Flexible and Feasible Support Measures for Mining
Frequent Patterns in Large Labeled Graphs

ABSTRACT

In recent years, graph databases such as Twitter and Face-
book social graph and citation maps have grown rapidly,
therefore graph mining techniques are becoming more and
more important. In frequent pattern mining in a single-
graph setting, there are two main problems: support mea-
sure and search scheme. In this paper, we propose a novel
framework for constructing support measures that brings
together existing minimum-image-based and overlap-graph-
based support measures. Our framework is built on the
concept of occurrence / instance hypergraphs. Within this
framework, we present two new support measures: minimum
instance (MI) measure and minimum vertex cover (MVC)
measure, that combine the advantages of existing measures.
In particular, we show that the existing minimum-image-
based support measure is an upper bound of the MI measure,
which is also linear-time computable and results in counts
that are close to number of instances of a pattern. Although
the MVC measure is NP-hard, which means it is as hard as
the existing overlap-graph-based measure, it can be approx-
imated to a constant factor in polynomial time. We also
provide polynomial-time computable relaxations for both
measures. Bounding theorems are given for all presented
support measures in the new hypergraph setting. We fur-
ther show that the hypergraph-based framework can unify
all support measures studied in this paper. This framework
is also flexible in that more variations of support measures
can be defined and profiled in it.
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Graphs have become increasingly important in modeling
complicated structures, such as chemical compounds, bi-
molecular structures, social networks, aviation maps, and
the Web. Recent years have witnessed intensive studies on
mining graph databases for interesting patterns. Such en-
deavors often involve calculating the frequency of the identi-
fied patterns (i.e., subgraphs). As shown in many problems,
frequent patterns are believed to reveal essential features
of the system modeled. A clear definition of any frequent
pattern mining problem depends on a support measure as
a notion of the frequency of the patterns of interest.! In a
transaction-based frequent pattern mining setup, the devel-
opment of a support measure is straightforward as we only
need to count individual graphs (in a graph database) that
contain the query pattern. The problem is more interesting
and challenging in a single-graph setup, in which the fre-
quent patterns are to be found in only one graph that often
consists of a large number of vertices and edges.

The design of a support measure is non-trivial in the
single-graph environment as the measure has to fulfill sev-
eral requirements. For example, an obvious definition of
support of a pattern is the number of its occurrences in
the input graph (see more details in Section 2). However,
this definition possesses the so-called monotonicity feature
in that the support may increase when extending a pattern
with more edges/vertices. It is not hard to see such fea-
ture is undesirable: when a query pattern grows, the search
becomes more selective thus the support should decrease.
First introduced by Vanetik et al. [11], anti-monotonicity
is well accepted by the graph mining community as an es-
sential rule for support measure design. Vanetik et al. [11]
also proposed an anti-monotonic support measure called the
mazimum independent set based support (MIS). The MIS is
built on an important concept named overlap graph, which
is a graph that consists of the instances of the query pattern
in the original graph (database) as vertices and the overlap
of such instances as edges. The main problem of MIS is the
lack of efficient algorithms — it is proved to be NP-hard. Its
extensions (e.g., minimum clique partition (MCP) measure
developed by Calders et al. [3]) also suffer from the same
problem.

Another support measure named the mininum-image-
based support (MNI) [2] is based on the technique of ver-
tex images. Being another anti-monotonic support, MNI
requires only linear time to compute. The MNI support,

For that, we use the words frequency and support interchange-
ably in this paper. We also use the words support and support
measure in the same way.



however, has serious drawbacks due to its lack of intuitive-
ness. Specifically, by ignoring the topological structure of
the query pattern, MNI could arbitrarily overestimate the
frequency of a pattern, and this lowers its value in real appli-
cations. The overlap-graph-based support (represented by
MIS) and MNI support, as well as their variations, represent
the two major bodies of work in defining support measures
in frequent graph mining. While both are anti-monotonic,
they stand on opposite sides of the spectra of intuitiveness
and efficiency. Therefore, the main objective of this study is
to develop new support measures that combine the best of
the two worlds: they are fast (with linear/polynomial time),
avoiding the high cost of computing MIS support measure,
and intuitive, without over counting patterns as in MNI-
based measures.

In this paper, we first introduce the concept of occur-
rence/instance hypergraph, which is a graph built on
the occurrences or instances of the pattern. Based on the
hypergraph concept, we define two new support measures:
the minimum instance (MI) measure and the minimum
vertex cover (MVC) measure. For the MI support mea-
sure, we show that the existing MNI support is an upper
bound for it, or in other words, it is closer to the MIS
support of a pattern than the MNI. Same as MNI, the MI
support is also linear-time computable. The MVC support
returns frequency that is even closer to MIS. Although com-
puting MVC measure is NP-hard, which means it is as hard
as the overlap-graph-based MIS measure, MVC enjoys a k-
competitive approximate algorithm. This is in sharp con-
trast to the proved fact that the MIS measure cannot be
approximated to a constant factor in polynomial time un-
less P = NP. Furthermore, we provide polynomial-time com-
putable relaxations of both MVC and MIS measures. This
makes MVC and MIS more efficient while still providing
meaningful frequency values.

We further demonstrate that our hypergraph-based method
serves as a unified framework that encapsulates not only MI
and MVC, but also the existing support measures including
MIS and MNI. Specifically, we first show that there is a nat-
ural mapping of MNI in the hypergraph setting. As to the
MVC, we show it is equivalent (in both value and compu-
tational complexity) to a support measure defined from the
instance hypergraph, the maximum independent edge
set support (MIES). Bounding theorems that describe
the differences among all support measures included in the
hypergraph-based framework are also presented. Further-
more, we showcase the potential of the new framework as a
platform for defining and profiling a wide ranges of support
measures.

The rest of this paper is organized as follows: In Section
2, we formally define the problem and sketch the necessary
background for the problem; In Section 3, we introduce our
new support measures and study their features; In Section
4, we present a framework that unifies all support measures
mentioned in this paper and discuss its potential in defining
and studying a wide range of support measures; In Section
5, we present a brief review of related work; and we conclude
our paper in Section 6.

2. PRELIMINARIES

In this section, we introduce basic notations to describe
the problem and the necessary background.

2.1 Labeled Graphs

In this paper, we only consider the case of a labeled graph,
which is simply referred to as ‘graph’ hereafter. In all figures
of this paper, the shade of a vertex represents its label.

Definition 1. A (undirected) labeled graph
G= <VG7 EG7 AG>

consists of a set of vertices Vi, a set of edges Fg C Vg X
Vo = {(u,v)|u,v € Vg, u # v} and a labeling function
A¢ : Vo U Eqg — X that maps each vertex or edge of the
graph to an element of the alphabet X.

Definition 2. A graph G’ = (Vg/, Egr, Agr) is a subgraph
of G = (Vg,Ec,\g) if Vg is a subset of Vg and Eg is a
subset of Eg and for all v € Vgr, Mg/ (v) = Aa(v).

Definition 8. A pattern P = (Vp, Ep, Ap) is a labeled
graph we use as a query against another graph.

Definition 4. Let P be a graph pattern, and p a subgraph
of P, denoted by p C P. We call p a subpattern of P, and
likewise, we call P a superpattern of p.

2.2 Graph Isomorphism

Given the problem of finding pattern P in a large dataset
graph GG, we need techniques for determining whether P is
structural identical to G or a subgraph of G, and conse-
quently decide if pattern P appears in dataset graph G.

Definition 5. A graph G is isomorphic to G if and only
if there exists a mapping f : V(G1) — V(G2) such that

e Vv e Vg, f(v) € Vg, and Vv € Vag,, f(v) € Vg,; and

L4 V(UlaUQal) € EG17 (f(vl)vf(UQ)vl) € EGQ
and V(v1,v2,1) € Eg,, (f(v1), f(v2),1) € Eg, .

The two descriptions state that the isomorphic function pre-
serves both vertex labels and edge labels. The mapping f is
called isomorphism between G1 and Ga.

Generally speaking, an isomorphism is an edge-preserving
bijection between the vertex sets of two graphs, say G1 and
G2. In this case, one can take GG1 as a copy of G2, or vise
versa.

Definition 6. An automorphism of graph G is an iso-
morphism from G onto itself.

Definition 7. A graph G; is subgraph isomorphic to
G> if and only if G; is isomorphic to a subgraph of Gs.

In order for us to know how many times a pattern appears
in a large data graph, we need to define the concept of an
occurrence and an instance of the pattern in the data graph.

Definition 8. Given a pattern P = (Vp,Ep,Ap) and a
graph G = (Vi, Ec, Ag), an occurrence is an isomorphism
f from pattern P to a subgraph G’ of G. That is to say f
is also a subgraph isomorphism from P to G.

Definition 9. A subgraph S of G is an instance of P in
GG when there exists an isomorphism between P and S.



Note that occurrence and instance are two different con-
cepts. An occurrence is an isomorphism between pattern P
and a subgraph of dataset graph G, while an instance is a
subgraph of G that is isomorphic to pattern P. There can
be multiple occurrences mapping pattern P to one instance.
For example, in Figure 1 the triangle-shaped pattern has
6 occurrences fi, f2, f3, f4, f5, f6 in the data graph, while
it has only one instance which is the subgraph induced by
vertices 1, 2 and 3. Occurrence and instance are key com-
ponents in the support measure framework we propose.

2.3 Overlap Concepts and Support Measure

The purpose of defining support measure is to count the
appearances of a pattern P in a data graph G. The definition
of support measure is given below:

Definition 10. A support measure of pattern P in dataset
graph G is a function ¢ : G x G — RT, which maps (P, G)
to a non-negative number o(P, G).

One natural way of defining a pattern support measure
is to use its occurrence count, however this measure does
not satisfy the anti-monotonic property, which states that
the support of a pattern must not exceed that of its sub-
patterns [12]. A more intuitive support measure is the count
of instances of the pattern in a dataset graph. This measure,
however, is not anti-monotonic either [12].

Anti-monotonicity is a basic requirement for support mea-
sure because most existing frequent pattern mining algo-
rithms depend on it to safely prune a branch of infrequent
patterns in the search space for efficiency. Formally, we have

Definition 11. A support measure o on G is antimono-
tonic if for any pattern p and its superpattern P, we have
o(p,G) > o(P,G).

To address the above challenge, Vanetik et al. [11] pro-
posed the first non-trivial anti-monotonic support measure
named mazimum independent set based (MIS) support. The
MIS support is developed on top of the so-called overlap
graph derived from the data graph. We describe the main
ideas of this method as follows. First we should explain the
concept of overlap of instances proposed in [11].

Definition 12. A vertex overlap of instances S1 = (Vs,,
Es,) and Sz = (Vs,, Es,) of pattern P exists if vertex sets
of S1 and S- intersect, that is, Vs, N Vs, # 0.

Definition 13. An edge overlap of instances S1 = (Vs,,
Es,) and Sz = (Vs,, Es,) of pattern P exists if edge sets of
S1 and So intersect, that is, Es, N Es, # 0.

Definition 14. Given a pattern P = (Vp, Ep,Ap) and a
graph G = (Vg, Eg, Ag), an overlap graph is a graph O
such that each vertex of O represents an instance of P in G,
and two vertices v and v are adjacent if the two instances
they represent edge overlap (or vertex overlap).

It is also possible to build an overlap graph showing how
occurrences overlap as in [5]. In this article, we mainly study
how occurrences overlap and we only consider overlap in
vertex. Two existing types of occurrence overlap concepts
are given as follows.

Definition 15. A simple overlap (SO) of occurrences f1
and f2 of pattern P exists if f1(Ve) N fo(Vp) # 0.

A variant of the simple overlap called harmful overlap,
was introduced in [5].

Definition 16. A harmful overlap (HO) of occurrences
fi1 and f2 of pattern P exists, if 3 v € Vp, such that

f1(v), f2(v) € f1(VP) N f2(Vp).

Definition 17. An independent (vertex) set is a set
of vertices in a graph, no two of which are adjacent.

Definition 18. Given a pattern P = (Vp, Ep,Ap) and a
dataset graph G = (Vg, Eq, Ag), the maximum indepen-
dent set based support is defined as the cadiality of max-
imum independent vertex set of overlap graph O, that is,

omrs(P,G) = max{|I||] is an independent set of O}

The main drawback of the MIS support is computing ef-
ficiency - it is shown [19] that maximum independent set
problem is NP-hard. Because MIS measure is based on over-
lap graph, where vertices denote instances of pattern in data
graph, the total number of instances is proportional to data
graph size. Thus computing MIS as a support measure is
also NP-hard, that is to say, the time required to solve the
problem using any currently known algorithm is exponential
to the size of the data graph.?

Bringmann and Nijssen [6] proposed a support measure
called minimum image based support (MNI). It is based on
a technique different from the overlap graph. The main con-
cept here is image, which is an existence of a vertex in the
pattern (called node hereafter) in the data graph. For ex-
ample, in Figure 1, vertex 1 is an image of any of the nodes
v1, v2, and vs in the pattern.

Definition 19. Assume pattern P has [ occurrences in data
graph G, and they are denoted as fi, f2, -+, fi. The min-
imum image based (MNI) support of P in G is defined
as

ouni(P,G) = min [{fi(v) :i=1,2,--- 1}
veVp

In other words, for each node v in pattern P, MNI support
measure identifies the count ¢, of its unique images, here
c=|{fi(v) :i=1,2,---,1}|. Then MNI support measure of
P in G is the minimum count ¢ among all nodes in pattern
P.

MNTI can be configured to allow certain level of tolerance in
matching patterns. Given a parameter k, a support measure
can be defined based on determining where each connected
subgraph containing k£ nodes of the pattern can be matched
with each other.

Definition 20. For a pattern P, a graph G, and a param-
eter k, the minimum k-image based support is

ouni(P,G, k) = m\}n|{{fL(V)} c1=1,2,--- 1},

where V' is connected subset of Vp and |V| =k, and f; is an
occurrence of P in G.

The anti-monotonicity of MNI is guaranteed by taking
the node in P that is mapped to the least number of unique

2In this paper, following conventions of this field, computing time
of support measures does not include that for constructing the
framework (e.g., overlap graph in the MIS case).



Data Graph:

Pattern:

Occurrences 0@@

fi: 1 2 3
fa: 1 3 2
f3: 2 1 3
fa: 2 3 1
fs: 3 1 2
e 3 2 1
# of images: 3 3 3
MNI =3

Figure 1: Example showing MNI overestimates the
count of patterns. The triangle-shaped pattern has
1 instance but its MINI measure is 3

nodes in G. The proof of anti-monotonicity of oarn1 (P, G, k)
is similar.

A clear advantage of MNI support over the NP-hard MIS
support is computation time. The reason is that it only re-
quires a set of vertex images for every node in a pattern, and
finding the minimum number of distinct vertices for each set
can be done in O(n) where n is the number of occurrences of
a pattern. However, MNI support has an obvious disadvan-
tage, that is lack of intuitiveness. Let us revisit the example
in Figure 1: the MNI support of the triangle-shaped pattern
is 3, since the minimum number of images of one node is 3.
It does not agree with our intuition that the 6 occurrences
f1, f2, f3, fa, f5, fe of the pattern overlap and there is only
one instance, which is the subgraph induced by vertices 1, 2
and 3.

The MIS and MNI supports represent the two main flavors
of work in the design of support measure for frequent sub-
graph mining. Both are anti-monotonic yet they stand on
far ends of computing efficiency and overestimation of pat-
tern frequency. While the MIS returns the smallest count,
there is no efficient algorithm to compute it [3]. The MNI
requires linear time to compute but can return an arbitrarily
large count for a pattern [2]. Both MIS and MNI have vari-
ations other than the basic forms mentioned in this section.
We will introduce some of the variations in Section 5. Here
we only emphasize that those variations do not significantly
change their features.

Intuitively, the MNI support returns counts that are closer
to the number of occurrences of a pattern. However, it is
more natural to define support measure of a pattern accord-
ing to the number of instances (note that MIS calculates the
number of independent instances). Recall the case in Figure
1: the number of instance is 1, however its MNI support
measure is 3, and this does not follow common sense. It is
known, however, that the count of instances as a support
measure is not anti-monotonic, in this paper we present two
anti-monotonic support measures that achieve counts that
are closer to the number of pattern instances.

3. NEW SUPPORT MEASURES

In this section, we first introduce a new concept named
occurrence/instance hypergraph from which our new
support measures are constructed. Such a concept simpli-
fies the problem of finding support measures with desired
features. Note that this technique is different from the over-
lap graph used in MIS and the images of occurrences used in
MNI. Instead of instances (subgraphs) and occurrences (iso-
morphisms), we represent a node (i.e., vertex in pattern)
image as a vertex and an occurrence/instance as an edge.

The following descriptions are based on a data graph G,
a pattern P, and the set of | occurrences of pattern P in G
denoted as Oce(P,G) ={fi :1=1,2,--- ,1}.

Definition 21. A hypergraph H = (V,E) consists of
a set V. = {vi,va, -+ ,vn} of n vertices and a set £ =
{e1,e2, -+ ,eq} of d edges, where each edge is a subset of
V. A simple hypergraph H is a hypergraph in which no
edge is subset of another edge, that is, if e; C e; then i = j.

For discussions related to the features of relevant support
measures, we also introduce the concept of dual hypergraph.

Definition 22. The dual H* of H is a hypergraph whose
vertices and edges are interchanged, so that the vertices are
given by {e1, ez, - ,eq} and the edges are given by X =
{X1, X2, -+, Xn} where X; = {e;|v; € e;}, that is, X; is
the collection of all edges in H which contain vertex v;.

As a key technique, we show how occurrences and in-
stances of a pattern are integrated into a hypergraph and
support measure within the hypergraph framework.

Definition 23. If pattern P = (Vp, Ep) has m instances in
data graph G, and the collection of [ occurrences is {f;,i =
1,---,1}. The occurrence hypergraph of P in G is de-
fined as HY = (V,E) where V = Ul_,fi(Vp) and E =
{ei,i = 1,---,1}, each E; = f;(Vp). In other words, hy-
pergraph vertex set V' is the collection of all pattern node
images, and each edge e; is a collection of pattern node im-
ages mapped by occurrence f;.

Definition 24. If pattern P = (Vp, Ep) has m instances
in data graph G, and the collection of instances is {S; =
Vs, Es;},i = 1,--- ,m. The instance hypergraph of P
in G is defined as H' = (V, E) where V = U™,Vs, and
E={e;i=1,---,m}, each e; = Vg,.

Let us use the example shown in Figure 1 to show how
the hypergraphs are constructed: the occurrence hypergraph
HC = (V, E) has vertex set V = {1,2,3} and edge set E =
{61, €2, €3, €4, €5, 66} = {{13 2, 3}5 {la 3, 2}3 {27 1, 3}7 {27 3, l}a
{3,1,2},{3,2,1}}. Similarly, instance hypergraph H' =
(V,E) has vertex set V = {1,2,3} and edge set £ = {e}
= {{1,2,3}}. Note that since the topological structure of
pattern P is incorporated into the occurrence and instance
hypergraphs, there is an order in vertices contained in each
edge. Another example can be found in Figure 2: for both
the instance and occurrence hypergraphs, there are 6 edges
and 14 vertices as shown in the figure.

The differences between the concepts occurrence hyper-
graph and instance hypergraph are partly caused by the pat-
tern’s topological structure, or more specifically, automor-
phisms. When a pattern has non-identity automorphisms,



Data Graph:

Occurrence/Instance Hypergraph:

€1 €2

Figure 2: Occurrence/instance hypergraph of a tri-
angular pattern

multiple occurrences project the pattern to the same sub-
graph of dataset graph. Sometimes, when pattern admits
no automorphism, occurrence and instance hypergraphs are
quite similar. For example, each instance of the triangle pat-
tern in Figure 2 is associated with one occurrence, hence the
number of edges in occurrence hypergraph coincident with
that in instance hypergraph.

Judging from the nature of occurrence hypergraphs, as
shown in Figure 2, occurrences that are represented by hy-
pergraph edges overlap in various degrees and positions. We
argue that a hypergraph framework keeps more such infor-
mation and offers more insight for further investigation, as
compared to overlap graph based support measure such as
MIS [11].

Note that the the concept of hypergraph is also used in [18]
to define a variant of overlap graph [11]. Given an overlap
graph O, if one replaces all cliques in O by hyperedges and
deletes non-dominating hyperedges, one can get an overlap
hypergraph. In our method, vertices are node images of
pattern P, and edges represent occurrences and instances.

In summary, the hypergraph is a suitable topological rep-
resentation of pattern occurrences (instances) for investigat-
ing support measures. We will show that in the remainder
of this paper.

Data Graph:

O Hypergraph:

' 1
attern O OO
r=— r=—1 r=— r=—1 - --=-=-"
Occurrences: ‘120 13 112 3,
41 13 12 4 13 2!
! \77‘ ! \77‘ \______
# of images: 2 2 2 2 1
MNI = 2 MI=1

Figure 3: MNI vs MI Support Measure

3.1 Minimum Instance Support Measure

As described above, the MNI support measure is insen-
sitive to structures of subgraph patterns. To address this
problem of the MNI support, we take the structure of the
given pattern into consideration and define a new support
measure. Let us explain the main idea by using the example
shown in Figure 3.

Three pattern nodes wv1,v2, and v3, each has two images
{1,4}, {2, 3}, and {3, 2}, hence the MNI support of measure
of this pattern is 2. However, apparently the two vertices v
and vz are symmetric, meaning there is automorphism that
maps one to the other. Hence v2,v3 can be considered as a
group {vz, vs}, which has one image {2,3}. This observation
leads to the idea of defining a new support measure of a
pattern taking advantage of its topological structure and
reduce overestimation of MNI.

Before defining the new support measure, let us first in-
troduce a supportive concept.

Definition 25. We define coarse-grained node W as a
subset of Vp. The coarse-grained node image count is
defined as

W) = [{f:(W) i = 1,2, 1},

In Figure 3, if coarse-grained node W is {v2,vs}, then its
coarse-grained node image count ¢(W) = [{{2,3},{3,2}}| =
1. However, for M = {v2}, since v2 appeared in two images,
we get ¢(M) = 2.

Now we can define new support measure of pattern P
using the definition of coarse-grained node image count. In-
spired by our observation, the pattern nodes that are sym-
metric to each other should be affiliated with the same group,
hence we definite transitive vertex set as follows.

Definition 26. A pair of vertices u and v in graph G is
transitive if there is at least one automorphism f of G
such that f(u) = v.

Definition 27. The transitive vertex set T in G is a
subset of universal vertex set V' such that any pair of vertices
in T is transitive.

Definition 28. Given a pattern P, for each pattern node
v € Vp, if T is a transitive vertex set in a subgraph of pattern



P, and T contains v, we let v affiliate with T', the collection
of such T'is 7 = {T'}. The minimum instance based
support (MI) of P in G is defined as

omi(P,G) = Hin e(T)

As for the example in Figure 3, pattern has coarse-grained
nodes {v1},{v2},{vs} and {vi,v2}, hence opi(P,G) = 1.
Now let us study the main properties of the MI support.

THEOREM 1. The minimum instance based support mea-
sure s anti-monotonic.

Proor. The basic idea is: given pattern p and its su-
perpattern P. Any coarse-grained node T considered in
om1(p, G) = minrer, ¢(T) is also considered in o1 (P, G) =
mingpegr, ¢(T) and the count ¢(7T") does not increase as pat-
tern p extends to superpattern P, we have omr(p,G) >
OMI (P7 G) [

THEOREM 2. The minimum instance based support mea-
sure is linear-time computable.

PrROOF. Given 7 = {T}, there are a fixed number of
T for pattern P. It is obvious that calculating ¢(7") costs
O(n) time where n is the number of occurrences. Hence,
om1(p, G) is linear-time computable. []

THEOREM 3. Given a pattern P and data graph G, and
occurrence hypergraph H® = (V, E), we have
omi(P,G) <ouni(P,QG).

PrROOF. Given the occurrence hypergraph HY = (V, E),
the differences between o1 (P, G) and oy ni (P, G) are only

in coarse-grained nodes. We have oy n1 (P, G) = minwew, c¢(W),

where W = {v}, and W = {W}. Since VW, we have
W € T, it is then easy to see opr(P,G) = minwer c¢(W) <
minwgwu C(W) = O'MN[(P, G) D

In practice, there will be many cases in which MI mea-
sure is strictly smaller than the MNI measure. As in Figure
3, when consider additional coarse-grained nodes and mini-
mum count among all of them will decrease. In such way, we
can obtain support count M that is closer to the number
of instances compared with MNI.

In summary, we show that MI support is anti-monotonic,
can be computed in linear time, and returns frequency that
is bounded by MNI.

3.2 Minimum Vertex Cover Support Measure

The purpose of developing MI support measure is to achieve
reasonable count when overlap causes overestimation by MNI.
However, MI cannot handle the type of overlap illustrated in
Figure 4. Although the number of independent instances is
only 2 (e.g., {1,5} and {4, 8} are independent), we still get
MNI = 4. Moreover, there are merely three possible coarse-
grained nodes {v1}, {v2}, {v1, v2}, their images counts are 4,
4, and 4. Hence MI = 4, any variant of MI will not help
either.

In this case, we change our interpretation of edges in oc-
currence/instance hypergraph to set of coarse-grained nodes.
It seems for some data graphs (e.g., Figure 4) the connection
among pattern nodes matters, and we opt to treat them as
a set, hence we now view an edge in an occurrence/instance
hypergraph as a set without distinguishing them by images

Data Graph:

Occurrences

(O—06) fi: /1 s

fa: “ 1 \l 6

CN©® fa: ! L7
f43 \\ 1,/ //8\\
e e f5: 2 ll 8 \\
e e fe: 3 l\ 8 |
f71 4 \\8 /I

Pattern: # of images: 4 4

MNI =4

Figure 4: MNI measure can over-estimate count of
patterns as it ignores partial overlap.

from different nodes. Now we introduce a support measure
that is even smaller than MI but requires more time to com-
pute. The central idea is related to the well-known vertex
cover problem.

Definition 29. A vertex cover of H is a subset of V' that
intersects with every edge of H. A minimum vertex cover
is a vertex cover with the smallest cardinality.

In the vertex cover problem, we seek a small number of
items that together represent an entire population. For-
mally, we are given a set of subsets S = {s1,s2, - ,8m} of
the universal set U = {1,2,--- ,n} , and we seek the small-
est subset T' C U such that each subset s; contains at least
one element of T'.

Under the occurrence/instance hypergraph framework, we
can transform the minimum vertex cover to a support mea-
sure that gives reasonable count of occurrences/instances.

Definition 30. Given pattern P in data graph G, and
its occurrence hypergraph H O, Let S; denote the set of
vertex images of each occurrence f; of pattern p, that is
S; = {fi(v) : f; is an occurrence of P in G and v € Vp}, the
union of them as U = Uj%, S;, and a vertex cover V = {v; C
U:8;NV #0, for any S;}. The minimum vertex cover
based (MVC) support of P in G is defined as

O']\/[VC(P, G) = min |V|
vertex cover VCU
In other words, MVC is defined as the cardinality of a small-
est vertex cover set in the occurrence hypergraph of P in G.
For example, in Figure 4, edges in the occurrence hyper-
gra‘ph are {{13 5}7 {13 6}7 {17 7}7 {17 8}a {27 8}’ {37 8}’ {47 8}}a
and the vertex set { 1, 8} is a minimum vertex cover, hence
omve = 2.
The properties of MVC are discussed below.

THEOREM 4. The MVC measure is anti-monotonic.

PrOOF. We shall show that if pattern P is a superpattern
of pattern p then opve(p, G) > omve(P,G).

Let { fi}izl denote the set of all occurrences of pattern P
and S; = fi(V}), the union of them as U = UéZISi, and a
minimum vertex cover V = {v;}9_, with cardinality d. If
we can show that a subset W of V is a vertex cover for all
occurrences of superpattern P, then obviously d > |W/|. For
any occurrence f; of pattern P in G, there is an occurrence
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Figure 5: An example showing occurrences of a pat-
tern while being extended to a superpattern

fi of pattern p in G, such that f;|, = f{, which implies
fi(Vp) C fi(Ve). If V hits f;(Vp), it must hit f;(Vp). Hence
a minimum vertex cover V' for pattern p is still a vertex
cover for P. Therefore we have d > min |W/|, which implies
ouve(,G) 2 ouve(P,G). O

Please refer to Figure 5 as an illustrative example of the
anti-monotonicity of oarve: when the pattern {v1, v, v3} is
extended to include {v4}, the MVC support is still 1.

THEOREM 5. Given a pattern P and data graph G, we
have

omve(P,G) <omi(P,G)

PROOF. Since o7(P,G) = minger, ¢(T'), there must be
one coarse-grained node that achieve this minimum count
om1, denote this coarse-grained node by 7', and its images by
{fs(T),i=1,2,--- ,1}. It is obvious that a minimum vertex
cover of {fi(T),i =1,2,---,1} is also a vertex cover of all
edges in occurrence hypergraph. Hence onr = |{fi(T),1 =
1,2,---,1}| > size of minimum vertex cover of {f;(T),: =
1,2,--- ,l} > U]V[vc(P, G) O

Now we see that MVC is anti-monotonic, and is bounded
by MI. In Section 4.4, we shall further show that the MVC
measure is actually close to the MIS. As to the computing
efficiency, MVC is unfortunately NP-hard — this is easy to
prove as it essentially involves solving the minimum vertex
cover problem in the occurrence hypergraph. Luckily, in
a k-uniform hypergraph, the best approximate algorithms
achieve a factor k — o(1) approximation under polynomial
time [20]. In summary, MVC returns smaller counts but
requires more time to compute as compared to MI.

4. THE HYPERGRAPH FRAMEWORK

A very interesting result of our work is that existing cate-
gories of support measures (i.e., MNI and MIS), although
constructed from different techniques, can also be incor-
porated into the new hypergraph settings. Therefore, we
have a unified framework that encapsulates all major sup-
port measures mentioned in this paper.

4.1 MNI in Hypergraph Framework

We first show that the MNI support can be easily re-
lated to the occurrence hypergraph and the new MI sup-
port measure. Intuitively, in the hypergraph setting, MNI
support measure itemizes the pattern as individual groups
each containing one pattern node. By revisiting the concept
of coarse-grained node defined in Section 3.1, we see how
ouni(P,G) and its parameterized version oymn1(P,G,k)
can be interpreted in terms of such concepts.

If every node v is only affiliated with coarse-grained node
W = {v}, and let W be a collection of such nodes, we can
re-define oy N1 (P, G) as

ouni(P,G) = min c¢(W),
Wew,
Similarly, if every node v is affiliated with coarse-grained
node W containing k nodes including v, we can also rewrite
ouni(P,G,k) as
ouni(P,G,k) = min ¢(W),
Wew,

The above definitions show connections among oy w1 (P, G),
ouni(P,G,k), and the new support measure oa;(P,G).
Within the hypergraph setting, edges contain images of coarse-
grained nodes, each node has a count of distinct images.
Thus, these support measures are all defined as minimum
count among coarse grained nodes in the hypergraph.

4.2 MIS in Hypergraph Framework

We now show that, MIS, which is defined based on overlap
graphs, can also be mapped to the hypergraph framework.
For that, we shall introduce a new measure in hypergraph
setting and show it is equivalent to MIS.

Definition 31. Given a pattern P and its instance or oc-
currence hypergraph H = (V, E) in data graph G, the max-
imum independent edge set (MIES) support measure
is defined as

omies(H) = max{|E|},
where F is an independent edge set of H.

The overlap graph approach is very similar in spirit to
how dual hypergraph is built. Edges in instance hypergraph
represents instances of a pattern, therefore the MIS support
is equal to the maximum cardinality of independent edge set
of the instance hypergraph. For example, according to the
definition of dual hypergraph, all edges in H% are vertices in
dual H*, and if there are only two edges e; and e; overlaps
at vertex v then there is an edge X, = {e;,¢;} in dual H”
of Hé . Actually, each edge in dual H™ is equivalent to a
clique in the overlap graph. If H* is a simple hypergraph,
then it is the same as the overlap hypergraph introduced in
[18]. However, instead of instance overlap graphs, we focus
on the hypergraph formed by occurrences or instances of
pattern, because we believe they contain more information
which can be interpreted in a number of different ways in
order to find intuitive and computable support measures. As
shown in Figure 2, MIES support measure of the triangular
pattern is 4, for example {e1, ez, €4, e5} forms an maximum
independent edge set. If we construct overlap graph, we
should find out the MIS support measure is also 4.

Within the hypergraph framework, we shall show that
the MIS is equivalent to MIES, and the latter is also anti-
monotonic. To achieve such analysis, an integer program-
ming formulation can be developed. Such formulation also
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Figure 6: The instance hypergraph and its dual for
a small pattern in a data graph

serves as relaxation for reducing computing costs of expen-
sive measures such as MVC and MIES (details in Section
4.3).

Let us start with MIES: we have a variable z(v) for each
vertex v € V indicating whether v is chosen in the vertex
cover or not. The constraints state that for each hyperedge
e at least one vertex in it be chosen and the object is to min-
imize that number of vertices hitting all hyperedges. Now
we can write:

min Z z(v) (1)

veV
> a(v) > 1 Vi )
z(v) € {0,1} Vo 3)

The dual H* of H is a hypergraph whose vertices and
edges are interchanged, so that the vertices are given by
{ei;} and the edges are given by {X,,} where X,, = {e; :
Um € e;j}. Let variable y(v) indicate whether e is in the
independent set or not. The constraints state that for each
hyperedge X only one vertex be chosen and the object is to
maximize that number of independent vertices. Therefore
the dual of minimum vertex cover problem in H is maxi-
mum independent vertex set problem in H™*, which can be
formulated as:

max Z y(e) (4)

eeW
> yle) <1 Vi (5)
y(e) € {0,1} Ve (6)

With above formulations, we can show the MIS support
measure is equivalent in size to MIES.

THEOREM 6. Given a pattern P and data graph G, we
have O'NHEs(P, G) = 0’1\115(137 G)

Hypergraph edges @@@

er: 1 2 3
e2: 6 5 4
€s3: 6 4 8
€4t 10 9 8
es: 11 13 17
€6: 11 16 15
# of images: 4 6 5
MNI = 4

Figure 7: Example shows MINI support measure within
hypergraph framework. Data graph and pattern are
shown in Figure 2

PRrROOF. The problem of finding mazimum independent edge
set in occurrence hypergraph HC is equivalent to finding
maximum independent vertex set in dual hypergraph H™ with
vertices corresponding to edges in HC and vice versa. Al-
though the dual hypergraph and overlap graph can be differ-
ent in their forms, we can show that their sizes of maximum
independent vertex set are the same. We use the linear pro-
gramming techniques to show this equivalence.

In dual hypergraph H™*, MIES is equal to the solution
of mazimum optimization problem (Eq. (4)), while over-
lap graph based MIS is equal to the solution of problem:
max Y .y y(e) subject to y(e)+y(e’) <1, Ve, e’ € X;,Vi
and y(e) € {0,1}, Ve. Figure 6 shows an illustrative exam-
ple of this.

We shall show that, if the constraints of the two mazimum
optimization problems are the same, their solutions shall be
equal to each other. Thus we only need to show that the
equalities y(e1) + y(e2),+--- + ylen) < 1 is equivalent to
y(e) +yle;) <1 for any 1 <i# j <n, when every y(e) is
restricted to {0, 1}.

It is obvious that y(e1) + y(e2),+ - + y(en) < 1 implies
y(ei) +yle;) < 1 for any 1 < 4,5 < n because every y(e)
is non-negative. Hence, we need to prove it is also true the
other way around.

Assume that y(e;) + y(e;) < 1 forany 1 < i # 35 <n
and y(e) is restricted to {0,1}. Without loss of generality,
if there is a e; such that y(e;) =1, then for any other e; we
have y(e;) = 0,5 #i. Hence y(e1)+y(e2), +- -+ylen) < 1.

We obtain onres(P,G) = onmrs (P, G).

O

THEOREM 7. The MIES measure is anti-monotonic.

PrOOF. The proof is obvious since MIES is equivalent to
anti-monotonic MIS. [

4.3 Polynomial Time Relaxation

The relaxation technique transforms an NP-hard opti-
mization problem into a related problem that is solvable in
polynomial time. In addition the solution obtained from re-
laxation gives information about the solution to the original
problem. For example, the solution for a linear program-
ming gives a upper (lower) bound on the optimal solution
to the original maximization (minimization) problem.



In Section 4.2, we have presented the integer programming
transformation of the problems. Based on that, we are ready
to relax the integrability conditions of minimum vertex cover
problem to obtain a linear programming problem.

min Z z(v) (7)

veV
Z z(v) > 1 Vi (8)
0 éx(v) <1 Vv (9)

Likewise, we relax the integrability conditions of maximum
independent edge set problem to obtain a linear program-
ming problem.

max Z y(e) (10)
eeW

D> yle) <1 Vi (11)

0 Sly(e) <1 Ve (12)

Now we can formally define the relaxed versions of the
MVC and MIES measures. We shall also show that they are
both anti-monotonic.

Definition 32. The polynomial-time MV C support mea-
sure of pattern P in graph G is defined as

vpmve = min X,z (v)
x

Definition 33. The polynomial-time MIES support mea-
sure of pattern P in graph G is defined as

VMIES = max Seyle)

THEOREM 8. The polynomial-time MVC support measure
v 1s anti-monotonic.

PROOF. We shall show that v(p,G) > v(P,G) for any
pattern p and its superpattern P in dataset graph G. As-
sume that v = X gxy is a solution to the LP (7-9), that
i8, Y yep, *(W) = 1 for any i and < z(v) < 1 for any v.
For each edge in the occurrence hypergraph E; of P in G,
there must be an edge E; in occurrence hypergraph of p in G
such that E; C E.. Therefore >vem, ©(v) = lgives rise to
ZveE; z(v) > 1 provided that all x values are non-negative.

Finally, because v(P,G) is defined as the minimum value of
> wevs T(v) that satisfy all constraints, we reach the conclu-
ston that v(p, G) = z* > min, L,z(v) = v(P,G). [

THEOREM 9. The linearized mazximum independent edge
set support measure v is anti-monotonic.

PROOF. The proof is similar to that of Theorem 8. We
omit the details here. [

4.4 Bounding Theorems

To explore the relationship among all the support mea-
sures within the new framework, we derive the following
theorems from the classic results in the hypergraph field.
For the following discussions, we want to emphasize that,
since all edges in occurrence (instance) hypergraph are re-
lated to the same pattern, they contain the same number
of vertices which means that occurrence (instance) hyper-
graphs are uniform hypergraphs.

We first study the difference between the MIES and MVC
measures.

THEOREM 10. Given a pattern P containing k nodes, data
graph G, and occurrence hypergraph H = (V, E), we have

omies(P,G) < ouve(P,G) <k-omres(P,G)

PROOF. The first part of the formula can be easily derived
from well-established results of Duality Theorem.

Consider a mazimal independent edge set I of H. Let X
be the set of vertices contained in the edges of H and T be
the cardinality of mazimum independent edge set. Because
every edge has size k, the size of set X is at most k - T.
(Otherwise, those edges are not independent).

Because X is the set of all vertices in this hypergraph, X
intersects with every edge which means X is a vertex cover.
Therefore, the cardinality of minimum vertex cover is less
than that of X, beside we know that onyrv e is the cardinality
of minimum vertex cover, T is assumed to be the maximum
independent set size which is equal to omiEs, the cardinality
of X is at most k-7, hence oyve <k-omrps. O

The above theorem shows that, while MVC measure is
larger than the MIES (that equals MIS according to Theo-
rem 6), the gap between MVC and MIES/MIS is within a
constant factor.

Based on well-established results in linear programing [21],
we obtain the following relationship between oars, omve,
and support measures created from relaxation on constraints
in their corresponding linear programming problems.

THEOREM 11. Given a pattern P, data graph G, and oc-
currence hypergraph H, we have

omres(P,G) < vmres(P,G) = vuve (P, G) < ouve(P,G).

ProOOF. The first and last inequality are directly given by
the definitions of corresponding linear programming prob-
lems. The equality follows from the duality theorems of
linear programming [21]. [

In practice, if each hypergraph vertex is contained in rel-
atively few edges we have a stronger bound between the
original and relaxed versions of MVC.

THEOREM 12. Given a pattern P, data graph G, and oc-
currence (instance) hypergraph H, if every vertex is con-
tained in at most d edges, then we have

O’]\/jvc(P, G) < hl(d + 1)VMVC (P, G)
PROOF. It is proved in [22] therefore we omit the details
here. []

Nevertheless, the results in Theorem 11 show that, by
relaxing the original problem, we further reduce the gap be-
tween MVC and MIES/MIS. Of course, we must emphasize
that the results shown here are obtained in the relaxed prob-
lem settings. Despite the close relationship between vertex
cover and independent edge set in graphs, without the re-
laxation, it is not possible to find a vertex cover under poly-
nomial time and then derive the complementary maximum
independent set.

The comparison between onve, onmr and oy N were ex-
amined in Theorems 3 and 5. Putting all together, we have

OMIS = OMIES S VMIES = Vmve < omve < omr < OMNI

The above formula shows a series of measures that can be
built in the same framework and occupy different locations
of the frequency spectrum.
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4.5 Other Extensions Within the Framework

We believe by adopting the hypergraph settings, we can
utilize resourceful classic hypergraph theorems to advance
further investigations and provide more thoughtful insights
for connections between support measures, or even define
more support measures.

Here we introduce the concept of structural overlap
which can be compared with harmful overlap MIS support
measure. Then we show how the new structural overlap can
be used in the study of support measures.

Definition 34. A structural overlap of occurrences fi
and f2 of pattern P exists if 3 v,w € Vp, satisfying that
either v and w are contained in a transitive subgraph of
pattern P or v = w, such that fi(v) = fa(w) € f1(Ve) N
f2(Ve).

Note that structural overlap is different from harmful over-
lap, illustration examples are given in Figures 8 and 9. In
Figure 8, occurrences g1 and g2 are structural overlap but
not harmful overlap, and occurrences g1 and g3 are both
structural and harmful overlap. In Figure 9, the two oc-
currences fi; and fo are harmful overlap but not structural
overlap, f2 and f3 are neither structural nor harmful overlap
but simple overlap. We can also find out that fi; and f3 are
overlap in sense of simple, structural and harmful overlap.
Figure 9 explains how harmful and structural overlap are
different from simple overlap. Even though the occurrences
f1 and f2 overlap on the vertices 4, Fiedler and Borgelt [5]

argue that they do not have an occurrence of a graph with
a single vertex as a common ancestor. In other words, they
are not occurrences of the same vertex in the given pattern.
Therefore the two occurrences cannot be constructed from
the same occurrence of a single vertex, which is then ex-
tended in corresponding ways, and the two occurrences have
to be built from two different occurrences of a single vertex.
Hence the two occurrences are not harmful overlap. A sim-
ilar logic applies to our structural overlap here. Although
they share the same vertex 4, because the two occurrences
of vertex 4 have different ancestors that are not topological
identical, the two occurrences of vertex 4 serve different role
in the given subgraph. As a consequence, there were two
occurrences for any ancestors of these occurrences and thus
the support has always been 2, that is to say, they are not
considered overlap in structural overlap sense either.

An apparent difference between structural overlap and
harmful overlap can also be shown in Fugure 9, in which
two occurrences fi1 and fo are considered harmful overlap
but not structural overlap. That is because harmful over-
lap allows overlap between occurrences of various ancestors
without fully consider they topological properties. While
structural overlap addresses overlap of occurrences of struc-
tural identical vertices, i.e. vertices in a transitive subgraph
of the given pattern. In this sense, structural overlap better
explains for the topological structure of pattern occurrences.

Moreover, the concept of structural overlap originally came
from MI support measure. By observation that MNI does
not recognize symmetric nodes in pattern, we group nodes
that are symmetric to each other together so that the group
images can reflect occurrence overlap.

The concept of structural overlap can be used in various
ways to help find frontier to explore in support measure
theory. For example, instead of simple overlap, one can use
structural overlap to decide whether two occurrences (in-
stances) overlap, and then proceed to construct overlapping
graph. The resulted overlap graph that is sparser than the
one generated from simple overlap. Consequently, user can
use MIS, MCP, other measures to obtain count of pattern
occurrences (instances). In the hypergraph setting, besides
its close connection to MI support measure, structural over-
lap can also be used to find out if edges overlap.

S. RELATED WORK

The frequent subgraph mining (FSM) problem is to find
subgraphs in a data graph, and them enumerate all sub-
graphs with support (or frequency) above some minimum
support threshold. FSM can be divided into two categories:
finding frequent patterns in transactional data graph (a graph
database comprising multiple small graphs) and a single
large data graph. In the past years, fruitful results have
been published in the graph-transaction setting: a few rep-
resentative publications include Borgelt and Berthold [23],
Yan and Han [13, 14], Inokuchi et al. [24], Hong et al. [26],
Huan et al. [27], Kuramochi and Karypis [25]. Although
FSM in a single large graph setting has been studied (e.g.,
Kuramochi and Karypis [29, 12], Elseidy et al. [4]), it re-
ceives less attention. The reason for that is that it is more
challenging in both stages of finding pattern occurrence in
large data graph and computing support.

Related to the problem of support counting in a single
graph setting, currently there are two major approaches.
The first one is well-established overlap graph based sup-



port measure, which was first introduced in Vanetik [11]
and its formal definitions were given in Vanetik et al. [30]
together with proofs for the sufficient and necessary condi-
tions required for overlap graph based measure to be anti-
monotonic. Several variations and extensions of the MIS
measure were also proposed and analyzed. Those include ex-
act and approximate MIS measures presented by Kuramochi
and Karypis [12], and overlap graph based MCP by Calders
et al. [31]. In [31], the authors also propose the Lovasz
measure by using the theta function that is proven to be
bounded between MIS and MCP. This is very similar in
nature to another measure named Schrijver graph measure
[32]. A relaxation of overlap graph based MIS is given in
Wang et al. [18].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new framework for study-
ing support measures in frequent subgraph mining. This
framework transforms pattern and data graph into hyper-
graphs containing occurrences and instances of the pattern
as well as information of the original graph, in contrast to
existing overlap graph techniques that only contain the lat-
ter. By doing this, state-of-art hypergraph theorems can
provide theoretical explanations to interpret the relation-
ship between occurrences (mapped as edges in hypergraph).
Under the new hypergraph setting, encouraging results are
achieved including the linear-time MI measure that returns
counts closer to pattern instance, the MVC measure that
is very close to the MIS, and the MIES measure that is an
equivalent version of MIS under the hypergraph framework.
Furthermore, the MVC measure can be approximated by
polynomial time algorithm within a constant factor while
MIS measure does not have this privilege.

With the hypergraph-based framework, there are abun-
dant opportunities for interesting theoretical and experi-
mental research. In particular, explorations in the following
directions are worth immediate attention. (1) New overlap
concepts can be investigated, as we have briefly mentioned in
Section 4.5; (2) More support measures can be designed that
fill the gap between MVC and MI. For example, it would
be useful to have a support measure with super-linear time
complexity but is smaller than the counts of MI; We can also
explore the design of variations of MI that utilize a multitude
of algebraic properties of pattern to find the transitive ver-
tex set; (4) Inclusion of other desirable features in the design
of support measure. One important example is called addi-
tiveness, meaning the computing can be done in a parallel
manner therefore it brings great value to the implementa-
tion of the theoretical results; and (5) More user control can
be introduced into the framework in defining and selecting
support measures for different applications.
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