K. G. and Stallard, E., 1979, "The impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality," Demography, Vol.16: 439-454.
- 30. Huber-Carlo, C. and Vonta, I., 2004, "Frailty Models for Arbitrarily Censored and Truncated Data," Lifetime Data Analysis, Vol.10: 369-388
- 31. Bucar, T., Nagode, M. and Fajdiga, M, 2004, "Reliability Approximation using Finite Weibull Mixture Distributions," Reliability Engineering & System Safety, Vol.87: 241-251.

Reference (Cont'd)

- 32. Kottas, A., 2006, "Bayesian Survival Analysis using Mixtures of Weibull Distributions," Journal of Statistical Planning and Inference, Vol.136: 578-596.
- 33. Attardi, L., Guida, M. and Pulcini, G., 2005, "A mixed-Weibull regression model for the analysis of automotive warranty data," Reliability Engineering & System Safety, Vol.87, No.2: 265-273.
- 34. Jiang, R. and Murthy, D. N. P., 2009, "Impact of quality variations on product reliability," Reliability Engineering & System Safety, Vol.94, No.2: 490-496
- 35. Adler, R. J., 1990, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Notes, Monograph Series, Vol.12
- 36. Koehler, A. B. and Murphree, E. S., 1988, "A comparison of the Akaike and Schwarz criteria for selecting model order" Applied Statistics, 187-195.
- 37. Tsionas, E. G., 2002, "Bayesian analysis of finite mixtures of Weibull distributions," Communications in Statistics-Theory and Methods, Vol.31, No.1: 37-48
- 38. Wiper, M. and Insua, D. R. and Ruggeri, F., 2001, "Mixtures of gamma distributions with applications," Journal of Computational and Graphical Statistics, Vol.10, No.3
- 39. Escobar, M. D. and West, M., 1995, "Bayesian density estimation and inference using mixtures," Journal of the American Statistical Association, Vol.90: 577-588
- 40. Walker, S. G., 2007, "Sampling the Dirichlet Mixture Model with Slices," Communications in Statistics Simulation and Computation, 36: 45-54
- 41. Hastings, W. K., 1970, "Monte Carlo sampling methods using Markov Chains and their applications", Biometrika, 57: 97-109.
- 42. Gilks, W. R. and Wild, P., 1992, "Adaptive Rejection Sampling for Gibbs sampling", Journal of the Royal Statistical Society, Series C, 41(2), 337–348.