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ABSTRACT When exploring first-order models including two-factor

interactions for six to eight factors using a 16-run design, there are many

possible model choices. Building on the Johnson and Jones (2010) catalog

of the nonisomorphic regular and nonregular design alternatives, we

summarize which of these design options are most promising based on

two common design criteria. The Pareto fronts based on the criteria E(s2)

and tr(AA0) suggest that only a handful of the possible designs should be

considered further, and the best design depends on the relative emphasis

given each of the two criteria. This article considers each case of six, seven,

and eight factors for 16-run two-level designs and provides numerical and

graphical comparisons between the alternatives to highlight the merits of

the leading candidates.

KEYWORDS alias patterns, design generators, desirability functions, nondomi-

nated designs, Pareto front optimization, supersaturated designs

INTRODUCTION

In many design scenarios, tight budgetary constraints restrict the size of a

design to be relatively small compared to the number of design factors of

interest. For example, the classical fractional factorial resolution IV design

with defining relation I¼ABCE¼BCDF¼ADEF is a common choice for a

screening experiment with 16 runs and six factors. This design ensures that

all main effects are not confounded with other main effects or any

two-factor interactions. However, this design does not allow separate esti-

mation of all two-factor interactions, since these are confounded with sev-

eral other two-factor interactions. Jones and Montgomery (2010) proposed

some nonregular designs with no complete confounding between any main

effects or two-way interactions. Johnson and Jones (2010) provided a

catalog of defining equations for all orthogonal nonisomorphic regular

and nonregular designs, which are considered as logical candidates for

constructing 16-run designs for six, seven, and eight factors.
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Using the Johnson and Jones (2010) catalog, this

article evaluates the individual design performance

of all candidates based on two common general

criteria and eliminates the noncontenders for

decision making based on using a Pareto front

approach (Lu et al. 2011, 2012). The remaining prom-

ising choices are compared based on performance

given different potential prioritization of the criteria,

which should be governed by the goals of the study.

Two metrics for quantifying omnibus design char-

acteristics are considered. To select a screening

design with k factors, the main goal is to identify

active design factors. We focus on factors influencing

the response through main effects and two-factor

interactions in a first-order model with all
k
2

� �
two-way interactions:

y ¼ b0 þ
Xk
i¼1

biXi þ
Xk�1

i¼1

Xk
j¼iþ1

bijXiXj þ e: ½1�

Hence, we want not only good estimation of main

effects but also the ability to estimate any potentially

active two-factor interactions. In our case, the

number of two-factor interactions to be explored in

model [1] grows as the number of factors increases

(six factors have 15 interactions, seven factors have

21, and eight factors have 28 interactions). Because

of the limited number of runs, we cannot estimate

all terms in model [1]. There will be complete (from

regular fractional factorial designs) or partial (from

nonregular designs) aliasing, which complicates the

estimation procedures. Since we do not know in

advance which two-factor interactions will be present

in the final model, the general design characteristics

look at the potential impact of any combination of

these terms being active. In this case, we can think

of our screening designs as supersaturated designs

(Booth and Cox 1962), which have fewer runs than

effects to be estimated in the proposed model.

We assume the matrix form for model [1] is

given by

y ¼ b01þ Xbþ e ½2�

In [2], y is a vector of N¼ 16 observations for the

response, X is an N� f matrix containing columns

for the k main effects and
k
2

� �
two-factor interac-

tions, b is the vector of model parameters excluding

the intercept, 1 is an N� 1 vector with all entries
being 1, b0 is the intercept, and e is the vector for
the experimental errors. Booth and Cox (1962)
suggested that a good supersaturated design should
have off-diagonal elements of X0X as small as
possible and introduced the E(s2) criterion for selecting
supersaturated designs that minimizes

E s2
� �

¼ 2

f f � 1ð Þ
X
i<j

s2ij ; ½3�

where sij is the element in the ith row and jth column
of X0X. If off-diagonal elements are small, then this
corresponds to lower correlations between estimated
model coefficients.

The second criterion is the tr(AA0) proposed by

Bursztyn and Steinberg (2006) for quantifying

potential impact from model misspecification. In

the selection of a screening design, we assume that

the primary interest lies in good estimation of main

effects in the specified model

y ¼ X1b1 þ e;

where X1 is the design matrix containing only main

effects and b1 is the vector of corresponding model

parameters including the intercept, if applicable.

However, it is also thought that some subset of the

two-factor interactions is potentially active. Hence,

we want some protection for the estimation of the

specified model by seeking designs with minimal

bias in the estimated parameters, if this model is

incorrect and some two-way interactions exist. Let

y ¼ X1b1 þ X2b2 þ e

denote the larger model with the additional term

X2b2 containing all possible two-factor interactions.

The bias of the least squares estimate of b1 is

E bbb1� �
� b1 ¼ X 0

1X1

� ��1
X 0

1X2b2 ¼ Ab2;

where A ¼ X 0
1X1

� ��1
X 0

1X2 is the alias matrix

measuring the degree of bias for estimated model

parameters due to the existence of active terms in

X2. Since the particular b2 values of any active factors

cannot be known a priori, we seek designs that

minimize tr(AA0) to minimize the impact of aliasing

on the estimated model parameters.

The above criteria are two commonly used criteria

for evaluating screening and supersaturated designs
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with different emphases ranging from the evaluation

of orthogonality to the protection against model mis-

specification. There are many other criteria that

could possibly be used with different design setups

and goals. The methodology illustrated in this case

study could be adapted for these alternative criteria.

Based on these two commonly used design cri-

teria, we explore the catalog of all nonisomorphic

designs in Johnson and Jones (2010) to suggest

which subset of these represents ‘‘good’’ design

choices to consider further and eliminate a large frac-

tion of the alternatives as inferior. The Pareto front

approach (Lu et al. 2011) is used to identify the set

of contending designs and allows flexible explo-

ration of trade-offs and balancing of priorities when

combining multiple objectives.

The Pareto optimization has been broadly used in

applications in different disciplines before being

introduced as a structured decision-making process

in the design of experiment paradigm (Lu et al.

2011, 2012). The method consists of two stages: (1)

objective Pareto optimization, which assembles a

set of superior designs as contenders by removing

inferior choices from further consideration and (2)

subjective Pareto decision analysis, to compare can-

didate designs by evaluating individual performance,

trade-offs, and robustness to a spectrum of different

emphases of the criteria using a set of graphical

methods. This second stage concludes with a final

decision, which chooses a best design based on prio-

rities of the study. By separating the objective and

subjective steps, an experimenter can first see the

complete set of choices, before imposing any subjec-

tive experiment-specific considerations. By under-

standing the range of options and potential impacts

of subjective choices, the decision maker is posi-

tioned to make an informed and defensible choice.

The first objective optimization stage finds the set

of designs that are not strictly outperformed by any

other designs in the entire design space. Here one

design strictly outperforms another, or Pareto domi-

nates it (in the terminology of the Pareto literature), if

it is at least as good as another for all criteria and

strictly better for at least one of the criteria. A Pareto

front is formed in the criterion space with all designs

that are not Pareto dominated by others. The Pareto

set of designs represents an objective collection of

options to select from, since for any alternative not

on the Pareto front, there is at least one clearly better

choice on the Pareto front. Hence, as the logical first

step, finding the Pareto front allows one to see the

complete set of superior options before making a

subjective decision specific to a particular experi-

mental scenario.

In the second stage, designs on the Pareto front are

evaluated on three aspects with the graphics

developed in Lu et al. (2011) and Lu and

Anderson-Cook (2012): (1) finding the best solution

for a particular weight combination that matches the

user’s study goals (from a particular location in the

mixture plot in Lu et al. 2011), (2) the robustness of

a chosen solution based on a range of weightings

close to user preferences (the area of weightings

where a solution is best in the mixture plot), and

(3) individual design performance relative to the best

available solution for a particular set of weight

choices (with the synthesized efficiency plot from

Lu and Anderson-Cook 2012). These graphical sum-

maries allow quantitative evaluation of design

choices from the Pareto front to be visualized for

more intuitive comparison and matched with subjec-

tive choices affecting the final decision. As an essen-

tial part of the Pareto front approach, the graphical

tools are helpful for making an informed, quantitat-

ively based decision and for reaching consensus

when there may be competing priorities for the study.

In the following section, we examine the 27 non-

isomorphic regular and nonregular 16-run designs

for six factors detailed in Johnson and Jones (2010)

to categorize the alternatives based on the two cri-

teria of E(s2) and tr(AA0) and provide discussion

about how to make a sensible and justifiable choice

of a best design based on experimenter priorities.

The next sections repeat the Pareto optimization pro-

cess based on E(s2) and tr(AA0) for the seven- and

eight-factor 16-run designs with 55 and 80 candidate

designs, respectively. Finally, the conclusions section

highlights some of the key results for the different

scenarios and discusses some options for expanding

the set of criteria when making the decision and how

this will impact the results of the Pareto front

approach.

16-RUN SCREENING DESIGNS

FOR SIX FACTORS

Johnson and Jones (2010, Appendix A) provide the

design generating equations for the 27 nonisomorphic

Two-Criterion Design Selection with a Pareto Front 271
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16-run, six-factor, two-level regular and nonregular

designs provided by Sun et al. (2002). The designs

are categorized into four structural groups based on

their aliasing patterns:

1. Classical designs have an embedded 24

full-factorial design for four of the factors and

use defining equations that completely confound

the other two main effects with sets of four two-,

three-, or four-way interactions.

2. Hybrid designs have an embedded 24 full-factorial

design with one other main effect completely

confounded with four two-, three-, or four-way

interactions and the other main effect partially

confounded with four two-, three-, or four-way

interactions.

3. Correlated designs have an embedded 24

full-factorial design and defining equations that

partially confound the other two main effects with

sets of four two-, three-, or four-way interactions.

4. Replicated designs use a replicated 23 factorial

design as the starting point of design generation.

The values of the two criteria, E(s2) and tr(AA0), as

well as the category of their design structure for the

27 designs are shown in Table 1. The design index

numbers are consistent with the numbering scheme

in Johnson and Jones (2010). A scatterplot of the

design criteria for the 27 designs is shown in

Figure 1 with different symbols to distinguish

between design structural groups. The nondomi-

nated designs on the Pareto front are highlighted

with the dotted line.

Several designs have identical values for both cri-

teria and hence are labeled with only one represen-

tative index number. Among the 27 designs, only five

are on the Pareto front (shown in bold in Table 1).

Designs 4, 13, and 14 are tied and optimal for

E(s2). Design 5 is best for tr(AA0). Design 8 represents

a compromise with more balanced performance for

the two criteria. The design generating equations

for the five designs on the Pareto front are shown

in Table 2.

The Utopia point, which corresponds to best

values for both criteria and is unattainable for any

design in this class, is shown with the solid circle at

the bottom left corner of the plot. The Utopia point

is typically identified as the ‘‘ideal’’ solution with

the best available values for each of the criteria.

However, this solution is typically not attainable

because there is rarely an overall global winner,

but the Utopia point is useful to serve as the gold

standard when we evaluate the individual designs

on the front based on how close they are located

relative to the ideal solution. The Pareto front is

located on the edge of the solution space closest to

the Utopia point. By identifying the Pareto front,

we automatically eliminate a large proportion of

the design options in the candidate set because of

their inferior performance relative to those on the

Pareto front, and we can focus our attention on the

most promising choices. For any design not on the

Pareto front, one or more of designs 4, 5, 8, 13, or

14 is at least as good on each criterion and strictly

better for at least one. Focusing attention on just

those solutions on the Pareto front substantially

TABLE 1 Values of the Two Criteria, E(s2) and tr(AA0), for 27

Nonisomorphic Six-Factor Designs and Their Corresponding

Design Generating Structural Categoriesa

Design no. Category E(s2) tr(AA0)

1 Replicated 25.6 12

2 Classical 10.97 6

3 Classical 7.31 6

4 Classical 7.31 3

5 Classical 10.97 0

6 Hybrid 7.31 3.75

7 Hybrid 9.14 4.5

8 Hybrid 9.14 1.5

9 Hybrid 9.14 5.25

10 Replicated 18.29 9

11 Hybrid 10.97 6

12 Hybrid 10.97 3

13 Hybrid 7.31 3

14 Hybrid 7.31 3

15 Hybrid 9.14 4.5

16 Replicated 18.29 6

17 Correlated 10.97 6

18 Correlated 7.31 6

19 Correlated 9.14 3

20 Correlated 9.14 4.5

21 Replicated 14.63 7.5

22 Correlated 10.97 4.5

23 Correlated 9.14 5.25

24 Correlated 9.14 4.5

25 Replicated 14.63 6

26 Correlated 10.97 6

27 Replicated 12.8 6

aDesigns on the Pareto front are in bold, among which designs 4, 13,
and 14 are tied in both criteria.
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reduces the time and effort needed for quantitative

evaluation and comparison of the competitive

designs for making a rational final decision.

Among the four categories of design generating

structures, the replicated designs are all scattered in

the top right area of Figure 1 and hence have inferior

performance (large values for both criteria) among

all 27 designs. The other three categories generally

have relatively smaller E(s2) values and moderately

small (no more than 50% of the maximum) tr(AA0)

values. However, no correlated designs are located

on the Pareto front, which indicates that none of

them are optimal regardless of how the two criteria

are valued. Designs 4 and 5, which are optimal based

on only E(s2) or tr(AA0), respectively, are both

classical designs. The remaining three designs

(8, 13, and 14) on the front are hybrid designs.

The identification of the Pareto front has narrowed

the design choices to only three sensible options (five

designs including the ties) based on the criteria E(s2)

and tr(AA0). However, to actually conduct the experi-

ment, the practitioner has to ultimately choose only

a single design to run. Hence, we evaluate the

individual design performance, trade-offs, and

robustness to different emphases of the relative impor-

tance of the two criteria using the graphical tools

developed in Lu et al. (2011), Lu and Anderson-Cook

(2012), and Lu, Chapman, and Anderson-Cook (2013).

The Utopia point approach (Lu et al. 2011) is used

to further select optimal designs from the Pareto

front based on a user specified desirability function

(Derringer and Suich 1980) for combining the two

criteria. A fine grid of weight combinations spreading

across the entire possible weighting space (from

100% of the weight for E(s2) to 100% of the weight

for tr(AA0)) is evaluated to explore which design is

best for different subjective weighting choices. To

use the desirability function approach, both criteria

values are converted to a 0–1 scale with a linear

transformation by matching the worst and best desir-

able values to 0 and 1, respectively. For example, if

the worst and best desirable values for tr(AA0) are

12 and 0 for an experiment, then a design with

tr(AA0) equaling 6 will have a value of 0.5 on the

converted 0–1 desirability scale. The desirability

value of 1 for each criterion typically corresponds

to the optimal value observed. However, there could

be alternative ways for choosing the scale for the

worst desirability value (an admitted oxymoron).

Choosing the worst-performing design among those

on the Pareto front can be used when the candidate

set of designs is extremely large (impractical to

consider all possibilities). Alternatively, if the entire

population of candidate choices can be considered

(e.g., the 27 designs for the six-factor case), set the

value of 0 for the worst-performing design in the

population. A final possibility is to apply a user-

specified value reflecting subject-matter knowledge.

Besides the scaling scheme, a metric is needed to

integrate multiple criteria into a single summary

FIGURE 1 Scatterplot for 27 nonisomorphic designs with six

factors based on the two criteria, E(s2) and tr(AA0). Designs on

the Pareto front are connected with the dotted line. Designs from

different categories (classical, hybrid, correlated, and replicated)

are shown with different symbols. Designs that are tied in both

criteria values (designs 2, 11, 17, and 26; designs 3 and 18;

designs 4, 13, and 14; designs 7, 15, and 20; designs 9 and 23)

are labeled with one index number as a representative. The Utopia

point, which is the ideal solution with best values for both criteria,

is shown with the solid dot at the bottom left corner.

TABLE 2 Design Generating Equations for the Five 16-run,

Six-Factor designs on the Pareto Front

Design

no. Category

Design generating equations for

factors E and F (factors A–D are

determined by a 24 factorial design)

4 Classical E¼AB, F¼ACD

5 Classical E¼ABC, F¼ABD

8 Hybrid E¼ABC, F¼ 1=2[CDþACDþBCD�
ABCD]

13 Hybrid E¼ABCD, F¼ 1=2[BDþABDþCD�
ACD]

14 Hybrid E¼ABC, F¼ 1=2[ADþBDþ
ABCD�CD]

Two-Criterion Design Selection with a Pareto Front 273
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index for ranking the design performance. A multipli-

cative desirability function for design j in the form of

DF j;wð Þ ¼ sw1
1 jð Þsw2

2 jð Þ; ½4�

where w¼ (w1, w2) with 0�w1, w2� 1 and

w1þw2¼ 1, and s1 and s2 are the scaled criteria values

between 0 and 1, is a common choice, which penalizes

poor design performance for at least one of the criteria

rather severely. This is equivalent to using the log L1-

norm metric in the Utopia point approach literature

(Lu et al. 2011). Another common choice is the additive

desirability function, which combines multiple criteria

as a weighted sum of the scaled criteria values and

allows superior performance of one criterion to over-

come the poor performance of another criterion. What

desirability function (DF) form to choose depends on

whether the experimenter wants severe penalization

for poor performance of a certain criterion (multiplicat-

ive DF) or whether stellar performance in one criterion

is thought to be a reasonable trade-off for very poor

performance on the other (additive DF). Note that

the optimal design that is selected depends on the

choice of scaling scheme and desirability function

form. Different choices can be used for different user

preferences and priorities. The Pareto front approach

offers considerable flexibility to explore different

choices and conduct a sensitivity analysis with little

extra computational effort, especially for scenarios with

a large number of possible candidates (Lu et al. 2011).

Next we explore the potential impact of these sub-

jective choices on decision making. First consider a

scenario of using the Pareto front scaling (worst

value of designs on the Pareto front is mapped to

0) combined with the multiplicative desirability func-

tion. The design that maximizes [4] is the optimal

design for a particular weighting choice,w. The opti-

mal designs for all possible different weighting

choices are shown in the mixture plot in Figure 2a.

This was adapted from the mixture plot developed

for mixture designed experiments in Cornell (2002).

For the three-criteria case, the mixture plot is a tri-

angular simplex. For the two-criteria scenario, the

plot collapses to a horizontal line segment. Moving

from left to right in Figure 2a, the relative priorities

shift from weighting tr(AA0) heavily to more empha-

sis on E(s2). Since the two weights sum to 1, knowing

the weight of one of the criteria specifies the other

weight completely. The mixture plot can also be

adapted for the four criteria scenario, in which case

the range of all combinations of weighting preferences

can be displayed in a tetrahedron (Lu and Anderson-

Cook 2014). Design 8 is optimal for all possible weights

in (0, 1) except for the two extreme weightings

with 100% weight for only one of the criteria. Design

4 (as well as the tied designs 13 and 14) is optimal only

when E(s2) is weighted 100%. Design 5 is the best

design only if tr(AA0) is given a 100% weight.

The mixture plot provides a mechanism to align

the study goals with the experimenter’s particular

region of interest via the weighting. For example,

in our case study, if the experimenter has about

equal concern on both criteria, then the focus would

be the region around the middle area of mixture plot.

Depending on how much uncertainty is associated

with this preference, the weight region could be

either as narrow as allowing 45%–55% weight for

FIGURE 2 Graphical summaries for selecting six-factor

designs from the Pareto front based on using the multiplicative

desirability function based on the criteria values of designs on

the Pareto front: (a) mixture plot for showing the optimal designs

for different weightings of the two criteria; (b) trade-off plot for

optimal designs selected in the mixture plot; and (c) synthesized

efficiency plot for optimal designs selected in the mixture plot.
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each criterion or it could be as wide as allowing any

weighting between 30% and 70% being possible for

each criterion. With the experimenter’s weighting

region of interest, the mixture plot leads to the

possible optimal designs to consider in that region.

However, for our particular case, design 8 is the

absolute dominating choice for all weighting prefer-

ences except for the extreme cases with 100% inter-

est in a single criterion.

Figure 2b shows the trade-offs between the differ-

ent designs selected from the Pareto front. The inner

axes of the plot are generated based on the desir-

ability (0–1) scale, with the raw criteria scales shown

on both sides of the plot. Designs are sorted by worst

to best E(s2) values from left to right. The simple

trade-off pattern observed for the three optimal

designs (ignoring the ties) captures the simple,

nearly linear shape of the Pareto front. Designs 4

and 5 are both 100% desirable for one of the two cri-

teria, and design 8 has equally balanced performance

(50% desirable) for both criteria.

Figure 2c shows the synthesized efficiency plots

(Lu and Anderson-Cook 2012) for the three designs.

It shows the individual design performance based on

quantifying its performance relative to the optimal

for a spectrum of different weighting choices. The

relative design performance for design j is quantified

by its synthesized efficiency as a function of a

particular set of weights, w, defined as

SE j;wð Þ ¼ DF j;wð Þ=maxj DF j;wð Þf g:

To calculate the synthesized efficiency values for a

particular solution, the DF is valued for every combi-

nation of weights and then compared to the best

DF value at that weight. High to low synthesized

efficiency values are plotted with a white–gray–black

scale with 20 shades of gray each corresponding to a

5% band of efficiency values. Hence, designs 4 and 5

are black for the entire weight interval except for one

extreme end, and design 8 is white (and optimal) for

all weights except the endpoint cases.

Hence, when a multiplicative DF is preferred and

the criteria values are scaled based on values from

the Pareto front, the hybrid design 8 is the dominant

choice. Designs 4 (13 and 14) and 5 are optimal

when only a single criterion is considered. On the

other hand, if the experimenter prefers the additive

DF for combining the criteria, then design 8 is

optimal for only a single weight combination with

equal weight for both criteria, and designs 4 (13

and 14) and 5 would be selected based on whether

E(s2) or tr(AA0) is valued as more important among

the two criteria.

Since we have only a fixed finite set of candidate

designs to choose from, this naturally defines the

complete range of values in this space for each of

the criteria. We explore another scaling based on

values from all designs in the population following

the same process for using the scaling based on only

designs on the Pareto front. Suppose the multiplicat-

ive DF in [4] is selected for combining the criteria,

then the optimal designs for different weighting

choices are summarized in the mixture plot shown

in Figure 3a. With this alternative scaling, design 8

FIGURE 3 Graphical summaries for selecting six-factor

designs from the Pareto front based on using the multiplicative

desirability function with an alternative scaling based on the cri-

teria values of the population of candidate choices: (a) mixture

plot for showing the optimal designs for different weightings of

the two criteria; (b) synthesized efficiency plot for optimal

designs selected in the mixture plot; and (c) FWS plot for the

selected designs.
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is no longer the dominant choice but is only optimal

when E(s2) is weighted between about 53% and 60%.

In contrast, design 5, which under the previous scal-

ing was optimal when only tr(AA0) criterion is con-

sidered, is now optimal for around 53% of the

possible weightings when tr(AA0) is weighted

between 47% and 100%. When E(s2) is weighted at

least 60% of the weight, design 4 (tied with designs

13 and 14) is the best choice.

Figure 3b shows the synthesized efficiency plot for

designs 4, 5, and 8. All three designs have no less

than a 75% synthesized efficiency for all possible

weightings. Design 4 has a large white region (corre-

sponding to at least 95% efficient) when more weight

is given to E(s2), and design 5 is above 95% efficient

for 60% of the weighting space. Design 8 has the

shortest white region but has the largest minimum

synthesized efficiency (corresponding to lightest

dark color across the weighting space). The differ-

ences between the results from Figures 2 and 3 are

due to the large difference in the range of values

for the Pareto front, and the entire population of

designs leads to dramatic differences in the scaled

values with the two different scaling schemes. The

Pareto front scaling results in much bigger (almost

five times) trade-offs between designs than the

population scaling and hence requires more balanc-

ing between the two criteria. The substantial changes

in the results of using different scaling schemes

(Figure 2 vs. Figure 3) indicate how big an impact

the subjective choice can have on the solution.

Hence, it is advantageous to use the Pareto front

approach since it is computationally more efficient

to conduct a sensitivity analysis of the subjective

factors based on evaluating only a smaller set of

choices on the Pareto front.

To summarize the individual design performance

across the entire weighting space, Figure 3c shows

the fraction of weighting space (FWS) plot (Lu,

Chapman, and Anderson-Cook 2013) for the three

designs. The line for each design displays the frac-

tion of the weighting space where the design has

synthesized efficiency at least as high as the specified

percentage. This provides an overall quantitative

summary of individual design performance across

the entire weighting space and hence allows for an

easy and intuitive comparison of several design

choices when all of the weights are considered of

interest. A discrete approximation of this summary

can be built from the information in the synthesized

efficiency plot in Figure 3b. For each design, we have

a vector of synthesized efficiency values relative to

the best possible for each weight combination with

fine coverage of the entire weighting space. Then

we sort the efficiency values in descending order

and extract a list of distinct values in the same order.

For each distinct value, we calculate the fraction of

entries (weight combinations) in the sorted efficiency

vector at least as large as that value. This graphical

summary is implemented in R, with scripts available

from the first author upon request. Design 8 has the

best minimum synthesized efficiency of 87.5%.

Designs 4 and 5 have higher synthesized efficiencies

than design 8 for close to 47% and 60% of weighting

space, respectively. However, their synthesized effi-

ciencies drop much faster after these initial high

values with the minimum values at 75% and 80%

for designs 4 and 5, respectively. If all possible

weightings are considered of equal interest, design

5 has generally better performance with consistently

higher synthesized efficiency for around 60% of the

weighting space. However, if there is a more focused

region of interest for how to weight the two criteria,

then different solutions may be selected depending

on where the experimenters’ priorities lie, how big

the weighting region of interest is, and whether the

average or the worst case of performance is more

of interest. Lu, Anderson-Cook, and Lin (2013)

adapted the FWS plot for flexibly incorporating more

focused weighting preference for two criteria when

summarizing across only a portion of the range of

interest.

The additive desirability function is also examined

based on the scaling from the entire population of

designs, with design 5 chosen as optimal when

E(s2) is weighted less than 56% and design 4 is best

for the remaining weightings. Design 8 is not optimal

for any weight combinations. Alternate scaling or DF

forms would also be possible and should be chosen

to match experimenter goals. Adjusting the analyses

based on different choices is straightforward given

the table of values in Table 1. Regardless of what

scaling or desirability function forms the exper-

imenter chooses, the identification of the Pareto

front is independent of those choices. The explo-

ration of different possible scenarios with different

weighting, scaling, and DF choices indicates that

our solution is dependent on these subjective
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choices. However, the selection of the Pareto front

substantially reduces the set of promising choices

to consider further (from 27 designs down to 5)

and allows for more efficient evaluation of the sensi-

tivity of solutions to different subjective weighting

and scaling choices. The overall message from the

analysis is that one of designs 4, 5, 8, 13, or 14 should

be chosen as an ideal solution based on E(s2) and

tr(AA0). Which one of these is best for a particular

experiment is based on how the experimenter values

the criteria and how much penalty to assign to

inferior performance.

16-RUN SCREENING DESIGNS FOR
SEVEN FACTORS

This section considers selecting 16-run two-level

screening designs with seven factors from the catalog

of 55 nonisomorphic regular and nonregular designs

based on the two general criteria, E(s2) and tr(AA0).

Table 3 contains the criteria values and correspond-

ing design structural categories for the 55 designs

with the same numbering scheme as in Johnson

and Jones (2010, Appendix B). A scatterplot of

the 55 designs is shown in Figure 4 with different

symbols for different categories. Designs with

identical criteria values are labeled with only one

representative index number, and details of the ties

are listed in the caption. Designs on the Pareto front

are connected with the dotted line, which are on the

edge of the population closest to the unattainable

Utopia point at the bottom left corner.

There are 10 designs on the Pareto front with four

groups of distinctive criteria value pairs. Design 5,

which is tied with designs 11, 21, 22, 32, and 33, is

optimal for E(s2). Design 6 has the best tr(AA0) value.

Design 26 (tied with design 28) and design 12 have

moderate values of the two criteria and represent

compromise choices. The 10 designs on the Pareto

front with their criterion values are shown in bold

in Table 3 with their corresponding design generat-

ing equations (Johnson and Jones 2010) contained

in Table 4. Similar to the six-factor case, all of the

replicated designs have relatively poor performance

for both criteria. Among the 10 designs on the Pareto

front, two are classical, seven are hybrid, and only

one is a correlated design. The two classical designs

5 and 6 are optimal for one of the two criteria with

substantial sacrifice for the other criterion. Several

TABLE 3 Values of Criteria, E(s2) and tr(AA0), for the 55 Noniso-

morphic Seven-Factor Designs and Their Corresponding Design

Structural Categoriesa

Design no. Category E(s2) tr(AA0)

1 Replicated 28.44 21

2 Classical 14.22 12

3 Classical 12.19 9

4 Classical 10.16 9

5 Classical 10.16 6

6 Classical 14.22 0

7 Hybrid 10.16 7.5

8 Hybrid 10.67 8.25

9 Hybrid 12.19 9

10 Hybrid 10.16 9

11 Hybrid 10.16 6

12 Hybrid 12.19 3

13 Hybrid 10.16 9

14 Hybrid 12.19 10.5

15 Hybrid 10.16 7.5

16 Replicated 20.32 15

17 Hybrid 14.22 12

18 Hybrid 12.19 9

19 Hybrid 10.16 9

20 Hybrid 14.22 6

21 Hybrid 10.16 6

22 Hybrid 10.16 6

23 Hybrid 10.67 6.75

24 Hybrid 12.19 9

25 Hybrid 10.16 9

26 Hybrid 11.17 4.5

27 Hybrid 11.17 7.5

28 Hybrid 11.17 4.5

29 Hybrid 10.67 8.25

30 Hybrid 10.16 7.5

31 Correlated 12.19 6

32 Correlated 10.16 6

33 Hybrid 10.16 6

34 Hybrid 11.17 9

35 Hybrid 10.67 8.25

36 Hybrid 10.67 6.75

37 Hybrid 10.16 7.5

38 Correlated 12.19 9

39 Correlated 10.16 9

40 Hybrid 12.19 10.5

41 Replicated 16.25 12

42 Replicated 14.22 12

43 Hybrid 10.16 7.5

44 Correlated 14.22 9

45 Correlated 12.19 9

46 Correlated 10.16 7.5

47 Correlated 10.16 9

48 Correlated 11.17 9

49 Correlated 11.17 6

50 Correlated 11.17 9

51 Replicated 14.22 10.5

52 Replicated 14.22 10.5

53 Correlated 10.16 7.5

(Continued )
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of the hybrid designs (designs 12, 26, and 28) are

more balanced between the two criteria.

The Pareto front eliminates more than 80% of all

possible designs in the objective stage and allows a

final decision to be made from only the four distinct

criterion value options. Next, we compare the

remaining designs based on their trade-offs and

robustness to different weighting choices using the

same set of graphical summaries as for the six-factor

case. We illustrate the case with the subjective choice

of the multiplicative desirability function combined

with the scaling based on the range of criteria values

for the entire population of 55 designs. However, the

experimenter has the flexibility of exploring and

choosing different scaling and desirability functions

based on their preferences=priorities.

Figure 5a shows the mixture plot of the optimal

designs for different weighting choices. Design 6 is

optimal for about 53% of possible weights when

tr(AA0) is valued more. Design 5 (tied with designs

11, 21, 22, 32, and 33) is optimal when E(s2) is

weighted at least 63%. Design 12 is best when E(s2)

is weighted between 53% and 59%, and design 26

(tied with design 28) is the optimal solution when

E(s2) is weighted between 59% and 63%. Figure 5b

shows the trade-off plot for the four designs from

the mixture plot. All four designs achieve as least

70% of the best performance for both criteria based

on the chosen scaling. Designs 5 and 6 have the most

trade-off (100% best performance for one criterion

and less than 80% for the other) among designs on

the front, and design 12 is most balanced with

85%–90% of best performance for both criteria.

FIGURE 4 Scatterplot for 55 nonisomorphic 16-run designs

with seven factors based on the two criteria, E(s2) and tr(AA0).
Designs from different categories (classical, hybrid, correlated,

and replicated) are shown with different symbols. Designs

that are tied in both criteria values are labeled with one index

number as a representative. Designs on the Pareto front are

connected with the dotted line (among which design 5 is tied

with designs 11, 21, 22, 32, and 33 and design 26 is tied

with design 28). The Utopia point, which is the ideal solution

with best values for both criteria, is shown with the solid dot

at the bottom left corner.

TABLE 3 Continued

Design no. Category E(s2) tr(AA0)

54 Correlated 10.67 8.25

55 Correlated 10.67 6.75

aDesigns on the Pareto front are shown in bold, among which design 5
is tied with designs 11, 21, 22, 32, and 33, and design 26 is tied with
design 28 in both criteria.

TABLE 4 Design Generating Equations for the Ten 16-run, Seven-Factor Designs on the Pareto Fronta

Design # Category

Design generating equations for factors E, F, and G (factors A–D are

determined by a 24 factorial design)

5 Classical E¼AB, F¼AC, G¼BCD

6 Classical E¼ABC, F¼ABD, G¼ACD

11 Hybrid E¼BD, F¼ACD, G¼ 1=2[ABCþABDþABCD�AB]

12 Hybrid E¼ABC, F¼ABD, G¼ 1=2[CDþACDþBCD�ABCD]

21 Hybrid E¼BCD, F¼ 1=2[BDþABDþCD�ACD], G¼ 1=2[ABDþCDþACD�BD]

22 Hybrid E¼ABD, F¼ABC, G¼ 1=2[ADþBDþCD�ABCD]

26 Hybrid E¼ABC, F¼ 1=2[BDþABDþBCD�ABCD], G¼ 1=2[BDþCDþACD�ABD]

28 Hybrid E¼BCD, F¼ 1=2[ACþACDþABC�ABCD], G¼ 1=2[ACþACDþAB�ABD]

32 Correlated E¼ 1=2[ACþABCþACD�ABCD], F¼ 1=2[ABþACþABD�ACD],

G¼ 1=2[ABCþABDþABCD�AB]

33 Hybrid E¼BCD, F¼ 1=2[ACþADþABD�ABC], G¼ 1=2[ABþADþABCD�AC]

278 L. Lu et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
25

 0
6 

A
pr

il 
20

15
 



Individual design performance relative to the

optimal for different weighting choices is shown in

the synthesized efficiency plots in Figure 6a. Design

6 has the largest white region with at least 95% synthe-

sized efficiency when E(s2) is weighted less than 66%.

Design 5 is at least 95% efficient when E(s2) is

weighted at least 51%. The worst synthesized effici-

ency values for designs 6 and 5 are around 77% and

70%, respectively, when considering only one of the

criteria. Design 26 has good performance denoted by

the white region for around 52% of the weighting

space with minimum synthesized efficiency of 78%.

Design 12 is at least 95% efficient for 42% of possible

weightings and has the largest minimum efficiency

around 86%. By summarizing across the entire weight-

ing space, Figure 6b shows the FWS plot for the four

designs. Design 12 has the flattest curve with best

(largest) minimum synthesized efficiency; however,

it has the narrowest high efficiency region (synthe-

sized efficiency above 95%). Design 6 has the largest

weighting space with at least 90% synthesized

efficiency, with the lower end of efficiency dropping

quickly for the worst 25% of the weighting space.

FIGURE 6 (a) Synthesized efficiency plot and (b) FWS plot for

selecting seven-factor designs from the Pareto front with the

multiplicative desirability function and the scaling based on the

population of candidate choices.

FIGURE 5 (a) Mixture plot and (b) trade-off plot for selecting

seven-factor designs from the Pareto front with the multiplicative

desirability function and the scaling based on the population of

candidate choices. Designs 6 and 5 are both optimal for one of

the two criteria but have relatively poor performance for the other

criterion and are quite robust optimal choices when one criterion

is valued substantially more important than the other criterion.

Designs 12 and 26 represent compromise choices with more

balanced performance between the two criteria. However, they

are optimal for only a small region of weightings and hence have

limited robustness to weight uncertainty.

FIGURE 7 Scatterplot for 80 nonisomorphic 16-run designs with

eight factors based on the two criteria, E(s2) and tr(AA0). Designs
from different categories (classical, hybrid, and correlated) are

shown with different symbols. Designs that are tied in both criteria

values are labeled with one index number as a representative.

Designs on the Pareto front are connected with the dotted line

(among which design 4 is tied with designs 17, 26, 42, 48, and

77; design 5 is tied with designs 9, 16, 20, 25, 28, 30, 36, 50, 61,

and 63; and design 12 is tied with designs 40, 47, 58, and 76).

The Utopia point, which is the ideal solution with best values for

both criteria, is shown with the solid dot at the bottom left corner.

Two-Criterion Design Selection with a Pareto Front 279

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
25

 0
6 

A
pr

il 
20

15
 



With the above quantitative information for design

evaluation and comparison, the final decision should

be made based on where the experimenter’s weighting

preference lies, how much uncertainty there is associa-

ted with that choice of weighting range, as well as the

experimenter’s tolerance for poor performance. Again,

the overall message from the analysis should be that

one of 10 designs should be chosen as an ideal solution

based on E(s2) and tr(AA0). Which one is best for an

experiment depends on the experimenter’s priorities.

16-RUN SCREENING DESIGNS FOR

EIGHT FACTORS

This section examines the eight-factor 16-run case

based on evaluating the 80 nonisomorphic designs

TABLE 5 Values of Criteria, E(s2) and tr(AA0), for the 80 Noniso-

morphic Eight-factor Designs and their Corresponding Design

Structural Categories

Design no. Category E(s2) tr(AA0)

1 Classical 17.07 21

2 Classical 12.19 15

3 Classical 12.19 12

4 Classical 12.19 9

5 Classical 10.97 12

6 Classical 17.07 0

7 Hybrid 12.19 14.25

8 Hybrid 12.19 12

9 Hybrid 10.97 12

10 Hybrid 12.19 15

11 Hybrid 11.58 13.5

12 Hybrid 11.58 10.5

13 Hybrid 14.63 15

14 Hybrid 12.19 15

15 Hybrid 12.19 12

16 Hybrid 10.97 12

17 Hybrid 12.19 9

18 Hybrid 14.63 6

19 Hybrid 12.19 15

20 Hybrid 10.97 12

21 Hybrid 11.58 12.75

22 Hybrid 14.63 18

23 Hybrid 12.19 15

24 Hybrid 12.19 12

25 Hybrid 10.97 12

26 Hybrid 12.19 9

27 Hybrid 12.19 12

28 Hybrid 10.97 12

29 Hybrid 11.58 13.5

30 Hybrid 10.97 12

31 Hybrid 11.58 12

32 Hybrid 12.19 14.25

33 Hybrid 11.58 12.75

34 Hybrid 11.58 13.5

35 Hybrid 12.19 12

36 Hybrid 10.97 12

37 Hybrid 11.58 13.5

38 Hybrid 13.41 12

39 Hybrid 12.19 12

40 Hybrid 11.58 10.5

41 Hybrid 13.41 9

42 Hybrid 12.19 9

43 Hybrid 11.58 13.5

44 Hybrid 12.19 15

45 Hybrid 11.58 12

46 Hybrid 11.58 13.5

47 Hybrid 11.58 10.5

48 Hybrid 12.19 9

49 Hybrid 12.19 12

50 Hybrid 10.97 12

(Continued )

TABLE 5 Continued

Design no. Category E(s2) tr(AA0)

51 Hybrid 11.58 13.5

52 Hybrid 11.58 12.75

53 Hybrid 13.41 15

54 Hybrid 12.19 15

55 Hybrid 12.19 12

56 Hybrid 11.58 13.5

57 Hybrid 11.58 13.5

58 Hybrid 11.58 10.5

59 Hybrid 12.19 15

60 Hybrid 13.41 16.5

61 Hybrid 10.97 12

62 Hybrid 12.19 13.5

63 Correlated 10.97 12

64 Correlated 11.58 12.75

65 Correlated 11.58 13.5

66 Hybrid 11.58 12

67 Correlated 12.80 10.5

68 Correlated 12.80 10.5

69 Hybrid 11.58 13.5

70 Hybrid 11.58 13.5

71 Hybrid 11.58 12.75

72 Correlated 12.80 15

73 Hybrid 11.58 12.75

74 Hybrid 11.58 13.5

75 Hybrid 12.19 14.25

76 Hybrid 11.58 10.5

77 Hybrid 12.19 9

78 Correlated 11.58 13.5

79 Correlated 11.58 12

80 Correlated 12.19 13.5

aDesigns on the Pareto front are shown in bold, among which design 5
is tied with designs 9, 16, 20, 25, 28, 30, 36, 50, 61, and 63, design 4 is
tied with designs 17, 26, 42, 48, and 77, and design 12 is tied with
designs 40, 47, 58, and 76 in both criteria.
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given in Johnson and Jones (2010, Appendix C). A

scatterplot of the 80 designs is shown in Figure 7

with the criteria values given in Table 5. The 80

designs have only three categories of structures, with

no replicated designs being generated from a 23 fac-

torial starting point. The Pareto front identifies 24

nondominated designs (3 classical, 1 correlated,

and 20 hybrid designs) with five groups of distinctive

criteria values and eliminates 70% of designs for

further consideration. Design 5, tied with designs 9,

16, 20, 25, 28, 30, 36, 50, 61, and 63, is optimal for

E(s2). Design 6 is optimal for tr(AA0). Design 12 (tied

with 40, 47, 58, and 76), design 4 (tied with 17, 26,

42, 48, and 77), and design 18 are compromise

choices with different degrees of balancing between

the two criteria. The defining equations for all

designs on the Pareto Front are given in Table 6.

Figures 8 and 9 show the graphical summaries

based on one possible choice of subjective choices

with the multiplicative DF and the population-based

scaling. From Figures 8a and 8b, design 6 with the

largest trade-off between two criteria is optimal only

when tr(AA0) criterion is given 100% of the weight.

Designs 18 and 5 are best when E(s2) is weighted less

than 24% and at least 5%, respectively. Design 4 is

optimal when the weight for E(s2) is between 24%

and 53% including the scenario when the two criteria

are valued equally. Design 12 is optimal for around

6% of the remaining weighting area. Depending on

what region of weights is of interest, a different

TABLE 6 Design Generating Equations for the Twenty-Four, 16-run Eight-Factor Designs on the Pareto Front

Design # Category

Design generating equations for factors E, F, G, and H (factors A–D are

determined by a 24 factorial design)

4 Classical E¼AB, F¼AC, G¼AD, H¼BCD

5 Classical E¼AB, F¼AC, G¼BD, H¼CD

6 Classical E¼ABC, G¼ABD, G¼ACD, H¼BCD

9 Hybrid E¼CD, F¼BD, G¼AC, H¼ 1=2[ABþABDþABC�ABCD]

12 Hybrid E¼BD, F¼BC, G¼ACD, H¼ 1=2[ABCþABDþABCD�AB]

16 Hybrid E¼BD, F¼AC, G¼ 1=2[ABþABDþABC�ABCD], H¼ 1=2[ABCþABDþABCD�AB]

17 Hybrid E¼BD, F¼ACD, G¼ 1=2[ABþABDþABC�ABCD], H¼ 1=2[ABDþABCþABCD�AB]

18 Hybrid E¼BCD, F¼ACD, G¼ 1=2[ABþABDþABC�ABCD], H¼ 1=2[ABDþABCþABCD�AB]

20 Hybrid E¼BD, F¼CD, G¼ABC, H¼ 1=2[ABþABDþAC�ACD]

25 Hybrid E¼BD, F¼ABC, G¼ 1=2[ABþABDþAC�ACD], H¼ 1=2[ABDþACþACD�AB]

26 Hybrid E¼BCD, F¼ABD, G¼ACD, H¼ 1=2[ADþABþAC�ABCD]

28 Hybrid E¼BCD, F¼ABC, G¼ 1=2[ABþACþAD�ABCD], H¼ 1=2[ABþADþABCD�AC]

30 Hybrid E¼CD, F¼BD, G¼ 1=2[ACþACDþABC�ABCD], H¼ 1=2[ACþABþABD�ACD]

36 Hybrid E¼CD, F¼ 1=2[ACþACDþABC�ABCD], G¼ 1=2[ACþABþABD�ACD],

H¼ 1=2[ABDþABCþABCD�AB]

40 Hybrid E¼BCD, F¼AD, G¼ 1=2[ACþACDþABC�ABCD], H¼ 1=2[ACþABþABD�ACD]

42 Hybrid E¼BCD, F¼ 1=2[ACþACDþABC�ABCD], G¼ 1=2[ACþABþABD�ACD],

H¼ 1=2[ABDþABCþABCD�AB]

47 Hybrid E¼BCD, F¼ACD, G¼ 1=2[ACþADþABD�ABC], H¼ 1=2[ACþABþABCD�AD]

48 Hybrid E¼BCD, F¼ACD, G¼ 1=2[ADþACþABC�ABD], H¼ 1=2[ABCþABDþABCD�AB]

50 Hybrid E¼BCD, F¼ 1=2[ACþADþABC�ABD], G¼ 1=2[ACþABþABCD�AD],

H¼ 1=2[ABCþABDþABCD�AB]

58 Hybrid E¼ACD, F¼ 1=2[ACþADþABC�ABD], G¼ 1=2[ABþABCþABD�ABCD],

H¼ 1=2[ABCþABDþABCD�AB]

61 Hybrid E¼ABCD, F¼ 1=2[ADþABDþBCD�CD], G¼ 1=2[ADþCDþBCD�ABD],

H¼ 1=2[ADþBDþACD�BCD]

63 Correlated E¼ 1=2[ACþABCþAD�ABD], F¼ 1=2[ACþADþABD�ABC], G¼ 1=2[ACþBCþBD�AD],

H¼ 1=2[BCþADþBD�AC]

76 Hybrid E¼ABC, F¼ 1=2[ADþBDþCD�ABCD], G¼ 1=2[ACþABCþABCD�ACD],

H¼ 1=2[ADþACDþBCD�BD]

77 Hybrid E¼ABC, F¼ 1=2[ADþABDþABCD�ACD], G¼ 1=2[ADþACDþBCD�BD],

H¼ 1=2[ABDþCDþBCD�AD]
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optimal design will be selected. From Figures 9a and

9b, design 4 has the overall flattest FWS curve with at

least 95% synthesized efficiency for about 47% of the

weighting space and highest worst-case synthesized

efficiency. Design 12 has a similar proportion of high

synthesized efficiency area (�95%) but with the

worst-case values dropping most quickly. Design 5

has at least 95% synthesized efficiency for the largest

(around 55%) weighting area among all designs on

the Pareto front; however, it has the lowest synthe-

sized efficiency for about 25% of the weights. Design

18 is at least 95% efficient when E(s2) is weighted less

than 30% but has the lowest synthesized efficiency

among all designs on the Pareto front for the

remaining weighting space. Generally, designs 6

and 18 are less desirable. Design 4 is best if the entire

weighting space is of interest. Design 5 or 12 should

be selected depending on whether best performance

in the high-efficiency region or low-efficiency region

is considered more important.

Again, the overall message from the analysis is that

only 24 designs should be considered as possible

ideal solutions based on E(s2) and tr(AA0). Which

one is best for an experiment depends on the experi-

menter’s priorities. The same process is followed for

conducting the analysis. However, the results are

helpful for demonstrating how decisions are made

for different complication levels of the Pareto fronts.

In addition, a general pattern can be observed that

classical and hybrid designs are generally more

appealing and associated with better performance

than the correlated designs, and the replicated

designs are least desirable among all categories with

worst performance for both E(s2) and tr(AA0) criteria.

CONCLUSIONS

The 16-run screening designs with six to eight fac-

tors are popular for cases with tight constraints on

design size relative to the number of design factors

to be considered. Common choices include classical

designs built from a 24 factorial design with com-

pletely confounded main effects with two- and

higher-order interactions, such as the fractional fac-

torial resolution IV design for the six-factor case.

Considering that some nonregular designs (Jones

and Montgomery 2010) with specially defined design

structure can avoid complete confounding between

main effects and two-way interactions and allow

better evaluation of some of these terms, Johnson

and Jones (2010) studied the list of all orthogonal

nonisomorphic regular and nonregular designs for

FIGURE 9 (a) Synthesized efficiency plot and (b) FWS plot for

selecting eight-factor designs from the Pareto front with the multi-

plicative desirability function and the scaling based on the popu-

lation of candidate choices.

FIGURE 8 (a) Mixture plot and (b) trade-off plot for selecting

eight-factor designs from the Pareto front with the multiplicative

desirability function and the scaling based on the population of

candidate choices.

282 L. Lu et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
25

 0
6 

A
pr

il 
20

15
 



six-, seven-, and eight-factor cases and provided cat-

alogs of defining equations for design generation.

These catalogs are helpful for knowing what choices

exist but do not directly provide guidance about how

to choose among these options. Without prior infor-

mation about which of the two-way or higher-order

interactions might be active, it is still challenging to

choose from the collection of possibilities based on

only the aliasing patterns.

Buildingon thesecatalogsofdesigns, this articleuses

two common general design criteria, E(s2) and tr(AA0),

to compare the candidate choices. These criteria quan-

tify the average degree of confounding and potential

bias in the parameter estimates, if some of the

two-factor interactions are actually active. A two-stage

Pareto front approach is used to facilitate rational

decision making. The first objective stage eliminates

all inferior options and keeps only nondominated

designs on the Pareto front for further consideration.

The results from this stage provide a set of candidates

fromwhich a best experimental design canbe selected.

The second subjective stage uses a set of graphical tools

to compare the promising designs based on quantitat-

ive evaluation of their relative performance and

trade-offs as well as robustness to different weighting

preferences and provides useful information for mak-

ing a rational and defensible decision that best matches

the priorities of the experiment.

In the subjective stage, in addition to the weighting

preference, there are some choices tomake for scaling

criteria values into a comparable range and combin-

ing multiple criteria into a single metric (desirability

function) for ranking the design performance. Making

these subjective choices will impact the results and

hence choices should be made to reflect experimen-

ter’s priorities and how much to penalize inferior per-

formance for a given criterion. With the summary of

design performance given in the tables, the user could

construct alternatives using different scalings and

desirability function forms, if so desired. Since the Par-

eto front remains unchanged regardless of these

choices, the Pareto approach offers great flexibility

and computational advantage for exploring alterna-

tive choices and understanding their impacts, which

was demonstrated with the six-factor case.

The results from the three case studies (six-,

seven-, and eight-factor situations) indicate that

among the four categories of design structures, the

replicated designs are least desirable, with the worst

performance for both criteria across all cases. In gen-

eral, the classical and hybrid designs tend to associ-

ate with better performance than correlated

designs. For each case, only a small proportion of

the designs from the population are considered as

sensible choices from which to select. However,

there is no universal best design for any of the three

cases evaluated, and which design to select depends

on priorities of the study and how the experimenter

prefers to value the two criteria.

The streamlined decision-making process, includ-

ing how to use the graphical summaries for aiding

informed decision making, was illustrated with the

three cases for six, seven, and eight factors based

on the two general criteria. However, the Pareto

front approach for multiple objective optimization

can be adapted for applications with more objectives

and more complexity in design structure, randomiza-

tion, and space constraints, as well as metrics for

quantifying the objectives. In addition, the Pareto

front approach is not limited to evaluating a fixed

set of candidate choices and can be generalized to

other problems, when it is not practical to exhaus-

tively search and evaluate all possible choices, by

using global optimization search algorithms.
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