
WHEN DESIGNING AN experiment for 

a study, there are many choices to make, 

such as: what design factors to consider, 

which levels of the factors to use and 

which model to focus on. One aspect of de-

sign, however, is often left unquestioned: 

the size of the experiment. 

When learning about design of experi-

ments, problems are often posed as “select 

a design for a particular objective with N 

runs.” It’s tempting to consider the design 

size as a given constraint in the design-

selection process. 

If you think of learning through 

designed experiments as a sequential 

process, however, strategically planning 

for the use of resources at different stages 

of data collection can be beneficial: Saving 

experimental runs for later is advanta-

geous if you can efficiently learn with less 

in the early stages. Alternatively, if you’re 

too frugal in the early stages, you might 

not learn enough to proceed confidently 

with the next stages. Hence, choosing the 

right-sized experiment is important—not 

too large or too small, but with a thought-

ful balance to maximize the knowledge 

gained given the available resources. 

It can be a great advantage to think 

about the design size as flexible and 

include it as an aspect for comparisons. 

Sometimes you’re asked to provide a 

small design that is too ambitious for 

the goals of the study. If you can show 

quantitatively how the suggested design 

size might be inadequate or lead to 

problems during analysis—and also offer 

a formal comparison to some alternatives 

of different (likely larger) sizes—you may 

have a better chance to ask for additional 

resources to deliver statistically sound 

and satisfying results.

14-run design example
We were recently approached by an 

engineering colleague who wanted us to 

suggest a 14-run design for a screening 

experiment involving seven factors in 

which the primary goal was to estimate 

the main effects model. There was a 

concern, however, that some two-way 

interactions or curvature for at least one 

factor might exist. 

An easy option would be to create a 

computer generated D-optimal design with 

some statistical software that allows for a 

good estimation of the model parameters. 

In recent years, however, there has been 

discussion on the danger of an oversim-

plified decision for finding an optimal 

design based on only one criterion and 

the benefits of looking at multiple criteria 

when examining the appropriateness and 

desirability of designs for the goals of our 

experiment.1-3 

In this case, we thought that given the 

constraints of the problem, a 14-run design 

might be ambitious to accomplish all that 

the engineer wanted. So we created four 

alternative designs (labeled 14r, 15rCR, 

15DSD and 16r) in JMP4 to present as 

potential solutions:

•	 14r: A 14-run D-optimal design.

•	 15rCR: A 15-run design (consisting of 

the 14-run design above with one cen-

ter point added).

•	 15DSD: A 15-run definitive screening 

design.5

•	 16r: A 16-run D-optimal design (a non-

regular design).6

As statisticians, our goal was not to 

provide a single answer, but to lead the 

discussion of alternatives so the engineer 

was informed to make a good decision to 

meet the study’s needs. 

In this column, we examine different 

criteria that should be balanced with cost 

when evaluating a design, and compare 

the four candidate designs’ performance 

based on these criteria. Next month, 

we’ll cover how to use these quantitative 

evaluations on multiple aspects of a good 

design to make a final decision and justify 

the choice.

Design comparisons
To compare the designs, we considered 

traditional design diagnostics, evaluated 

anticipated power for different-sized coef-

ficients, looked at the aliasing structure of 

different terms in the model, considered 

the ability of designs to identify curvature 

and compared the anticipated prediction 

variance for new observations throughout 

the design space. 

Understanding these different perfor-

mance aspects in the context of the de-

sign size can provide insight into whether 

a design is well-suited for the goals and 

expected outcomes of an experiment. 

Many of the numerical and graphical 

summaries that follow are available in 

the statistical software JMP,7 with a new 

functionality to compare multiple designs 

added in JMP 13.

A first category of comparison consid-

ers alphabetic optimality criteria,8 which 

have been the traditional choice for single-

number summaries to characterize the 

performance of a design. They focus on 

good estimation of the model parameters 

(D- and A-optimality) or good prediction 

of new observations (G- and I-optimality). 

We initially considered the main-effects 

model because our primary interest is in 

estimating the main effects of all of the 

factors. The left side of Table 1 (p. 46)
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shows the relative performance of the 

four designs compared to the 14r design 

with the originally requested design size. 

Values greater than one mean that the 

alternative design performs better for that 

criterion than 14r. We also included a cost-

efficiency that compares the relative size 

of the designs. Clearly, because all of the 

other designs are larger than the 14r, their 

cost-efficiencies are less than one. 

Looking across the D-, A-, G- and I-effi-

ciencies, the general pattern is that larger 

designs perform better. This matches what 

would be expected: Collect more data and 

you will be able to learn more. The excep-

tion is the 15DSD, which does not perform 

as well for any alphabetic optimality 

criteria.

Evaluating the power of designs
Next, we considered the power of each 

design, which summarizes the ability to 

find a particular effect of a given size 

statistically significant during the analysis 

stage. Because all four designs are sym-

metric in how well they estimate all the 

main effects, looking at the performance 

for any individual main effect can be ap-

plied to all of the seven main effect terms 

in the model. 

Figure 1 shows power curves for dif-

ferent sizes of the main effects for the 

four designs, assuming all have the same 

standard error (s). The x-axis shows the 

effect size of the main effects, which is 

measured by its relative size to s (that is, 

effect size equals one if the main effects 

equal s) All designs start with 5% power 

(equal to the significance level) for zero 

main effects, and the power increases as 

the size of main effects increases until 

all designs reach 100%  power for finding 

main effects of at least 1.5s.

There is an obvious difference, how-

ever, in the power of the four designs for 

detecting small to moderate-sized effects 

(less than 1.5s) in a general pattern as 

16r>15rCR≈14r>15DSD. At an effective 

size of one, for example, the power values 

from top to bottom are 0.937 (16r), 0.877 

(15rCR), 0.858 (14r) and 0.780 (15DSD). 

This means that for an effect of this size, 

there is a 93.7% chance that the 16r will 

find it statistically significant (with a p-val-

ue less than 0.05), while only a 78% chance 

that the 15DSD will find it significant. 

Correlation considerations
Another consideration is how well the 

designs can estimate different potential 

terms in a larger model. For example, you 

might want to look for possible two-way 

interactions that are active and be able 

to identify likely candidates that influ-

ence the response without these effects 

being confounded with other effects in the 

model. 

To understand the correlation’s struc-

ture, you can examine a color map of the 

individual correlations. Figure 2 shows 

this plot that displays the absolute values 

of the pairwise correlations between all 

Power summary   /   FIGURE 1
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significant at the 5% level (that is, p-values less than 0.05) for the four designs.

Designs

Design diagnostics Average correlation

D-eff. A-eff. G-eff. I-eff.
Cost-
eff.

Main × 
main

Main × 
inter.

Inter. × 
inter.

14r 1 1 1 1 1 0.059 0.231 0.164

15rCR 1.009 1.009 1.003 1.021 0.933 0.059 0.231 0.164

15DSD 0.841 0.793 0.791 0.844 0.933 0.167 0 0.276

16r 1.174 1.200 1.155 1.200 0.875 0 0.102 0.071

Comparison of several quantitative 
measures of the four designs   /   TABLE 1

eff. = efficiency 
inter. = interactions
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terms in a first-order model with all two-

way interactions for the four designs. The 

ideal color is blue, which corresponds 

to small correlations. The darkest blue 

means the terms are uncorrelated, and 

these effects can be estimated separately 

from each other. White represents moder-

ate correlations, while pink and red indi-

cate pairs of effects in which there might 

be concern about being able to separate 

the contributions. 

The top-left corner (7 x 7 block) shows 

the main x main correlations. The top 

right (7 x 21) and bottom left (21 x 7) 

rectangles show the correlations between 

main effects and two-way interactions, 

while the bottom-right corner (21 x 21 

block) summarizes interaction x interac-

tion pairs. Note that all designs have red 

diagonal elements because all terms have 

correlation one with themselves. 

When you compare the four designs, 

overall impressions are that the 14r and 

15rCR designs have small fractions of dark 

blue (uncorrelated pairs of effects). The 

15DSD and 16r designs have a larger frac-

tion of dark blue with the 15DSD having 

the entire main x interaction blocks being 

uncorrelated. The 16r design has some 

moderate white values, but the majority of 

pairs are uncorrelated, and it is the only 

design that has main effects completely 

unconfounded. The 15DSD has the largest 

absolute correlations for some pairs of 

terms with some pink shades in the inter-

action x interaction block. 

To summarize over different groups 

of terms in the color map, the right side 

of Table 1 shows the average absolute 

correlation for between main effects (the 

top-left diagonal block), main effects with 

two-way interactions (the two off-diagonal 

blocks) and between two-way interac-

tions (the bottom-right diagonal block). It 

should be clear that two similar averages 

in different designs could be achieved 

through different structures. You might 

have a design with a few large correlations 

and many uncorrelated pairs that could 

have a similar average to a design with 

all small correlations. Hence, the plot in 

Figure 2 can provide more details about 

how these averages were obtained that 

aren’t possible to see from just Table 1. 

In terms of the average correlations, the 

16r design is best for the main x main and 

interaction x interaction pairs, while the 

15DSD is best for main x interaction pairs. 

The 16r design is quite appealing without 

pink or red squares and many blues. But 

this comes at the cost of using the largest 

design. The remaining three designs have 

more correlated pairs, with the 15DSD 

having some interaction x interaction 

pairs with moderately large correlations 

(shown in pink).

Predicting new response values
Next, consider the precision of the designs 

to predict new observations throughout 

the design space for values of any factor 

between (-1 and +1). The fraction of de-

sign space (FDS) plot9 shows a cumulative 

distribution of the prediction variances 

throughout the seven-dimensional design 

space. Note the FDS plot is an efficient 

way of understanding the precision of pre-

diction across any dimension or shaped 

design space. 

The ideal design has a relatively flat 

Correlation color map for 14r, 15rCR, 
15DSD and 16r designs   /   FIGURE 2
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Note: This shows the quantiles of the prediction variance across the seven-dimensional design region 
for factor level values in [-1 and +1] for the four designs.

curve (similar prediction for all locations 

in the design space) with small values. 

All of the designs have a best-prediction 

variance a bit smaller than 0.1, while the 

worst-prediction variance is for the 15DSD 

with a maximum value near 0.7. If you look 

at the median prediction variance (x-axis 

at 0.5), the four designs have the following 

values: 0.206 (16r) < 0.244 (15rCR) ≈ 0.244 

(14r) < 0.286 (15DSD). 

Clearly, to predict the response for a 

particular combination of factor levels, 

having as much precision as possible is 

beneficial. Not surprisingly, the largest 

design yields the most precision, and the 

FDS plot helps quantify the differences 

between choices.

Assessing curvature
Finally, consider the ability of the designs 

to assess curvature in the underlying  

response. Designs with only two levels  

(-1 and +1) for each factor (such as the  

14r and 16r designs) are unable to make 

any determination of the presence or 

absence of curvature in the form of a qua-

dratic term in the model. 

The 15rCR design has a single center 

run, which allows for an informal check 

of curvature of all of the factors simul-

taneously—namely, you could examine 

whether the value at the center run ap-

pears to match the estimated value of the 

response based on the chosen model. If 

it seems too different, you would suspect 

that at least one quadratic term should be 

added, but you would have no ability to 

decide which factors are associated with 

it unless more experimental data were col-

lected. The only design that can evaluate 

all of the quadratic effects separately is the 

15DSD. Hence, on this aspect, the defini-

tive screening design provides a substan-

tial advantage.

Understanding differences
Clearly, there are numerous trade-offs to 

consider when evaluating a design, and 

the four designs being compared have dif-

ferent strengths and weaknesses, as well 

as different associated costs. Comparing 

alternatives with quantitative summaries 

helps to understand the differences to 

make more-informed decisions. 

Next month, we’ll use what the engineer 

knows about the response and describe 

how to frame a compelling argument for 

a design size to match the experimental 

goals.  QP
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