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ABSTRACT With increasingly constrained budgets, it is now becoming more
desirable to get more information from each experiment and to have an
intentional strategy for selecting designs for split-plot experiments that balance
multiple competing objectives. Lu and Anderson-Cook (2014) developed a
decision-making process for selecting an optimal split-plot design (SPD) for
flexible objectives/criteria based on a Pareto front. The method allows
exploration of all contending non-inferior choices with their trade-offs to
enable an informed and justifiable decision based on understanding the
potential impact of subjective aspects. This article considers a case study of a
mixture-process experiment that seeks an SPD with a good balance of precise
model coefficient estimates as measured by D-efficiency and low experimental
cost, which is a function of both the time required to run the experiment as
well as the financial cost. The D-efficiency is a function of the whole plot-to-
subplot error variance ratio, a quantity that is typically not known a priori when
the choice of a design must be made. The Pareto front approach is applied and
graphical tools are used to quantify the trade-offs between criteria and
robustness of design performance to different user-selected preferences for the
criteria. A substantially different pattern of design performance robustness to
the uncertainty of the specified variance ratio is demonstrated compared to
non-mixture experiments.

KEYWORDS computer-generated designs, restricted randomization, multiple design cri-
teria, design optimization, D-optimality, cost, Pareto front, point exchange search algorithm

INTRODUCTION

We consider a film manufacturing example in which the experimenter wishes
to examine the relationship between the response (a measure of film quality)
and five input factors: three whole plot/mixture factors (X1, X2, X3) and two
subplot/process factors (P1, P2). In producing the film, a combination of ingre-
dients (the mixture factors) is mixed to form a roll. The roll is then cut into
pieces and the subplot factor combinations are randomly applied to the pieces.
Considerable time is needed in the formulation of each whole plot treatment
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combination (i.e., the mixture combinations) and thus
the mixture variables are treated as hard-to-change.
Measuring film quality is expensive and the measure-
ment process represents the majority of experimental
cost. The experimenter wishes to balance both good
model parameter estimation and reasonable cost when
choosing an optimal split-plot design (SPD) for evalu-
ating a 12-term Scheff�e mixture model with three linear
whole plot/mixture main effects, three two-factor inter-
actions among the mixture variables and the six two-
factor, mixture-by-process interactions of the form

yD
X3

iD 1

biXi C
X3

i< j

bijXiXj C dWP C
X3

iD 1

X2

kD 1

aikXiPk C e:

Note that because of the constraint that the sum of the
ingredients must equal one, the process main effect
terms are not included to ensure an estimable model.

The experimenter identified a feasible candidate set
of seven mixture locations and four process locations
as shown in Figure 1. Because the model contains
terms for main effects and two-factor interactions for
the whole plot mixture factors, levels [0, 0.5, 1] were
considered as well as the overall centroid of the mixture
space. For the subplot process factors, only two-way
interactions with the whole plot factors are included in
the model and hence high and low levels [C1 and ¡1]
were deemed sufficient for the candidate set.

Preliminary data from a pilot study suggested that
the whole plot–to-subplot error variance ratio was 5,
but there was considerable uncertainty about this
estimate. Consequently, subject matter experts pro-
vided a range of 1 to 10 as a bound for the true vari-
ance ratio. The D-criterion for SPDs (formally
defined in the next section) depends upon the user
specifying the whole plot–to-subplot error variance
ratio d; hence, a D-optimal design for one value of d
may not necessarily be D-optimal for another value.
In this case, we consider the approach of evaluating
the robustness of different designs across the range of
anticipated d values. If designs can be identified to
perform similarly across the entire range then focus
can return to the d D 5 point estimate value. If
designs are not robust for different error variance
ratios, then trade-offs for different values will need to
be considered explicitly.

This screening design was part of a sequence of
experiments for understanding the response as a
function of the factors, so any savings at this prelimi-
nary stage should enable additional resources to be
available at later stages. The experimenter determined
that the total number of observations, N, should be
between 20 and 25, and the number of whole plots,
#WP, should range between 7 and N ¡ 1, where the
lower bound of 7 was selected because there are six
whole plot terms in the model and it was desirable
to have at least one degree of freedom for estimating
the whole plot error variance. Because there was
some flexibility about the overall size of the experi-
ment, the relative advantages of a slightly smaller or
larger experiment could be considered in the context
of improving design performance within the cost and
time constraints. In summary, the overall require-
ments for an appropriate design were as follows: (1)
good D-efficiency; (2) robustness across the entire
range of d values (i.e., 1� d � 10); (3) a manageably
small #WP; and (4) a small design size, N.

The remainder of the article is organized as follows:
the next section provides some background about
SPDs, optimal design construction and evaluation, as
well as the Pareto front optimization approach for bal-
ancing multiple objectives. The following section
presents the process for populating the Pareto front
using an adapted point exchange algorithm and then
selecting a design that best matches the priorities of the
experimenter. The last section presents some general
conclusions and discussion.

FIGURE 1 Candidate space of 28 design locations. Clusters of

four circles are centered at each of the seven potential whole plot

mixture locations and each circle represents a C/¡ combination

of the process factors, P1 and P2 (for example, lower left circle in

the top cluster represents (X1, X2, X3, P1, P2) D (1, 0, 0,¡1,¡1)).
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BACKGROUND

The Split-Plot Model and the
D-Criterion

In split-plot experimentation, the following linear
mixed model describes the variation in the N £ 1
response vector, y,

yDXbCZdC e: [1]

Regarding notation, X is the N £ p design matrix
expanded to the model form for the p model parame-
ters, b, excluding the intercept, if applicable; Z is an
N £ #WP classification matrix of ones and zeroes
where the ijth entry is 1 if the ith observation (i D
1, . . . , N) belongs to the jth whole plot (j D 1, . . . ,
#WP); d is a #WP £ 1 vector of random effects where
the elements are assumed independent and identically
distributed (i.i.d.) N.0; s2

wp/ with s2
wp denoting the vari-

ability among whole plots; e is the N £ 1 vector of
residual errors assumed to be i.i.d. N.0; s2

sp/ with s2
sp

denoting the variation among subplot units. It is also
assumed that d and e are independent. Relating the
model in [1] to the mixture-process experiment
described earlier, XD [M jP], where M is of dimension
N £ 6 and includes the linear whole plot mixture set-
tings along with the three two-factor mixture-by-mix-
ture interactions (these interactions are tested at the
whole plot level). The matrix P is of dimension N £ 6
and contains the six two-factor mixture-by-process inter-
action terms. Note that the constraint of the mixture
variables summing to one precludes including an inter-
cept in M and the process main effects in P (due to the
constraint that the sum of all two-factor mixture-by-pro-
cess interactions for each of the process variable equals
its corresponding main effect). For this example, we
assume that there is no interaction among the process
variables. This is a safe assumption for many applica-
tions. However, if there is prior knowledge or pilot data
suggesting otherwise, then the appropriate process-by-
process interaction terms can be added into the model.

The covariance matrix of the responses is

Var.y/DSD s2
wpZZ

0Cs2
spIN

Ds2
sp dZZ

0C IN½ �; [2]

where IN is anN £ N identity matrix and d D s2
wp=s

2
sp.

For simplicity of presentation, we sort the observations
by whole plots, to obtain ZDdiagf1n1 ; � � � ; 1n #WPg,

where 1nj is an nj £ 1 vector of one’s and nj is the size
of the jth whole plot. The diagonal form of Z induces a
block-diagonal structure for the covariance matrix, S,
with S D diag S1; . . .;S#WP

� �
where each nj £ nj

matrix Sj is given by

Sj D
s2
spC s2

wp � � � s2
wp

..

.
} ..

.

s2
wp � � � s2

spC s2
wp

2
664

3
775D s2

sp

1C d � � � d

..

.
} ..

.

d � � � 1C d

2
64

3
75;

and Sj denotes the covariance matrix of responses in
the jth whole plot. Note that the variance of an individ-
ual observation is the sum of the subplot and whole
plot error variances, s2

sp C s2
wp. A popular method for

estimating the variance components is restricted maxi-
mum likelihood (see Searle et al. 1992, chapter 6, for
details on restricted maximum likelihood estimation).

The generalized least squares estimate of the
fixed effects parameters b is given by

b̂D .X0S¡ 1X/¡ 1X0S¡ 1y, with the covariance matrix
of the estimated model coefficients as

Var.b̂/D .X0S¡ 1X/¡ 1: [3]

From [3] we note that the information matrix associ-
ated with the SPD is .X0S¡ 1X/. The D-criterion is
defined as the determinant of the information matrix
and is given by

jI ξð ÞjD jX0S¡ 1XjD j s2
wpC s2

sp

� �
.X0R¡ 1X/j

D .1C d/jX0[dZZ0C IN ]
¡ 1Xj:

[4]

In [4], RD 1
s2wp C s2

sp
S denotes the observational cor-

relation matrix. A design’s D-efficiency is then defined
as j I ξð Þ j 1=pD .1C d/1=p jX0[dZZ0C IN ]

¡ 1X j 1=p.
Since the determinant in [4] is inversely proportional
to the square of the volume of the confidence region
for the estimated regression coefficients, the D-criterion
is a single number summary reflecting the overall preci-
sion of the estimation of b with large values corre-
sponding to lower variances and hence more precise
estimation. A key feature of design optimization when
using the D-criterion for the split-plot case is the fact
that the D value depends on the variance components
ratio, d (Goos 2002), the structure of X, which is a
function of whole-plot levels and the arrangement of
subplot levels within whole plots, and the
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dimensionality of each of the Sj (determined by the
number of subplots in each whole plot).

Optimal Design Construction
and Evaluation

The construction and evaluation of optimal SPDs
have received considerable attention in the literature.
Huang et al. (1998) and Bingham and Sitter (1999,
2001) use minimum aberration criteria for determining
optimal two-level fractional factorial screening split-plot
experiments. Minimum aberration designs achieve the
least amount of departure from an orthogonal design
for a given set of restrictions (e.g., fixed number of
whole plot factors, fixed number of subplot factors,
whole plot size, etc.). Goos and Vandebroek (2001,
2003, 2004) proposed point exchange algorithms for
determining D-optimal split-plot designs. Liang et al.
(2007) developed cost-penalized expressions for D-, G-,
and V-optimality criteria. Jones and Goos (2007) dem-
onstrated a coordinate exchange algorithm with
improved efficiency for selecting D-optimal split-plot
designs over point exchange algorithms. In Goos and
Vandebroek (2003) and Jones and Goos (2007), whole
plot sizes are constrained to be equal but this constraint
is relaxed in Goos and Vandebroek (2001, 2004).
Update formulas for improving the efficiency of point
exchange algorithms involving 4C factors with balanced
or unbalanced whole plot sizes were developed by Arn-
outs and Goos (2010). Smucker et al. (2011) developed
a coordinate exchange algorithm for constructing high
D-efficiency split-plot designs robust to model misspeci-
fication within a specified family of models. Trinca and
Gilmour (2001) proposed designs for restricted random-
ization cases built by strata. Parker et al. (2006) devel-
oped a class of split-plot designs in which the ordinary
least squares estimates of model parameters are equiva-
lent to the generalized least squares estimates. Anbari
and Lucas (1994) considered the G-criterion for compar-
ing competing split-plot designs. Liang, Anderson-
Cook, and Robinson (2006) and Liang, Anderson-
Cook, Robinson, and Myers (2006) considered graphi-
cal techniques for assessing competing split-plot designs.

Though many criteria have been developed for
determining an optimal SPD, rarely does a universally
“best” design exist that outperforms all competitors for
all criteria of interest. A good design that produces reli-
able results under a wide variety of user-specified

objectives is highly desirable. For a summary of impor-
tant design characteristics, see Box and Draper (1975)
and Myers et al. (2009, p. 282). D-efficiency has been
one of the most commonly used criteria for design
selection, which will be considered as the main charac-
teristic of design performance for our particular case
study. In general, there are often other qualities of
interest that should also be considered (see Robinson
and Anderson-Cook 2011).

A unique challenge for selecting an optimal SPD is
that many of the design characteristics associated with
SPDs (including D-optimality) depend on the size of
the generally unknown whole plot–to-subplot variance
ratio, d D s2

wp=s
2
sp. Software for constructing D-optimal

SPDs requires the user to specify a model, a value for d,
and the total number of observations, N. Hence, the
user is often faced with the task of specifying a best guess
of this ratio. However, it is often difficult to precisely
specify a particular value of d, especially when data
from a pilot study on the process are sparse or nonexis-
tent. It is often more realistic to ask the experimenter to
specify a range of possible values for d and this was the
approach taken here because the experimenter was not
confident in completely relying on the pilot data’s sug-
gestion that d D 5. Because the choice of a D-optimal
design may be dependent on this ratio, it is important
to consider this uncertainty during design construction.
Therefore, obtaining a D-optimal design from a statisti-
cal software package for a particular value for d does
not necessarily guarantee good performance, across all
values of d. With multiple objectives considered simul-
taneously, selection of an optimal design should be
based on carefully balancing competing objectives by
examining the trade-offs between the criteria of interest.

The Pareto Approach

Pareto multiple objective optimization has been
used broadly in many disciplines in the past decade.
However, only recently was the Pareto method intro-
duced to the design of experiments paradigm (Lu et al.
2011, 2012; Park 2009). The desirability function (DF)
approach of Derringer and Suich (1980) is currently a
common approach for multiple criterion design opti-
mization. The DF method requires the user to deter-
mine the relative importance of individual criteria of
interest a priori and subsequently combine all criteria
values into a single index based on these priorities. The
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DF approach does not directly consider the trade-offs
between criteria but rather identifies a single best design
by optimizing the summary index. In addition, the DF
solution can depend heavily upon the user-specified
weights, scaling scheme (to convert criteria value onto
the DF scale), and the DF metric form (to integrate
multiple criteria into a single summary). Note that all
of these choices are subjective and require expert
knowledge and/or information on the criteria value
ranges prior to the search for a design. In practice, it is
not unusual for experts to disagree on these choices,
thus making obtaining a single set of weights for the
DF approach problematic.

In this article, we describe the Pareto front approach
by Lu and Anderson-Cook (2014) within the split-plot
setting. The approach assembles a suite of candidate
designs using Pareto optimality (Gronwald et al. 2008;
Kasprzak and Lewis 2001). The approach consists of
two stages: (1) An objective stage focuses on developing
the Pareto frontier (or front) consisting of contending
designs where poor designs have been eliminated and
no remaining designs are strictly better than members
of the set for all criteria; and (2) a subjective stage that
compares the selected designs from the first stage using
weighting combinations that reflect experimenter prior-
ities. This second stage is called the Pareto decision
analysis and involves selecting a subset of designs from
the Pareto front based on examining the trade-offs of
the designs, design performance, and robustness to dif-
ferent weighting schemes.

One major advantage of the approach is that the
computationally intensive optimization search is com-
pleted only once at the start of the process. All subse-
quent analyses are computationally inexpensive using
the results of the single, initial search but allow the user
to have great flexibility when exploring different
weighting choices. The Pareto approach for design
selection was introduced for the completely random-
ized setting in Lu et al. (2011). An adapted point
exchange algorithm for Pareto optimality within the
split-plot setting with fixed and flexible numbers of
whole plots was developed by Lu and Anderson-Cook
(2014).

The identification of the Pareto front, through the
Pareto optimization search process, provides an objec-
tive set of non-inferior choices before introducing any
subjective aspects. It allows the practitioners to see all
of the contending choices and understand the range of
values and trade-offs across the criteria. When there is

uncertainty associated with the subjective choices, the
Pareto approach requires little extra effort to conduct a
sensitivity analysis for evaluating the impacts of subjec-
tive inputs once the Pareto front is identified. It allows
the experimenter to make and evaluate sensible choices
on the weighting and scaling schemes as well as the DF
form. It is important to note that when there are multi-
ple weighting, scaling, and DF form combinations of
interest, the DF approach is computationally expensive
to evaluate because every new setup (combination of
choices) requires a new search.

The key to successfully using the Pareto approach is
to efficiently populate the complete Pareto front. For
this study, we utilized the Pareto aggregating point
exchange for split-plot designs (PAPESPD) algorithm
of Lu and Anderson-Cook (2014). For each design size
and a fixed #WP, parallel searches for many random
starting designs are used to strategically guide the
searches in diverse directions. The use of multiple
weight combinations improves the coverage of the
entire front and prevents the search from getting stuck
at local optima (see Lu and Anderson-Cook [2012] for
more details). Because there may be many isomorphic
designs identified, if two designs are found with exactly
the same values for all of the criteria of interest, only
the first of these is retained. Though the approach uti-
lized here relies on a fixed #WP for each design size,
the PAPESPD can also be implemented to handle a
flexible #WP (Lu and Anderson-Cook 2014).

The second stage, the Pareto decision analysis,
involves ranking the designs on the Pareto front in
terms of the proximity of each design’s criterion vec-
tor to the criterion coordinates associated with the
Utopia point. The Utopia point in the criterion
space has coordinates that are the best possible found
for each criterion from all the searches. Although the
Utopia point usually only exists in a theoretical
sense, it can be used as an “ideal” target to calibrate
closeness based on a chosen metric. A common dis-
tance metric for the Utopia point approach is the
L1-norm formulated as

Min
ξ 2V�

XC

j D 1

jwj fj .ξ/¡ f 0j
� �

j; [5]

which matches the use of an additive desirability func-
tion. In the above formula, V� denotes the set of
designs on the Pareto front, ξ is a design on the front,
fj .ξ/ is the scaled objective or desirability function for
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the jth criterion corresponding to design ξ, and f 0j
denotes the Utopia point value for the jth criterion.
The weights wj in j2 f1, 2, . . . ,Cg reflect the user-
specified preferences of the criteria. If the multiplica-
tive DF is of interest, then it can be converted to an
additive form with a logarithm transformation. This
matches the use of the L1-norm on the log scale of the
Utopia point approach. The choice of which DF form
to use depends on whether the experimenter wants to
severely penalize poor performance of any criterion
(multiplicative DF) or whether stellar performance in
one criterion is thought to be a reasonable trade-off for
very poor performance on the other (additive DF).

Designs that are best for at least one set of weights
can be further screened by (1) studying the robustness
of the designs to ranges of weighting combinations; (2)
examining the individual attributes of each design
along with the trade-offs between criteria among the
designs; and (3) studying the performance of each
design relative to the best possible design for each of
the weighting combinations specified by the experi-
menter as most desirable. The final decision on design
choice is based on the priorities of the study combined
with the relative performance of the most promising
designs. The Pareto approach offers the user a flexible
method for examining important trade-offs between
the multiple design objectives.

FINDING BEST DESIGNS FOR
THE FILM EXAMPLE

We now describe the Pareto front approach as it
applies to the film making design selection problem. We
defined the first two criteria as the D-criterion values
associated with the variance ratios d D 1 and d D 10 and
we denote these as D(1) and D(10) respectively. In terms
of the notation presented previously, f1.ξ/DD.1/ and
f2.ξ/DD.10/. The motivation for considering both D
(1) and D(10) as separate criteria was based on results
from Goos (2002) and Lu and Anderson-Cook (2014),
who demonstrated that the choice of a best design is
dependent on the value of d selected for many split-plot
cases involving continuous factors.

In addition we considered the number of whole
plots, #WP, and the total size of the experiment, N, as
other criteria of interest, and we denote these as f3.ξ/
and f4.ξ/, respectively. The number of whole plots and
the total design size were kept as separate objectives,

because changing the #WP is primarily tied to the time
required to run the experiment, while N is mostly asso-
ciated with the overall cost of the experiment. This dif-
fers from approaches suggested by Bisgaard (2000) and
Liang et al. (2007), who combine the overall cost of
the experiment (including time and financial cost) into
a single measure. Keeping the criteria separate enables
one to see trade-offs between these criteria from differ-
ent options on the Pareto front and to disentangle the
individual contributions from cost and other design
characteristics and evaluate their trade-offs and impact
on decision making.

Objective Phase—Finding
the Noninferior Designs on

the Pareto Front

For the study presented here, each possible compet-
ing design, ξ, is associated with a 4 £ 1 criterion vector,
F.ξ/D .f1.ξ/; f2.ξ/; f3.ξ/; f4.ξ//

0
, where f1.ξ/DD.1/,

f2.ξ/DD.10/, f3.ξ/D#WP , and f4.ξ/DN . Recall that
the first step in the Pareto approach requires the user to
find the set of all non-inferior designs according to the
definition of Pareto optimality. This stage is the com-
putationally expensive stage and to accomplish this in
a computationally efficient manner, we utilized the
PAPESPD of Lu and Anderson-Cook (2014) separately
for each combination of design size, N (where
N ranged from 20 to 25) and #WP (where #WP
ranged between 7 and N ¡ 1) using the criterion
vector F.ξ/D .D.1/;D.10//

0
. Multiple starts were uti-

lized for each combination of N and #WP and the 28
design locations in Figure 1 were considered as the can-
didate set for the point exchange. Once these individ-
ual fronts are generated, the results were combined to
give the overall four-criteria Pareto front. Each of the
two-criteria Pareto fronts was generated using six paral-
lel searches for each random start where the six sets of
weights were chosen to consider criterion weight values
that were nonnegative multiples of 0.2 with the two
weights summing to 1. Each two-criteria front takes
approximately 90 to 190 min to evaluate the different
combinations of N and #WP with 300 random starts.
The decision regarding when to stop the search algo-
rithm (running more random starts will not improve
the Pareto front) was based on monitoring the Pareto
front growth using the scaled hypervolume (the area
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under the Pareto front for a two-criteria case; see Lu
and Anderson-Cook, 2013).

Figure 2a shows a scatterplot of the coordinates of
the criterion vector F.ξ/D .D.1/;D.10//

0
for each of

the Pareto front designs associated with every combina-
tion of N D 20 and #WP D 7–19. From the figure,
note that the optimal #WP for maximizing D-effi-
ciency when N D 20 is 13 for both d D 1 and d D 10.
For #WP less than 13, there is a trade-off between
reducing the time for the experiment (#WP) and the
D-efficiency. From #WP D 7 to 13, using more whole
plots resulted in improved estimation of the model
parameters but at the price of longer experimental
time. For #WP > 13, there is no improvement in the
D-efficiency and the time required to run the experi-
ment continues to increase. Hence, these designs were
not sensible to consider further.

Figure 2b provides a scatterplot of the coordinates
of the criterion vector F.ξ/D .D.1/;D.10//

0
for each

of the Pareto front designs when considering all of
the combinations of N and #WP, with separate lines
for each value of N. The range of D-efficiencies
shown on the left and lower axes differs considerably,
with far more spread in the range of efficiencies for
D(10) [left axis], which ranges between 37% (when
#WP is nearly equal to N) and 100%. On the other
hand, the range of D(1) [bottom axis] only varies
from 67.8 to 100%. This indicates with an

appropriately chosen #WP, the SPD can achieve sub-
stantial improvement in D-efficiency relative to the
completely randomized design (CRD) (note when
#WP D N, the SPD is just a CRD) and the improve-
ment is more dramatic for bigger d values. We note
that the shape of the lines is quite consistent across all
design sizes with nearly constant rates of improvement
in D-efficiency as we increase either N or #WP. In
addition, for each line there is a single best #WP that is
optimal for both D(1) and D(10). This surprising result
differs from what is typical in many split-plot experi-
ments where different #WPs are best for different val-
ues of d. For example, in the Appendix, we show an
example of another split-plot experiment with five con-
tinuous non-mixture factors (three whole plots and two
subplot factors) for N D 20 in Figure A1(a). In this
case, the best #WP differs depending on whether we
consider D(1) or D(10). For D(1), the best #WPs is 10
and 16, for N D 20 (a) and 25 (b), respectively. In con-
trast, the corresponding #WPs that maximize D(10) are
9 and 12, respectively. Note that the robustness of the
optimal mixture-process example to choices of d could
not have been anticipated a priori because this robust-
ness is often not present in other SPDs. The shape of
the combined Pareto fronts for a given design size for
this class of mixture-process experiments holds across a
broad range of experimental setups that the authors
have explored.

FIGURE 2 Pattern of best designs based on D(1) and D(10) criteria for the mixture-process example for (a) N D 20 and (b) N D 20–25 and

different #WPs.
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Figure 3 shows parallel plots of the combined four-
criteria Pareto front with 60 designs for
F.ξ/D .D.1/,D.10/,#WP,N /0 with D(1) and D(10)
shown adjacent to each other and with the same scale
based on the worst efficiency (of 64.7% from D(10))
from either criteria mapping to zero on the desirability
scale. The fact that the two estimation-based criteria

perform so similarly yields the nearly parallel lines con-
necting these two criteria. This robustness of the D-crite-
rion to the range of specified variance ratios is unique to
the class of models considered for our problem. For
example, Figure A2(b) in the Appendix shows the con-
tinuous case with five factors, where the lines connect-
ing D(1) and D(10) are substantially less parallel,
indicating more trade-offs between these criteria and a
stronger dependence on the user correctly specifying the
variance ratio value. In the non-mixture example case, it
is necessary to more proactively manage how the uncer-
tainty from the variance ratio influences other character-
istics of the designs and the experimenter’s decision.

To consider the effects of valuing the criteria differ-
ently, Figure 3a highlights the designs with better per-
formance for the D-efficiencies with darker lines. Note
how the best designs here correspond to the larger
design sizes (N D 25) and #WPs ranging between 15
and 16. If minimizing the financial cost of the experi-
ment is of top priority, then Figure 3b highlights the
range of performance attainable for D(1) and D(10) for
N D 20. Finally, Figure 3c shows what range of design
performance is possible if the experimenter prioritizes
minimizing the time to run the experiment with #WP
set to the minimum.

Though the impact of a misspecified variance ratio
can be problematic in many SPD settings, in our exam-
ple we found the optimal design to be robust to the
choice of d. Because the D-efficiency was found to be
similar across the entire range of considered variance
ratios (i.e., .1� d � 10/), we changed our estimation
based criteria to D(5), which corresponds to the initial
estimate of d from the pilot study. Hence, the optimi-
zation problem was adjusted to find the three-objective
Pareto front using F.ξ/D .D.5/,#WP ,N /0 with the
Utopia point values of 4.93, 7, and 20, respectively. It
should be noted that in general it is hard to predict the
impact of a misspecified variance ratio and hence the
robustness to the variance ratio should be carefully
evaluated whenever one wishes to find an optimal SPD.

Subjective Phase—Selecting a Best
Design to Match Experimenter

Priorities

We now describe the subjective selection of a best
design from those identified on the Pareto front, by
incorporating the experimenter’s requirements and

FIGURE 3 Parallel plots based on prioritizing (a) D(1) and

D(10), (b) N, and (c) #WP with darker lines for better performance

for the prioritizing criterion. These plots illustrate the sharp

trade-offs required between the D-efficiency criteria and the cost-

based measures.

Pareto Split-Plot Mixture-Process Experiments 431

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
25

 0
6 

A
pr

il 
20

15
 



priorities for the study. Recall that the choice of the
multiplicative or additive DF form specifies the
amount of penalty for poor performance by one or
more of the criteria. Here the experimenter was willing
to consider poor performance of any of the criteria if it
was accompanied by exceptional performance of
another, and hence the additive DF form and the
L1-norm of Eq. [5] were utilized.

Because often users are more comfortable defining
ranges of weights for each criterion, we considered a
fine mesh (200 gradations for each wj between 0 and 1)
of possible combinations of the wj

0s and for each com-
bination, the 51 designs on the three-criteria Pareto
front were ranked according to the evaluated expression

in [5]. Because we require
X3

j D 1
wj D 1, the best

designs for all possible weight combinations can be dis-
played with the mixture plot shown in Figure 4. This
utilizes the simplex coordinate system (see Cornell
2002, p. 24) for mixtures of ingredients. The three verti-
ces correspond to optimizing based on a single crite-
rion, the three edges consider each pair of the criteria,
and the interior of the simplex has non-zero weights
for all three criteria.

Of the 51 designs on the three-criteria Pareto front,
15 designs are optimal for at least one combination of
the weights using the L1-norm. The weight combina-
tions for which a design is optimal are shown in gray-
scale in Figure 4. Assuming that the user wishes to
select a design that is robust to a range of weight combi-
nations, we highlight nine designs that are best for at
least 1% of the total area of the simplex and their
numeric labels are assigned from largest to smallest
value of D(5). The D-efficiencies and their correspond-
ing area in the mixture plot for the nine designs are
shown in Table 1. Note how the ranking of the best

designs for D(5) is consistent with the rankings for
both D(1) and D(10), as well as that the D(5) D-effi-
ciency values are bounded by those for D(1) and D(10).

Figure 4 shows that Design 1, with N D 25 and
#WP D 16, is D-optimal for d D 5. However, we also
observe that by sacrificing 0.5% in D-efficiency, utiliz-
ing Design 2 (with N D 25 and #WP D 15) results in a
6.7% savings in terms of experimental time. Design 2 is
also optimal for 12.1% of the possible weighting com-
binations and thus is more robust to the user’s choice
of weighting combinations. Design 5 (N D 20, #WP D
13) and Design 6 (N D 20, #WP D 10) also present
nice alternatives if one is willing to opt for greater cost-
efficiency through reduced experimental time or
reduced financial cost. More specifically, Designs 5
and 6 have lower D-efficiency with values of 80.4 and
74.7%, respectively, but they also result in fewer total
observations and fewer #WP. If low costs (for both

FIGURE 4 Mixture plot based on three criteria: D(5), N, #WP.

TABLE 1 Designs Selected by the Adapted Utopia Point Approach with Criteria Values and Area in the Simplex (at least 1%) Using the

L1-Norm (equivalent to the additive DF)

Design N #WP Rel. D(5) (%) Area (%) Rel. D(1) (%) Rel. D(10) (%)

1 25 16 100 5.7 100 100

2 25 15 99.5 12.1 99.2 99.7

3 24 15 96.5 1.4 96.2 96.6

4 25 9 83.0 2.1 85.8 82.7

5 20 13 80.4 15.8 80.2 80.4

6 20 10 74.7 2.9 75.8 74.7

7 25 7 74.5 5.0 78.5 74.0

8 20 9 72.4 7.8 73.8 72.3

9 20 7 65.0 44.6 67.8 64.7
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time and financial cost) are the top priorities, then
Design 9 is preferred for a large portion of the simplex.
One advantage of the Pareto approach is that the range
of criteria values on the front provides some calibration
of what values are sensible to consider. For example, by
constructing the front, we learned that there is no
advantage to running a design with more than 16 WPs
and that we can achieve good efficiency with several
less expensive alternatives.

The trade-off plot (Lu et al. 2011) in Figure 5
shows the 15 designs that are best for at least one
combination of weights, with the nine designs from
Table 1 denoted with bold black symbols. The
designs are sorted from left to right for increasing val-
ues of D(5). An interesting aspect of the L1-norm is
that it tolerates poor performance of one criterion if
there is very good performance from another. This
results in designs with extreme values of N being
selected. If the L1-norm on the log scale (equivalent to
the multiplicative DF) had been selected by the exper-
imenter to combine the different criteria, then designs
with intermediate values of N would be selected
(results available from the authors by request). This
emphasizes the subjective nature of the second phase
to select a design using the Pareto front approach with
the flexibility to accommodate different priorities. In
general, the experimenter should think carefully about
which form and weightings make the most sense for
the study goals.

Because the overall goal was to determine a single
design for implementation, it was advantageous to con-
sider how much of a compromise different designs
required from the best possible choice for given weight-
ing combinations. To help evaluate this type of a trade-
off, Lu and Anderson-Cook (2012) developed the syn-
thesized efficiency plot. The synthesized efficiency for
a particular design is defined as

SE.ξ;w/D DF.ξ;w/

maxξ.DF.ξ;w//
;

where DF.ξ;w/ is the additive DF value for a design ξ
and a specific weight combination w. The synthesized
efficiency plot then displays SE ξ;wð Þ for all weight
combinations in the weighting simplex. These plots
are displayed in Figures 6a–6d for Designs 2, 5, 6,
and 9, respectively. In the plots, white and light gray
correspond to good efficiency, and darker shades of
gray show poor efficiency relative to the best possible
design at a given weight combination. The plots
highlight the strong trade-offs between good D-effi-
ciency and the cost (time and financial) of the
design. Designs 2 and 9 perform very well for either
D-efficiency (Design 2) or the cost (Design 9) and
hence there is a region with high synthesized effi-
ciency (white or light gray), which is close to the
regions where the design is best. However, there are
also regions with quite poor performance (dark gray

FIGURE 5 Trade-off plot for designs selected by the Utopia point approach based on the L1-norm sorted by relative D(5)-efficiency.
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or black). Designs 5 and 6 have more balanced per-
formance with a worst-case synthesized efficiency no
worse than 27% for all possible weight combinations.
Specially, Design 6 has 78% of the area with at least
75% synthesized efficiency, which means that this
design performs quite well for the majority of the
possible weights. However, no single design is able
to simultaneously perform well for all three objec-
tives, which emphasizes the need for experimenters

to think carefully about how to prioritize the study
goals.

Finally, Figures 7a–7d show the geometric represen-
tations for Designs 2, 5, 6, and 9, respectively. This
figure allows the experimenter to see which combina-
tions of the three whole plot/mixture factors (X1, X2,
X3) and two subplot/process factors (P1, P2) should be
run. The numbers within the candidate locations are
labels for the whole plots, and to run the experiment,

FIGURE 6 Synthesized efficiency plot for designs (a) 2, (b) 5, (c) 6, and (d) 9. The white–gray–black scale represents high to low synthe-

sized efficiency.
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two separate randomizations should be performed: one
to determine the order in which the whole plots are
run, and the second randomization determines the
order of subplot combinations within each whole plot.
When the design involved replication of factor combi-
nations, the candidate locations at a given whole plot
location are shown with multiple groups. None of the

designs shown here have any observations located in
the centroid of the mixture factor candidate space. This
matches the nature of the D-criterion in the sense that
extreme points in the design space are favored over
points within the interior of the design region. Design
2 (N D 25 and #WP D 15) has three whole plots, each
with two observations at the corners of the mixture

FIGURE 7 Geometry plot for designs (a) 2, (b) 5, (c) 6, and (d) 9.
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candidate space and the remaining seven observations
are spread between six whole plots on the edges of the
mixture space. Designs 5, 6, and 9 (all with N D 20 and
#WP D 13, 10, and 7, respectively) have 14 observa-
tions at the vertices of the mixture candidate space and
6 observations on the edges with balance between the
number of observations with the high and low levels of
the subplot factors. It is worth noting that Design 6
exhibits the best symmetry among the four designs and
it is balanced (i.e., each whole plot is of size 2).

Based on the graphical summaries included in the
Pareto decision analysis, the experimenter was pre-
sented with the necessary information for understand-
ing the possible alternatives. Design 2 clearly has the
best estimation precision, but choosing this design
comes at the cost of an expensive and time-consuming
design because it requires the maximum design size (N
D 25) and greatest number of whole plots (#WP D 15).
At the other extreme, Design 9 is cheaper and less time-
consuming to run, but choosing this design results in a
sacrifice of the D-efficiency. For this example, the
experimenter felt that both of these extremes were
undesirable and thus focused upon Designs 5 and 6.
These two designs are relatively similar and both have
the same design size (N D 20). The primary difference
in these two designs is in the number of whole plots to
be utilized and the final decision was based upon
whether the experimenter believed that the time savings
represented by three fewer whole plots is worth the
approximately 5.7% reduction in D-efficiency for d D
5 (5.7% for d D 10 and 4.4 for d D 1). In this case, the
experimenter felt that the additional whole plots of
Design 5 did not offer sufficient improvement in per-
formance to warrant the additional cost and hence
Design 6 was selected. We emphasize that there is no
single correct answer regarding how to value these
trade-offs, but a major benefit of the Pareto front
approach is that it clearly highlights the sacrifices that
one is making with one criterion to improve another.
Another experimenter could quite rationally have
selected any of the designs in Table 1 as a best match
for the needs of the study design.

The choice of an optimal design should involve a
process of understanding the available choices, observ-
ing trade-offs between the criteria of interest for prom-
ising designs, and a subjective determination of a
preferred range of weights associated with each crite-
rion. The goal of the Pareto front approach is to pro-
vide the set of sensible alternatives in the objective

phase and then to provide numerical and graphical
summaries that equip the decision maker to choose
what is best for the study goals.

SUMMARY AND CONCLUSIONS

Computer-generated, optimum SPDs have tradition-
ally been based on a single, user-defined design opti-
mality criterion. Parker et al. (2008) and others pointed
out that the choice of an optimal SPD should simulta-
neously involve the use of multiple design criteria.
Though other research considers multiple criteria for
determining an optimal SPD (Goos 2002; Liang et al.
2007; Parker et al. 2008; Smucker et al. 2011), only the
Pareto front approach (Lu and Anderson-Cook 2014)
can be utilized for any flexible set of user-supplied
design criteria. In this article, the Pareto front approach
was illustrated with a mixture-process example involv-
ing five factors (three mixture whole plot and two pro-
cess subplot factors). The development of the Pareto
front was conditioned on a candidate set of design
points and a user-specified model.

In this case, the practitioner sought to find an optimal
SPD that balanced good statistical estimation properties
along with practical concerns such as cost and time con-
straints. Financial cost was measured by design size, N,
whereas time constraints were quantified by #WP. In
terms of statistical properties, the practitioner was inter-
ested in estimating the model coefficients as precisely as
possible and hence the D-criterion was of interest, which
is dependent on the unknown whole plot–to-subplot
variance ratio, d D s2

wp=s
2
sp. In many applications, pre-

cise specification a single value of d is difficult and the
experimenter is more likely to be able to provide a range
of possible values. Here the experimenter sought to pro-
tect against possible misspecification of d. Specifically,
the experimenter wished to find a highly D-efficient
design that was robust to the entire range of anticipated
variance component ratios (i.e., 1�d�10). After initial
exploration of the four criteria Pareto front using the
D(1) and D(10) efficiencies, N, and WP, it was discov-
ered that the D-optimal design for a fixed N and #WP
was the same for both d D 1 and d D 10. This unique
phenomenon for mixture-process SPDs, however, is dif-
ferent from many other continuous non-mixture scenar-
ios where the best design is highly dependent on the
chosen value of d. Given the robustness across D(1) and
D(10) efficiencies, the four-criteria optimization prob-
lem was reduced to a three-criteria optimization
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problem where the D(5)-efficiency (based on the single
point estimate of d from a pilot study) summarizes pre-
cision in model parameter estimation across the relevant
range of the variance ratios.

The Pareto approach for design selection involves
two stages. The first objective stage generates a set of
Pareto optimal designs with the PAPESPD search algo-
rithm. This set of designs is known as the Pareto opti-
mal set and the corresponding criteria vectors (i.e.,
F.ξ/D .D.5/; WP;N /

0
where ξ denotes a design in

the Pareto optimal set) make up the Pareto front. In the
second stage, this front is first reduced to a smaller,
more manageable set and each design is evaluated over
a mesh of weighting combinations of the three criteria
of interest using the L1-norm as a distance metric to
the Utopia point. Though the examples discussed were
based on specific design criteria, the methodology is
easily adapted to other design criteria.
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APPENDIX

FIGURE A1 Pareto front based on D(1) and D(10) for five continuous nonmixture factors (three whole plots and tw subplot factors) with

a first-order model plus two-factor interactions for (a) N D 20 and (b) N D 25 with different #WPs.
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Figure A2 (a) Pattern of best designs based on D(1) and D(10) for a nonmixture example for N D 20 and different #WP. The circled sym-

bols in (a) correspond to the Pareto front based on the three criteria: D(1), D(10), and #WP. (b) Parallel plot of the overall four-criteria (D(1),

D(10), N, #WP) Pareto front for the nonmixture example with N D 20–25.
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