WHEN DESIGNING AN experiment for
a study, there are many choices to make,
such as: what design factors to consider,
which levels of the factors to use and
which model to focus on. One aspect of de-
sign, however, is often left unquestioned:
the size of the experiment.

When learning about design of experi-
ments, problems are often posed as “select
a design for a particular objective with N
runs.” It’s tempting to consider the design
size as a given constraint in the design-
selection process.

If you think of learning through
designed experiments as a sequential
process, however, strategically planning
for the use of resources at different stages
of data collection can be beneficial: Saving
experimental runs for later is advanta-
geous if you can efficiently learn with less
in the early stages. Alternatively, if you're
too frugal in the early stages, you might
not learn enough to proceed confidently
with the next stages. Hence, choosing the
right-sized experiment is important—not
too large or too small, but with a thought-
ful balance to maximize the knowledge
gained given the available resources.

It can be a great advantage to think
about the design size as flexible and
include it as an aspect for comparisons.
Sometimes you're asked to provide a
small design that is too ambitious for
the goals of the study. If you can show
quantitatively how the suggested design
size might be inadequate or lead to
problems during analysis—and also offer
a formal comparison to some alternatives
of different (likely larger) sizes—you may
have a better chance to ask for additional
resources to deliver statistically sound

and satisfying results.
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Best Bang for Your Buck-Part 1

The size of experiments relative to design performance

14-run design example

We were recently approached by an

engineering colleague who wanted us to

suggest a 14-run design for a screening
experiment involving seven factors in
which the primary goal was to estimate

the main effects model. There was a

concern, however, that some two-way

interactions or curvature for at least one
factor might exist.

An easy option would be to create a
computer generated D-optimal design with
some statistical software that allows for a
good estimation of the model parameters.
In recent years, however, there has been
discussion on the danger of an oversim-
plified decision for finding an optimal
design based on only one criterion and
the benefits of looking at multiple criteria
when examining the appropriateness and
desirability of designs for the goals of our
experiment.'?

In this case, we thought that given the
constraints of the problem, a 14-run design
might be ambitious to accomplish all that
the engineer wanted. So we created four
alternative designs (labeled 14r, 15rCR,
15DSD and 16r) in JMP* to present as
potential solutions:

e 14r: A 14-run D-optimal design.

e 15rCR: A 15-run design (consisting of
the 14-run design above with one cen-
ter point added).

e 15DSD: A 15-run definitive screening
design.’

e 16r: A 16-run D-optimal design (a non-
regular design).

As statisticians, our goal was not to
provide a single answer, but to lead the
discussion of alternatives so the engineer
was informed to make a good decision to
meet the study’s needs.

In this column, we examine different
criteria that should be balanced with cost
when evaluating a design, and compare
the four candidate designs’ performance
based on these criteria. Next month,
we'll cover how to use these quantitative
evaluations on multiple aspects of a good
design to make a final decision and justify

the choice.

Desigh comparisons

To compare the designs, we considered
traditional design diagnostics, evaluated
anticipated power for different-sized coef-
ficients, looked at the aliasing structure of
different terms in the model, considered
the ability of designs to identify curvature
and compared the anticipated prediction
variance for new observations throughout
the design space.

Understanding these different perfor-
mance aspects in the context of the de-
sign size can provide insight into whether
a design is well-suited for the goals and
expected outcomes of an experiment.
Many of the numerical and graphical
summaries that follow are available in
the statistical software JMP,” with a new
functionality to compare multiple designs
added in JMP 13.

A first category of comparison consid-
ers alphabetic optimality criteria,® which
have been the traditional choice for single-
number summaries to characterize the
performance of a design. They focus on
good estimation of the model parameters
(D- and A-optimality) or good prediction
of new observations (G- and I-optimality).

We initially considered the main-effects
model because our primary interest is in
estimating the main effects of all of the
factors. The left side of Table 1 (p. 46)
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shows the relative performance of the

Comparison of several quantitative
measures of the four designs / ms.e1

four designs compared to the 14r design

with the originally requested design size.

Values greater than one mean that the Design diagnostics

alternative design performs better for that

Cost- Main x | Main x | Inter. x
criterion than 14r. We also included a cost- D-eff. | A-eff. | G-eff. | I-eff eff. main | inter. | inter.
efficiency that compares the relative size 14r 1 1 1 1 1 0.059 0.231 0.164
of the designs. Clearly, because all of the 15fCR | 1.009 | 1.009 | 1.003 | 1.021 | 0933 | 0059 | 0.231 | 0.164
other designs are larger than the 14r, their 15DSD | 0.841 | 0.793 | 0791 | 0.844 | 0.933 | 0.167 0 0.276
costefficiencies are less than one. 16r 1174 | 1200 | 1155 | 1.200 | 0.875 0 0.102 | 0.071

Looking across the D-, A-, G- and I-effi-

ciencies, the general pattern is that larger eff. = efficiency

. . inter. = interactions
designs perform better. This matches what

would be expected: Collect more data and

you will be able to learn more. The excep-
tion is the 15DSD, which does not perform
as well for any alphabetic optimality

main effects, looking at the performance
for any individual main effect can be ap-
plied to all of the seven main effect terms

(equal to the significance level) for zero
main effects, and the power increases as

the size of main effects increases until

criteria. in the model. all designs reach 100% power for finding

Figure 1 shows power curves for dif- main effects of at least 1.50.
Evaluating the power of designs

Next, we considered the power of each

ferent sizes of the main effects for the There is an obvious difference, how-

four designs, assuming all have the same ever, in the power of the four designs for

design, which summarizes the ability to standard error (o). The x-axis shows the detecting small to moderate-sized effects

find a particular effect of a given size effect size of the main effects, which is (less than 1.50) in a general pattern as
16r>15rCR~14r>15DSD. At an effective
size of one, for example, the power values
from top to bottom are 0.937 (16r), 0.877
(15rCR), 0.858 (14r) and 0.780 (15DSD).
This means that for an effect of this size,
there is a 93.7% chance that the 16r will

find it statistically significant (with a p-val-

statistically significant during the analysis measured by its relative size to o (that is,

stage. Because all four designs are sym- effect size equals one if the main effects

metric in how well they estimate all the equal o) All designs start with 5% power

Power summary / FiGure 1

1.04 —4r ue less than 0.05), while only a 78% chance
— ErDCs% that the 15DSD will find it significant.
—16r
0.8 . . .
Correlation considerations
Another consideration is how well the
0.6 - designs can estimate different potential
g terms in a larger model. For example, you
g might want to look for possible two-way
0.4 interactions that are active and be able
to identify likely candidates that influ-
0.2 ence the response without these effects
being confounded with other effects in the
model.
0 To understand the correlation’s struc-

T T T T T
0 0.5 1 1.5 2

Effect size

ture, you can examine a color map of the
individual correlations. Figure 2 shows

Note: This shows the estimated probability of finding any main effect of a given size statistically this plot that displays the absolute values

significant at the 5% level (that is, p-values less than 0.05) for the four designs. of the pairwise correlations between all
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terms in a first-order model with all two-
way interactions for the four designs. The
ideal color is blue, which corresponds

to small correlations. The darkest blue
means the terms are uncorrelated, and
these effects can be estimated separately
from each other. White represents moder-
ate correlations, while pink and red indi-
cate pairs of effects in which there might
be concern about being able to separate
the contributions.

The top-left corner (7 x 7 block) shows
the main x main correlations. The top
right (7 x 21) and bottom left (21 x 7)
rectangles show the correlations between
main effects and two-way interactions,
while the bottom-right corner (21 x 21
block) summarizes interaction x interac-
tion pairs. Note that all designs have red
diagonal elements because all terms have
correlation one with themselves.

When you compare the four designs,
overall impressions are that the 14r and
15rCR designs have small fractions of dark
blue (uncorrelated pairs of effects). The
15DSD and 16r designs have a larger frac-
tion of dark blue with the 15DSD having
the entire main x interaction blocks being
uncorrelated. The 16r design has some
moderate white values, but the majority of
pairs are uncorrelated, and it is the only
design that has main effects completely
unconfounded. The 15DSD has the largest
absolute correlations for some pairs of
terms with some pink shades in the inter-
action x interaction block.

To summarize over different groups
of terms in the color map, the right side
of Table 1 shows the average absolute
correlation for between main effects (the
top-left diagonal block), main effects with
two-way interactions (the two off-diagonal
blocks) and between two-way interac-
tions (the bottom-right diagonal block). It
should be clear that two similar averages
in different designs could be achieved
through different structures. You might

have a design with a few large correlations

Correlation color map for 14r, 15rCR,
15DSD and 16r designs / ricure 2

and many uncorrelated pairs that could
have a similar average to a design with

all small correlations. Hence, the plot in
Figure 2 can provide more details about
how these averages were obtained that
aren’t possible to see from just Table 1.

In terms of the average correlations, the
16r design is best for the main x main and
interaction x interaction pairs, while the

15DSD is best for main x interaction pairs.

The 16r design is quite appealing without
pink or red squares and many blues. But
this comes at the cost of using the largest
design. The remaining three designs have
more correlated pairs, with the 15DSD
having some interaction x interaction

pairs with moderately large correlations
(shown in pink).

Predicting new response values
Next, consider the precision of the designs
to predict new observations throughout
the design space for values of any factor
between (-1 and +1). The fraction of de-
sign space (FDS) plot’ shows a cumulative
distribution of the prediction variances
throughout the seven-dimensional design
space. Note the FDS plot is an efficient
way of understanding the precision of pre-
diction across any dimension or shaped
design space.

The ideal design has a relatively flat
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curve (similar prediction for all locations
in the design space) with small values.

All of the designs have a best-prediction
variance a bit smaller than 0.1, while the
worst-prediction variance is for the 15DSD
with a maximum value near 0.7. If you look
at the median prediction variance (x-axis
at 0.5), the four designs have the following
values: 0.206 (16r) < 0.244 (15rCR) = 0.244
(14r) < 0.286 (156DSD).

Clearly, to predict the response for a
particular combination of factor levels,
having as much precision as possible is
beneficial. Not surprisingly, the largest
design yields the most precision, and the
FDS plot helps quantify the differences
between choices.

Assessing curvature

Finally, consider the ability of the designs
to assess curvature in the underlying
response. Designs with only two levels
(-1 and +1) for each factor (such as the
14r and 16r designs) are unable to make

any determination of the presence or
absence of curvature in the form of a qua-
dratic term in the model.

The 15rCR design has a single center
run, which allows for an informal check
of curvature of all of the factors simul-
taneously—namely, you could examine
whether the value at the center run ap-
pears to match the estimated value of the
response based on the chosen model. If
it seems too different, you would suspect
that at least one quadratic term should be
added, but you would have no ability to
decide which factors are associated with
it unless more experimental data were col-
lected. The only design that can evaluate
all of the quadratic effects separately is the
15DSD. Hence, on this aspect, the defini-
tive screening design provides a substan-
tial advantage.

Understanding differences
Clearly, there are numerous trade-offs to
consider when evaluating a design, and

Fraction of design space plots / ricures
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Note: This shows the quantiles of the prediction variance across the seven-dimensional design region
for factor level values in [-1 and +1] for the four designs.

the four designs being compared have dif-
ferent strengths and weaknesses, as well
as different associated costs. Comparing
alternatives with quantitative summaries
helps to understand the differences to
make more-informed decisions.

Next month, we’ll use what the engineer
knows about the response and describe
how to frame a compelling argument for
a design size to match the experimental
goals.
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