This article was downloaded by: [University of South Florida]

On: 06 April 2015, At: 12:25

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Quality Engineering
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lqen20

Selecting a Best Two-Level 16-Run Screening Design
from the Catalog of Nonisomorphic Regular and
Nonregular Designs for Six to Eight Factors

Lu Lu ?, Mark E. Johnson ® & Christine M. Anderson-Cook °

# Department of Mathematics and Statistics , University of South Florida , Tampa , Florida
b Department of Statistics , University of Central Florida , Orlando , Florida

¢ Statistical Sciences Group , Los Alamos National Laboratory , Los Alamos , New Mexico

Published online: 27 May 2014.
@ CrossMark Y

Click for updates

To cite this article: Lu Lu , Mark E. Johnson & Christine M. Anderson-Cook (2014) Selecting a Best Two-Level 16-Run Screening
Design from the Catalog of Nonisomorphic Regular and Nonregular Designs for Six to Eight Factors, Quality Engineering, 26:3,
269-284, DOI: 10.1080/08982112.2013.854903

To link to this article: http://dx.doi.org/10.1080/08982112.2013.854903

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained

in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions



http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2013.854903&domain=pdf&date_stamp=2014-05-27
http://www.tandfonline.com/loi/lqen20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08982112.2013.854903
http://dx.doi.org/10.1080/08982112.2013.854903
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [University of South Florida] at 12:25 06 April 2015

Taylor & Francis

Taylor & Francis Group

Quality Engineering, 26:269-284, 2014
Copyright © Taylor & Francis Group, LLC e
ISSN: 0898-2112 print/1532-4222 online

DOI: 10.1080/08982112.2013.854903

Selecting a Best Two-Level 16-Run
Screening Design from the Catalog of
Nonisomorphic Regular and Nonregular
Designs for Six to Eight Factors

Lu Lu’,

Mark E. Johnson?, ABSTRACT When exploring first-order models including two-factor
Christine M. Anderson-Cook® interactions for six to eight factors using a 16-run design, there are many
'Department of Mathematics possible model choices. Building on the Johnson and Jones (2010) catalog
and Statistics, University of South of the nonisomorphic regular and nonregular design alternatives, we

Florida, Tampa, Florida
Department of Statistics,
University of Central Florida,

summarize which of these design options are most promising based on
two common design criteria. The Pareto fronts based on the criteria E(s%)

Orlando, Florida and (44" suggest that only a handful of the possible designs should be
3Statistical Sciences Group, considered further, and the best design depends on the relative emphasis
Los Alamos National Laboratory, given each of the two criteria. This article considers each case of six, seven,
Los Alamos, New Mexico and eight factors for 16-run two-level designs and provides numerical and

graphical comparisons between the alternatives to highlight the merits of
the leading candidates.

KEYWORDS alias patterns, design generators, desirability functions, nondomi-
nated designs, Pareto front optimization, supersaturated designs

INTRODUCTION

In many design scenarios, tight budgetary constraints restrict the size of a
design to be relatively small compared to the number of design factors of
interest. For example, the classical fractional factorial resolution IV design
with defining relation = ABCE = BCDF = ADEF is a common choice for a
screening experiment with 16 runs and six factors. This design ensures that
all main effects are not confounded with other main effects or any
two-factor interactions. However, this design does not allow separate esti-
mation of all two-factor interactions, since these are confounded with sev-
eral other two-factor interactions. Jones and Montgomery (2010) proposed
some nonregular designs with no complete confounding between any main
effects or two-way interactions. Johnson and Jones (2010) provided a
catalog of defining equations for all orthogonal nonisomorphic regular

Address correspondence to Lu Lu, , . . . .
4202 E. Fowler Avenue, Tampa, FL and nonregular designs, which are considered as logical candidates for
33620. E-mail: icyemma@gmail.com constructing 16-run designs for six, seven, and eight factors.
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Using the Johnson and Jones (2010) catalog, this
article evaluates the individual design performance
of all candidates based on two common general
criteria and eliminates the noncontenders for
decision making based on using a Pareto front
approach (Lu et al. 2011, 2012). The remaining prom-
ising choices are compared based on performance
given different potential prioritization of the criteria,
which should be governed by the goals of the study.

Two metrics for quantifying omnibus design char-
acteristics are considered. To select a screening
design with & factors, the main goal is to identify
active design factors. We focus on factors influencing
the response through main effects and two-factor

. . . . k
interactions in a first-order model with all )
two-way interactions:

k k—1 k
y=PB+ ZﬁiX,- +Y > BxiX e 1]

i=1 j=i+1

Hence, we want not only good estimation of main
effects but also the ability to estimate any potentially
active two-factor interactions. In our case, the
number of two-factor interactions to be explored in
model [1] grows as the number of factors increases
(six factors have 15 interactions, seven factors have
21, and eight factors have 28 interactions). Because
of the limited number of runs, we cannot estimate
all terms in model [1]. There will be complete (from
regular fractional factorial designs) or partial (from
nonregular designs) aliasing, which complicates the
estimation procedures. Since we do not know in
advance which two-factor interactions will be present
in the final model, the general design characteristics
look at the potential impact of any combination of
these terms being active. In this case, we can think
of our screening designs as supersaturated designs
(Booth and Cox 1962), which have fewer runs than
effects to be estimated in the proposed model.

We assume the matrix form for model [1] is
given by

y=PF1+Xp+e 2]

In [2], y is a vector of N=16 observations for the
response, X is an N X f matrix containing columns

for the & main effects and two-factor interac-

2
tions, B is the vector of model parameters excluding
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the intercept, 1 is an Nx 1 vector with all entries
being 1, f is the intercept, and g is the vector for
the experimental errors. Booth and Cox (1962)
suggested that a good supersaturated design should
have off-diagonal elements of X'X as small as
possible and introduced the H(s%) criterion for selecting
supersaturated designs that minimizes

S

i<y

where s, is the element in the ith row and jth column
of XX If off-diagonal elements are small, then this
corresponds to lower correlations between estimated
model coefficients.

The second criterion is the #1(AA") proposed by
Bursztyn and Steinberg (2006) for quantifying
potential impact from model misspecification. In
the selection of a screening design, we assume that
the primary interest lies in good estimation of main
effects in the specified model

y:X1ﬁ1+87

where X; is the design matrix containing only main
effects and B, is the vector of corresponding model
parameters including the intercept, if applicable.
However, it is also thought that some subset of the
two-factor interactions is potentially active. Hence,
we want some protection for the estimation of the
specified model by seeking designs with minimal
bias in the estimated parameters, if this model is
incorrect and some two-way interactions exist. Let

y=X1pi + X2B, +¢

denote the larger model with the additional term
X,B, containing all possible two-factor interactions.
The bias of the least squares estimate of B is

E(B)) - b = (X\X1) X\ X2B, = 4B,

where A = (X’le)_lX’le is the alias matrix
measuring the degree of bias for estimated model
parameters due to the existence of active terms in
X5. Since the particular f, values of any active factors
cannot be known a priori, we seek designs that
minimize /7(AA’) to minimize the impact of aliasing
on the estimated model parameters.

The above criteria are two commonly used criteria
for evaluating screening and supersaturated designs

L. Lu etal.
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with different emphases ranging from the evaluation
of orthogonality to the protection against model mis-
specification. There are many other criteria that
could possibly be used with different design setups
and goals. The methodology illustrated in this case
study could be adapted for these alternative criteria.

Based on these two commonly used design cri-
teria, we explore the catalog of all nonisomorphic
designs in Johnson and Jones (2010) to suggest
which subset of these represents “good” design
choices to consider further and eliminate a large frac-
tion of the alternatives as inferior. The Pareto front
approach (Lu et al. 2011 is used to identify the set
of contending designs and allows flexible explo-
ration of trade-offs and balancing of priorities when
combining multiple objectives.

The Pareto optimization has been broadly used in
applications in different disciplines before being
introduced as a structured decision-making process
in the design of experiment paradigm (Lu et al.
2011, 2012). The method consists of two stages: (1)
objective Pareto optimization, which assembles a
set of superior designs as contenders by removing
inferior choices from further consideration and (2)
subjective Pareto decision analysis, to compare can-
didate designs by evaluating individual performance,
trade-offs, and robustness to a spectrum of different
emphases of the criteria using a set of graphical
methods. This second stage concludes with a final
decision, which chooses a best design based on prio-
rities of the study. By separating the objective and
subjective steps, an experimenter can first see the
complete set of choices, before imposing any subjec-
tive experiment-specific considerations. By under-
standing the range of options and potential impacts
of subjective choices, the decision maker is posi-
tioned to make an informed and defensible choice.

The first objective optimization stage finds the set
of designs that are not strictly outperformed by any
other designs in the entire design space. Here one
design strictly outperforms another, or Pareto domi-
nates it (in the terminology of the Pareto literature), if
it is at least as good as another for all criteria and
strictly better for at least one of the criteria. A Pareto

Sfront is formed in the criterion space with all designs

that are not Pareto dominated by others. The Pareto
set of designs represents an objective collection of
options to select from, since for any alternative not
on the Pareto front, there is at least one clearly better

Two-Criterion Design Selection with a Pareto Front

choice on the Pareto front. Hence, as the logical first
step, finding the Pareto front allows one to see the
complete set of superior options before making a
subjective decision specific to a particular experi-
mental scenario.

In the second stage, designs on the Pareto front are
evaluated on three aspects with the graphics
developed in Lu et al. (2011) and Lu and
Anderson-Cook (2012): (1) finding the best solution
for a particular weight combination that matches the
user’s study goals (from a particular location in the
mixture plot in Lu et al. 2011), (2) the robustness of
a chosen solution based on a range of weightings
close to user preferences (the area of weightings
where a solution is best in the mixture plot), and
(3) individual design performance relative to the best
available solution for a particular set of weight
choices (with the synthesized efficiency plot from
Lu and Anderson-Cook 2012). These graphical sum-
maries allow quantitative evaluation of design
choices from the Pareto front to be visualized for
more intuitive comparison and matched with subjec-
tive choices affecting the final decision. As an essen-
tial part of the Pareto front approach, the graphical
tools are helpful for making an informed, quantitat-
ively based decision and for reaching consensus
when there may be competing priorities for the study.

In the following section, we examine the 27 non-
isomorphic regular and nonregular 16-run designs
for six factors detailed in Johnson and Jones (2010)
to categorize the alternatives based on the two cri-
teria of E(s®) and #(A44") and provide discussion
about how to make a sensible and justifiable choice
of a best design based on experimenter priorities.
The next sections repeat the Pareto optimization pro-
cess based on E(s?) and #1(A44) for the seven- and
eight-factor 16-run designs with 55 and 80 candidate
designs, respectively. Finally, the conclusions section
highlights some of the key results for the different
scenarios and discusses some options for expanding
the set of criteria when making the decision and how
this will impact the results of the Pareto front
approach.

16-RUN SCREENING DESIGNS
FOR SIX FACTORS

Johnson and Jones (2010, Appendix A) provide the
design generating equations for the 27 nonisomorphic
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16-run, six-factor, two-level regular and nonregular
designs provided by Sun et al. (2002). The designs
are categorized into four structural groups based on
their aliasing patterns:

1. Classical ~designs have an embedded 2°
full-factorial design for four of the factors and
use defining equations that completely confound
the other two main effects with sets of four two-,
three-, or four-way interactions.

2. Hybrid designs have an embedded 2* full-factorial
design with one other main effect completely
confounded with four two-, three-, or four-way
interactions and the other main effect partially
confounded with four two-, three-, or four-way
interactions.

3. Correlated designs have an embedded 2°*
full-factorial design and defining equations that
partially confound the other two main effects with
sets of four two-, three-, or four-way interactions.

4. Replicated designs use a replicated 2° factorial
design as the starting point of design generation.

The values of the two criteria, F(s*) and t(A44"), as
well as the category of their design structure for the
27 designs are shown in Table 1. The design index
numbers are consistent with the numbering scheme
in Johnson and Jones (2010). A scatterplot of the
design criteria for the 27 designs is shown in
Figure 1 with different symbols to distinguish
between design structural groups. The nondomi-
nated designs on the Pareto front are highlighted
with the dotted line.

Several designs have identical values for both cri-
teria and hence are labeled with only one represen-
tative index number. Among the 27 designs, only five
are on the Pareto front (shown in bold in Table 1).
Designs 4, 13, and 14 are tied and optimal for
E(s»). Design 5 is best for t{AA4"). Design 8 represents
a compromise with more balanced performance for
the two criteria. The design generating equations
for the five designs on the Pareto front are shown
in Table 2.

The Utopia point, which corresponds to best
values for both criteria and is unattainable for any
design in this class, is shown with the solid circle at
the bottom left corner of the plot. The Utopia point
is typically identified as the “ideal” solution with
the best available values for each of the criteria.
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TABLE 1 Values of the Two Criteria, E(s?) and tr(AA’), for 27
Nonisomorphic Six-Factor Designs and Their Corresponding
Design Generating Structural Categories®

Design no. Category E(s?) tr(AA’)
1 Replicated 25.6 12
2 Classical 10.97 6
3 Classical 7.31 6
4 Classical 7.31 3
5 Classical 10.97 0
6 Hybrid 7.31 3.75
7 Hybrid 9.14 4.5
8 Hybrid 9.14 1.5
9 Hybrid 9.14 5.25
10 Replicated 18.29 9
11 Hybrid 10.97 6
12 Hybrid 10.97 3
13 Hybrid 7.31 3
14 Hybrid 7.31 3
15 Hybrid 9.14 4.5
16 Replicated 18.29 6
17 Correlated 10.97 6
18 Correlated 7.31 6
19 Correlated 9.14 3
20 Correlated 9.14 4.5
21 Replicated 14.63 7.5
22 Correlated 10.97 4.5
23 Correlated 9.14 5.25
24 Correlated 9.14 45
25 Replicated 14.63 6
26 Correlated 10.97 6
27 Replicated 12.8 6

?Designs on the Pareto front are in bold, among which designs 4, 13,
and 14 are tied in both criteria.

However, this solution is typically not attainable
because there is rarely an overall global winner,
but the Utopia point is useful to serve as the gold
standard when we evaluate the individual designs
on the front based on how close they are located
relative to the ideal solution. The Pareto front is
located on the edge of the solution space closest to
the Utopia point. By identifying the Pareto front,
we automatically eliminate a large proportion of
the design options in the candidate set because of
their inferior performance relative to those on the
Pareto front, and we can focus our attention on the
most promising choices. For any design not on the
Pareto front, one or more of designs 4, 5, 8, 13, or
14 is at least as good on each criterion and strictly
better for at least one. Focusing attention on just
those solutions on the Pareto front substantially

L. Lu etal.
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FIGURE 1 Scatterplot for 27 nonisomorphic designs with six
factors based on the two criteria, E(s?) and tr(AA’). Designs on
the Pareto front are connected with the dotted line. Designs from
different categories (classical, hybrid, correlated, and replicated)
are shown with different symbols. Designs that are tied in both
criteria values (designs 2, 11, 17, and 26; designs 3 and 18;
designs 4, 13, and 14; designs 7, 15, and 20; designs 9 and 23)
are labeled with one index number as a representative. The Utopia
point, which is the ideal solution with best values for both criteria,
is shown with the solid dot at the bottom left corner.

reduces the time and effort needed for quantitative
evaluation and comparison of the competitive
designs for making a rational final decision.

Among the four categories of design generating
structures, the replicated designs are all scattered in
the top right area of Figure 1 and hence have inferior
performance (large values for both criteria) among
all 27 designs. The other three categories generally
have relatively smaller E(s®) values and moderately
small (no more than 50% of the maximum) #7(A44")
values. However, no correlated designs are located

TABLE 2 Design Generating Equations for the Five 16-run,
Six-Factor designs on the Pareto Front

Design generating equations for
Design factors E and F (factors A-D are

no. Category determined by a 2* factorial design)

4 Classical E=AB, F=ACD

5 Classical E=ABC, F=ABD

8 Hybrid E=ABC, F=1/2[CD+ACD +BCD —
ABCD]

13 Hybrid E=ABCD, F=1/2[BD + ABD +CD —
ACD]

14 Hybrid E=ABC, F=1/2[AD +BD +
ABCD — CD]

Two-Criterion Design Selection with a Pareto Front

on the Pareto front, which indicates that none of
them are optimal regardless of how the two criteria
are valued. Designs 4 and 5, which are optimal based
on only Hs® or tr(AA’), respectively, are both
classical designs. The remaining three designs
(8, 13, and 14) on the front are hybrid designs.

The identification of the Pareto front has narrowed
the design choices to only three sensible options (five
designs including the ties) based on the criteria HsD
and M(AA"). However, to actually conduct the experi-
ment, the practitioner has to ultimately choose only
a single design to run. Hence, we evaluate the
individual design performance, trade-offs, and
robustness to different emphases of the relative impor-
tance of the two criteria using the graphical tools
developed in Lu et al. (2011), Lu and Anderson-Cook
(2012), and Lu, Chapman, and Anderson-Cook (2013).

The Utopia point approach (Lu et al. 2011) is used
to further select optimal designs from the Pareto
front based on a user specified desirability function
(Derringer and Suich 1980) for combining the two
criteria. A fine grid of weight combinations spreading
across the entire possible weighting space (from
100% of the weight for E(s*) to 100% of the weight
for 1M(AA")) is evaluated to explore which design is
best for different subjective weighting choices. To
use the desirability function approach, both criteria
values are converted to a 0-1 scale with a linear
transformation by matching the worst and best desir-
able values to 0 and 1, respectively. For example, if
the worst and best desirable values for t{AA4’) are
12 and 0 for an experiment, then a design with
1M(AA") equaling 6 will have a value of 0.5 on the
converted 0-1 desirability scale. The desirability
value of 1 for each criterion typically corresponds
to the optimal value observed. However, there could
be alternative ways for choosing the scale for the
worst desirability value (an admitted oxymoron).
Choosing the worst-performing design among those
on the Pareto front can be used when the candidate
set of designs is extremely large (impractical to
consider all possibilities). Alternatively, if the entire
population of candidate choices can be considered
(e.g., the 27 designs for the six-factor case), set the
value of 0 for the worst-performing design in the
population. A final possibility is to apply a user-
specified value reflecting subject-matter knowledge.
Besides the scaling scheme, a metric is needed to
integrate multiple criteria into a single summary
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index for ranking the design performance. A multipli-
cative desirability function for design j in the form of

DF(]) w) = S?l (])SZZUZ (j)v [4]

where w=,, w, with 0<w,, w,<1 and
w,+w,=1, and s; and s, are the scaled criteria values
between 0 and 1, is a common choice, which penalizes
poor design performance for at least one of the criteria
rather severely. This is equivalent to using the log ;-
norm metric in the Utopia point approach literature
(Lu et al. 2011). Another common choice is the additive
desirability function, which combines multiple criteria
as a weighted sum of the scaled criteria values and
allows superior performance of one criterion to over-
come the poor performance of another criterion. What
desirability function (DF) form to choose depends on
whether the experimenter wants severe penalization
for poor performance of a certain criterion (multiplicat-
ive DF) or whether stellar performance in one criterion
is thought to be a reasonable trade-off for very poor
performance on the other (additive DF). Note that
the optimal design that is selected depends on the
choice of scaling scheme and desirability function
form. Different choices can be used for different user
preferences and priorities. The Pareto front approach
offers considerable flexibility to explore different
choices and conduct a sensitivity analysis with little
extra computational effort, especially for scenarios with
a large number of possible candidates (Lu et al. 2011).

Next we explore the potential impact of these sub-
jective choices on decision making. First consider a
scenario of using the Pareto front scaling (worst
value of designs on the Pareto front is mapped to
0) combined with the multiplicative desirability func-
tion. The design that maximizes [4] is the optimal
design for a particular weighting choice, w. The opti-
mal designs for all possible different weighting
choices are shown in the mixture plot in Figure 2a.
This was adapted from the mixture plot developed
for mixture designed experiments in Cornell (2002).
For the three-criteria case, the mixture plot is a tri-
angular simplex. For the two-criteria scenario, the
plot collapses to a horizontal line segment. Moving
from left to right in Figure 2a, the relative priorities
shift from weighting #7(AA4’) heavily to more empha-
sis on E(s%). Since the two weights sum to 1, knowing
the weight of one of the criteria specifies the other
weight completely. The mixture plot can also be
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FIGURE 2 Graphical summaries for selecting six-factor
designs from the Pareto front based on using the multiplicative
desirability function based on the criteria values of designs on
the Pareto front: (a) mixture plot for showing the optimal designs
for different weightings of the two criteria; (b) trade-off plot for
optimal designs selected in the mixture plot; and (c) synthesized
efficiency plot for optimal designs selected in the mixture plot.

adapted for the four criteria scenario, in which case
the range of all combinations of weighting preferences
can be displayed in a tetrahedron (Lu and Anderson-
Cook 2014). Design 8 is optimal for all possible weights
in (0, 1 except for the two extreme weightings
with 100% weight for only one of the criteria. Design
4 (as well as the tied designs 13 and 14) is optimal only
when E(s%) is weighted 100%. Design 5 is the best
design only if #(A4A4’) is given a 100% weight.

The mixture plot provides a mechanism to align
the study goals with the experimenter’s particular
region of interest via the weighting. For example,
in our case study, if the experimenter has about
equal concern on both criteria, then the focus would
be the region around the middle area of mixture plot.
Depending on how much uncertainty is associated
with this preference, the weight region could be
either as narrow as allowing 45%-55% weight for

L. Lu etal.
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each criterion or it could be as wide as allowing any
weighting between 30% and 70% being possible for
each criterion. With the experimenter’s weighting
region of interest, the mixture plot leads to the
possible optimal designs to consider in that region.
However, for our particular case, design 8 is the
absolute dominating choice for all weighting prefer-
ences except for the extreme cases with 100% inter-
est in a single criterion.

Figure 2b shows the trade-offs between the differ-
ent designs selected from the Pareto front. The inner
axes of the plot are generated based on the desir-
ability (0—1) scale, with the raw criteria scales shown
on both sides of the plot. Designs are sorted by worst
to best E(s®) values from left to right. The simple
trade-off pattern observed for the three optimal
designs (ignoring the ties) captures the simple,
nearly linear shape of the Pareto front. Designs 4
and 5 are both 100% desirable for one of the two cri-
teria, and design 8 has equally balanced performance
(50% desirable) for both criteria.

Figure 2c shows the synthesized efficiency plots
(Lu and Anderson-Cook 2012) for the three designs.
It shows the individual design performance based on
quantifying its performance relative to the optimal
for a spectrum of different weighting choices. The
relative design performance for design j is quantified
by its synthesized efficiency as a function of a
particular set of weights, w, defined as

SE(j,w) = DF(j,w)/max;{DF(j,w)}.

To calculate the synthesized efficiency values for a
particular solution, the DF is valued for every combi-
nation of weights and then compared to the best
DF value at that weight. High to low synthesized
efficiency values are plotted with a white—gray—black
scale with 20 shades of gray each corresponding to a
5% band of efficiency values. Hence, designs 4 and 5
are black for the entire weight interval except for one
extreme end, and design 8 is white (and optimal) for
all weights except the endpoint cases.

Hence, when a multiplicative DF is preferred and
the criteria values are scaled based on values from
the Pareto front, the hybrid design 8 is the dominant
choice. Designs 4 (13 and 14) and 5 are optimal
when only a single criterion is considered. On the
other hand, if the experimenter prefers the additive

Two-Criterion Design Selection with a Pareto Front

DF for combining the criteria, then design 8 is
optimal for only a single weight combination with
equal weight for both criteria, and designs 4 (13
and 14) and 5 would be selected based on whether
E(s®) or t1{AA") is valued as more important among
the two criteria.

Since we have only a fixed finite set of candidate
designs to choose from, this naturally defines the
complete range of values in this space for each of
the criteria. We explore another scaling based on
values from all designs in the population following
the same process for using the scaling based on only
designs on the Pareto front. Suppose the multiplicat-
ive DF in [4] is selected for combining the criteria,
then the optimal designs for different weighting
choices are summarized in the mixture plot shown
in Figure 3a. With this alternative scaling, design 8

We|ght for 1.0 08 06 04 0.2 0.0
tr(AA’)

Weight for
E(s?)

Weight for 10 08 06 04 02 00
tr(AA’)

Design 4 ¥ '

Design 5 f 1
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E(s2) 00 02 04 06 08 10
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©

FIGURE 3 Graphical summaries for selecting six-factor
designs from the Pareto front based on using the multiplicative
desirability function with an alternative scaling based on the cri-
teria values of the population of candidate choices: (a) mixture
plot for showing the optimal designs for different weightings of
the two criteria; (b) synthesized efficiency plot for optimal
designs selected in the mixture plot; and (c) FWS plot for the
selected designs.
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is no longer the dominant choice but is only optimal
when E(s?) is weighted between about 53% and 60%.
In contrast, design 5, which under the previous scal-
ing was optimal when only #(A44") criterion is con-
sidered, is now optimal for around 53% of the
possible weightings when {44) is weighted
between 47% and 100%. When E(s%) is weighted at
least 60% of the weight, design 4 (tied with designs
13 and 14) is the best choice.

Figure 3b shows the synthesized efficiency plot for
designs 4, 5, and 8. All three designs have no less
than a 75% synthesized efficiency for all possible
weightings. Design 4 has a large white region (corre-
sponding to at least 95% efficient) when more weight
is given to E(s%), and design 5 is above 95% efficient
for 60% of the weighting space. Design 8 has the
shortest white region but has the largest minimum
synthesized efficiency (corresponding to lightest
dark color across the weighting space). The differ-
ences between the results from Figures 2 and 3 are
due to the large difference in the range of values
for the Pareto front, and the entire population of
designs leads to dramatic differences in the scaled
values with the two different scaling schemes. The
Pareto front scaling results in much bigger (almost
five times) trade-offs between designs than the
population scaling and hence requires more balanc-
ing between the two criteria. The substantial changes
in the results of using different scaling schemes
(Figure 2 vs. Figure 3) indicate how big an impact
the subjective choice can have on the solution.
Hence, it is advantageous to use the Pareto front
approach since it is computationally more efficient
to conduct a sensitivity analysis of the subjective
factors based on evaluating only a smaller set of
choices on the Pareto front.

To summarize the individual design performance
across the entire weighting space, Figure 3¢ shows
the fraction of weighting space (FWS) plot (Lu,
Chapman, and Anderson-Cook 2013) for the three
designs. The line for each design displays the frac-
tion of the weighting space where the design has
synthesized efficiency at least as high as the specified
percentage. This provides an overall quantitative
summary of individual design performance across
the entire weighting space and hence allows for an
easy and intuitive comparison of several design
choices when all of the weights are considered of
interest. A discrete approximation of this summary
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can be built from the information in the synthesized
efficiency plot in Figure 3b. For each design, we have
a vector of synthesized efficiency values relative to
the best possible for each weight combination with
fine coverage of the entire weighting space. Then
we sort the efficiency values in descending order
and extract a list of distinct values in the same order.
For each distinct value, we calculate the fraction of
entries (weight combinations) in the sorted efficiency
vector at least as large as that value. This graphical
summary is implemented in R, with scripts available
from the first author upon request. Design 8 has the
best minimum synthesized efficiency of 87.5%.
Designs 4 and 5 have higher synthesized efficiencies
than design 8 for close to 47% and 60% of weighting
space, respectively. However, their synthesized effi-
ciencies drop much faster after these initial high
values with the minimum values at 75% and 80%
for designs 4 and 5, respectively. If all possible
weightings are considered of equal interest, design
5 has generally better performance with consistently
higher synthesized efficiency for around 60% of the
weighting space. However, if there is a more focused
region of interest for how to weight the two criteria,
then different solutions may be selected depending
on where the experimenters’ priorities lie, how big
the weighting region of interest is, and whether the
average or the worst case of performance is more
of interest. Lu, Anderson-Cook, and Lin (2013)
adapted the FWS plot for flexibly incorporating more
focused weighting preference for two criteria when
summarizing across only a portion of the range of
interest.

The additive desirability function is also examined
based on the scaling from the entire population of
designs, with design 5 chosen as optimal when
E($Y) is weighted less than 56% and design 4 is best
for the remaining weightings. Design 8 is not optimal
for any weight combinations. Alternate scaling or DF
forms would also be possible and should be chosen
to match experimenter goals. Adjusting the analyses
based on different choices is straightforward given
the table of values in Table 1. Regardless of what
scaling or desirability function forms the exper-
imenter chooses, the identification of the Pareto
front is independent of those choices. The explo-
ration of different possible scenarios with different
weighting, scaling, and DF choices indicates that
our solution is dependent on these subjective
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choices. However, the selection of the Pareto front
substantially reduces the set of promising choices
to consider further (from 27 designs down to 5)
and allows for more efficient evaluation of the sensi-
tivity of solutions to different subjective weighting
and scaling choices. The overall message from the
analysis is that one of designs 4, 5, 8, 13, or 14 should
be chosen as an ideal solution based on E(s?) and
1MAA"). Which one of these is best for a particular
experiment is based on how the experimenter values
the criteria and how much penalty to assign to
inferior performance.

16-RUN SCREENING DESIGNS FOR
SEVEN FACTORS

This section considers selecting 16-run two-level
screening designs with seven factors from the catalog
of 55 nonisomorphic regular and nonregular designs
based on the two general criteria, E(s®) and t(A44).
Table 3 contains the criteria values and correspond-
ing design structural categories for the 55 designs
with the same numbering scheme as in Johnson
and Jones (2010, Appendix B). A scatterplot of
the 55 designs is shown in Figure 4 with different
symbols for different categories. Designs with
identical criteria values are labeled with only one
representative index number, and details of the ties
are listed in the caption. Designs on the Pareto front
are connected with the dotted line, which are on the
edge of the population closest to the unattainable
Utopia point at the bottom left corner.

There are 10 designs on the Pareto front with four
groups of distinctive criteria value pairs. Design 5,
which is tied with designs 11, 21, 22, 32, and 33, is
optimal for E(sD). Design 6 has the best t1{A4A") value.
Design 26 (tied with design 28) and design 12 have
moderate values of the two criteria and represent
compromise choices. The 10 designs on the Pareto
front with their criterion values are shown in bold
in Table 3 with their corresponding design generat-
ing equations (Johnson and Jones 2010) contained
in Table 4. Similar to the six-factor case, all of the
replicated designs have relatively poor performance
for both criteria. Among the 10 designs on the Pareto
front, two are classical, seven are hybrid, and only
one is a correlated design. The two classical designs
5 and 6 are optimal for one of the two criteria with
substantial sacrifice for the other criterion. Several

Two-Criterion Design Selection with a Pareto Front

TABLE 3 Values of Criteria, E(s?) and tr(AA’), for the 55 Noniso-
morphic Seven-Factor Designs and Their Corresponding Design
Structural Categories®

Design no. Category E(s?) tr(AA’)
1 Replicated 28.44 21
2 Classical 14.22 12
3 Classical 12.19 9
4 Classical 10.16 9
5 Classical 10.16 6
6 Classical 14.22 0
7 Hybrid 10.16 7.5
8 Hybrid 10.67 8.25
9 Hybrid 12.19 9
10 Hybrid 10.16 9
11 Hybrid 10.16 6
12 Hybrid 12.19 3
13 Hybrid 10.16 9
14 Hybrid 12.19 10.5
15 Hybrid 10.16 7.5
16 Replicated 20.32 15
17 Hybrid 14.22 12
18 Hybrid 12.19 9
19 Hybrid 10.16 9
20 Hybrid 14.22 6
21 Hybrid 10.16 6
22 Hybrid 10.16 6
23 Hybrid 10.67 6.75
24 Hybrid 12.19 9
25 Hybrid 10.16 9
26 Hybrid 11.17 4.5
27 Hybrid 11.17 7.5
28 Hybrid 11.17 4.5
29 Hybrid 10.67 8.25
30 Hybrid 10.16 7.5
31 Correlated 12.19 6
32 Correlated 10.16 6
33 Hybrid 10.16 6
34 Hybrid 11.17 9
35 Hybrid 10.67 8.25
36 Hybrid 10.67 6.75
37 Hybrid 10.16 7.5
38 Correlated 12.19 9
39 Correlated 10.16 9
40 Hybrid 12.19 10.5
a1 Replicated 16.25 12
42 Replicated 14.22 12
43 Hybrid 10.16 7.5
44 Correlated 14.22 9
45 Correlated 12.19 9
46 Correlated 10.16 7.5
47 Correlated 10.16 9
48 Correlated 11.17 9
49 Correlated 11.17 6
50 Correlated 11.17 9
51 Replicated 14.22 10.5
52 Replicated 14.22 10.5
53 Correlated 10.16 7.5
(Continued)
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TABLE 3 cContinued

Design no. Category E(s?) tr(AA")
54 Correlated 10.67 8.25
55 Correlated 10.67 6.75

“Designs on the Pareto front are shown in bold, among which design 5
is tied with designs 11, 21, 22, 32, and 33, and design 26 is tied with
design 28 in both criteria.
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FIGURE 4 Scatterplot for 55 nonisomorphic 16-run designs
with seven factors based on the two criteria, E(s?) and tr(AA’).
Designs from different categories (classical, hybrid, correlated,
and replicated) are shown with different symbols. Designs
that are tied in both criteria values are labeled with one index
number as a representative. Designs on the Pareto front are
connected with the dotted line (among which design 5 is tied
with designs 11, 21, 22, 32, and 33 and design 26 is tied
with design 28). The Utopia point, which is the ideal solution
with best values for both criteria, is shown with the solid dot
at the bottom left corner.

of the hybrid designs (designs 12, 26, and 28) are
more balanced between the two criteria.

The Pareto front eliminates more than 80% of all
possible designs in the objective stage and allows a
final decision to be made from only the four distinct
criterion value options. Next, we compare the
remaining designs based on their trade-offs and
robustness to different weighting choices using the
same set of graphical summaries as for the six-factor
case. We illustrate the case with the subjective choice
of the multiplicative desirability function combined
with the scaling based on the range of criteria values
for the entire population of 55 designs. However, the
experimenter has the flexibility of exploring and
choosing different scaling and desirability functions
based on their preferences/priorities.

Figure 5a shows the mixture plot of the optimal
designs for different weighting choices. Design 6 is
optimal for about 53% of possible weights when
11(AA") is valued more. Design 5 (tied with designs
11, 21, 22, 32, and 33) is optimal when E(s») is
weighted at least 63%. Design 12 is best when E(s®)
is weighted between 53% and 59%, and design 26
(tied with design 28) is the optimal solution when
E(s) is weighted between 59% and 63%. Figure 5b
shows the trade-off plot for the four designs from
the mixture plot. All four designs achieve as least
70% of the best performance for both criteria based
on the chosen scaling. Designs 5 and 6 have the most
trade-oft (100% best performance for one criterion
and less than 80% for the other) among designs on
the front, and design 12 is most balanced with
85%—-90% of best performance for both criteria.

TABLE 4 Design Generating Equations for the Ten 16-run, Seven-Factor Designs on the Pareto Front®

Design generating equations for factors E, F, and G (factors A-D are

Design # Category determined by a 2* factorial design)

5 Classical E=AB, F=AC, G=BCD

6 Classical E=ABC, F=ABD, G=ACD

11 Hybrid E=BD, F=ACD, G=1/2[ABC+ ABD + ABCD — AB]

12 Hybrid E=ABC, F=ABD, G=1/2[CD + ACD + BCD — ABCD]
21 Hybrid E=BCD, F=1/2[BD + ABD + CD — ACD], G=1/2[ABD + CD + ACD — BD]
22 Hybrid E=ABD, F=ABC, G=1/2[AD + BD + CD — ABCD]
26 Hybrid E=ABC, F=1/2[BD + ABD + BCD — ABCD], G=1/2[BD + CD + ACD — ABD]
28 Hybrid E=BCD, F=1/2[AC+ ACD + ABC— ABCD], G=1/2[AC+ ACD + AB — ABD]
32 Correlated E=1/2[AC+ ABC+ ACD — ABCD], F=1/2[AB+ AC+ ABD — ACD],

G=1/2[ABC+ ABD + ABCD — AB]

33 Hybrid E=BCD, F=1/2[AC+ AD + ABD — ABC], G=1/2[AB + AD + ABCD — AC]
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FIGURE 5 (a) Mixture plot and (b) trade-off plot for selecting
seven-factor designs from the Pareto front with the multiplicative
desirability function and the scaling based on the population of
candidate choices. Designs 6 and 5 are both optimal for one of
the two criteria but have relatively poor performance for the other
criterion and are quite robust optimal choices when one criterion
is valued substantially more important than the other criterion.
Designs 12 and 26 represent compromise choices with more
balanced performance between the two criteria. However, they
are optimal for only a small region of weightings and hence have
limited robustness to weight uncertainty.
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FIGURE 6 (a) Synthesized efficiency plot and (b) FWS plot for
selecting seven-factor designs from the Pareto front with the
multiplicative desirability function and the scaling based on the
population of candidate choices.

Two-Criterion Design Selection with a Pareto Front

Individual design performance relative to the
optimal for different weighting choices is shown in
the synthesized efficiency plots in Figure 6a. Design
6 has the largest white region with at least 95% synthe-
sized efficiency when E(s®) is weighted less than 66%.
Design 5 is at least 95% efficient when E(s?) is
weighted at least 51%. The worst synthesized effici-
ency values for designs 6 and 5 are around 77% and
70%, respectively, when considering only one of the
criteria. Design 26 has good performance denoted by
the white region for around 52% of the weighting
space with minimum synthesized efficiency of 78%.
Design 12 is at least 95% efficient for 42% of possible
weightings and has the largest minimum efficiency
around 86%. By summarizing across the entire weight-
ing space, Figure 6b shows the FWS plot for the four
designs. Design 12 has the flattest curve with best
(largest) minimum synthesized efficiency; however,
it has the narrowest high efficiency region (synthe-
sized efficiency above 95%). Design 6 has the largest
weighting space with at least 90% synthesized
efficiency, with the lower end of efficiency dropping
quickly for the worst 25% of the weighting space.
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FIGURE 7 Scatterplot for 80 nonisomorphic 16-run designs with
eight factors based on the two criteria, E(s?) and tr(AA’). Designs
from different categories (classical, hybrid, and correlated) are
shown with different symbols. Designs that are tied in both criteria
values are labeled with one index number as a representative.
Designs on the Pareto front are connected with the dotted line
(among which design 4 is tied with designs 17, 26, 42, 48, and
77; design 5 is tied with designs 9, 16, 20, 25, 28, 30, 36, 50, 61,
and 63; and design 12 is tied with designs 40, 47, 58, and 76).
The Utopia point, which is the ideal solution with best values for
both criteria, is shown with the solid dot at the bottom left corner.
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TABLE 5 Values of Criteria, E(s?) and tr(AA’), for the 80 Noniso-
morphic Eight-factor Designs and their Corresponding Design
Structural Categories

Design no. Category E(s?) tr(AA’)
1 Classical 17.07 21
2 Classical 12.19 15
3 Classical 12.19 12
4 Classical 12.19 9
5 Classical 10.97 12
6 Classical 17.07 0
7 Hybrid 12.19 14.25
8 Hybrid 12.19 12
9 Hybrid 10.97 12
10 Hybrid 12.19 15
11 Hybrid 11.58 13.5
12 Hybrid 11.58 10.5
13 Hybrid 14.63 15
14 Hybrid 12.19 15
15 Hybrid 12.19 12
16 Hybrid 10.97 12
17 Hybrid 12.19 9
18 Hybrid 14.63 6
19 Hybrid 12.19 15
20 Hybrid 10.97 12
21 Hybrid 11.58 12.75
22 Hybrid 14.63 18
23 Hybrid 12.19 15
24 Hybrid 12.19 12
25 Hybrid 10.97 12
26 Hybrid 12.19 9
27 Hybrid 12.19 12
28 Hybrid 10.97 12
29 Hybrid 11.58 13.5
30 Hybrid 10.97 12
31 Hybrid 11.58 12
32 Hybrid 12.19 14.25
33 Hybrid 11.58 12.75
34 Hybrid 11.58 13.5
35 Hybrid 12.19 12
36 Hybrid 10.97 12
37 Hybrid 11.58 13.5
38 Hybrid 13.41 12
39 Hybrid 12.19 12
40 Hybrid 11.58 10.5
41 Hybrid 13.41 9
42 Hybrid 12.19 9
43 Hybrid 11.58 13.5
44 Hybrid 12.19 15
45 Hybrid 11.58 12
46 Hybrid 11.58 13.5
47 Hybrid 11.58 10.5
48 Hybrid 12.19 9
49 Hybrid 12.19 12
50 Hybrid 10.97 12
(Continued)
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TABLE 5 cContinued

Design no. Category E(s%) tr(AA’)
51 Hybrid 11.58 13.5
52 Hybrid 11.58 12.75
53 Hybrid 13.41 15
54 Hybrid 12.19 15
55 Hybrid 12.19 12
56 Hybrid 11.58 13.5
57 Hybrid 11.58 13.5
58 Hybrid 11.58 10.5
59 Hybrid 12.19 15
60 Hybrid 13.41 16.5
61 Hybrid 10.97 12
62 Hybrid 12.19 13.5
63 Correlated 10.97 12
64 Correlated 11.58 12.75
65 Correlated 11.58 13.5
66 Hybrid 11.58 12
67 Correlated 12.80 10.5
68 Correlated 12.80 10.5
69 Hybrid 11.58 13.5
70 Hybrid 11.58 13.5
71 Hybrid 11.58 12.75
72 Correlated 12.80 15
73 Hybrid 11.58 12.75
74 Hybrid 11.58 13.5
75 Hybrid 12.19 14.25
76 Hybrid 11.58 10.5
77 Hybrid 12.19 9
78 Correlated 11.58 13.5
79 Correlated 11.58 12

80 Correlated 12.19 13.5

“Designs on the Pareto front are shown in bold, among which design 5
is tied with designs 9, 16, 20, 25, 28, 30, 36, 50, 61, and 63, design 4 is
tied with designs 17, 26, 42, 48, and 77, and design 12 is tied with
designs 40, 47, 58, and 76 in both criteria.

With the above quantitative information for design
evaluation and comparison, the final decision should
be made based on where the experimenter’s weighting
preference lies, how much uncertainty there is associa-
ted with that choice of weighting range, as well as the
experimenter’s tolerance for poor performance. Again,
the overall message from the analysis should be that
one of 10 designs should be chosen as an ideal solution
based on E(s*) and #(AA4"). Which one is best for an
experiment depends on the experimenter’s priorities.

16-RUN SCREENING DESIGNS FOR
EIGHT FACTORS

This section examines the eight-factor 16-run case
based on evaluating the 80 nonisomorphic designs

L. Lu etal.
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given in Johnson and Jones (2010, Appendix C). A
scatterplot of the 80 designs is shown in Figure 7
with the criteria values given in Table 5. The 80
designs have only three categories of structures, with
no replicated designs being generated from a 2° fac-
torial starting point. The Pareto front identifies 24
nondominated designs (3 classical, 1 correlated,
and 20 hybrid designs) with five groups of distinctive
criteria values and eliminates 70% of designs for
further consideration. Design 5, tied with designs 9,
16, 20, 25, 28, 30, 36, 50, 61, and 63, is optimal for
E(s%). Design 6 is optimal for #{44"). Design 12 (tied
with 40, 47, 58, and 76), design 4 (tied with 17, 26,
42, 48, and 77), and design 18 are compromise
choices with different degrees of balancing between

the two criteria. The defining equations for all
designs on the Pareto Front are given in Table 6.
Figures 8 and 9 show the graphical summaries
based on one possible choice of subjective choices
with the multiplicative DF and the population-based
scaling. From Figures 8a and 8b, design 6 with the
largest trade-off between two criteria is optimal only
when t1{AA’) criterion is given 100% of the weight.
Designs 18 and 5 are best when E(s) is weighted less
than 24% and at least 5%, respectively. Design 4 is
optimal when the weight for E(s?) is between 24%
and 53% including the scenario when the two criteria
are valued equally. Design 12 is optimal for around
6% of the remaining weighting area. Depending on
what region of weights is of interest, a different

TABLE 6 Design Generating Equations for the Twenty-Four, 16-run Eight-Factor Designs on the Pareto Front

Design generating equations for factors E, F, G, and H (factors A-D are

Design # Category determined by a 2* factorial design)
4 Classical E=AB, F=AC, G=AD, H=BCD
5 Classical E=AB, F=AC, G=BD, H=CD
6 Classical E=ABC, G=ABD, G=ACD, H=BCD
9 Hybrid E=CD, F=BD, G=AC, H=1/2[AB + ABD + ABC — ABCD]
12 Hybrid E=BD, F=BC, G=ACD, H=1/2[ABC+ ABD + ABCD — AB]
16 Hybrid E=BD, F=AC, G=1/2[AB + ABD + ABC— ABCD], H=1/2[ABC + ABD + ABCD — AB]
17 Hybrid E=BD, F=ACD, G=1/2[AB+ ABD + ABC— ABCD], H=1/2[ABD + ABC+ ABCD — AB]
18 Hybrid E=BCD, F=ACD, G=1/2[AB+ ABD + ABC— ABCD], H=1/2[ABD + ABC+ ABCD — AB]
20 Hybrid E=BD, F=CD, G=ABC, H=1/2[AB + ABD + AC — ACD]
25 Hybrid E=BD, F=ABC, G=1/2[AB+ ABD + AC— ACD], H=1/2[ABD + AC+ ACD — AB]
26 Hybrid E=BCD, F=ABD, G=ACD, H=1/2[AD + AB + AC — ABCD]
28 Hybrid E=BCD, F=ABC, G=1/2[AB +AC+ AD — ABCD], H=1/2[AB + AD + ABCD — AC]
30 Hybrid E=CD, F=BD, G=1/2[AC+ ACD + ABC— ABCD], H=1/2[AC+ AB + ABD — ACD]
36 Hybrid E=CD, F=1/2[AC+ ACD + ABC— ABCD], G=1/2[AC+ AB + ABD — ACD],
H=1/2[ABD + ABC+ ABCD — AB]
40 Hybrid E=BCD, F=AD, G=1/2[AC+ ACD + ABC— ABCD], H=1/2[AC+ AB + ABD — ACD]
42 Hybrid E=BCD, F=1/2[AC+ ACD + ABC — ABCD], G=1/2[AC+ AB + ABD — ACD],
H=1/2[ABD + ABC+ ABCD — AB]
47 Hybrid E=BCD, F=ACD, G=1/2[AC+AD + ABD — ABC], H=1/2[AC+ AB + ABCD — AD]
48 Hybrid E=BCD, F=ACD, G=1/2[AD+ AC+ ABC— ABD], H=1/2[ABC+ ABD + ABCD — AB]
50 Hybrid E=BCD, F=1/2[AC+ AD + ABC— ABD], G=1/2[AC+ AB + ABCD — AD],
H=1/2[ABC+ ABD + ABCD — AB]
58 Hybrid E=ACD, F=1/2[AC+ AD + ABC— ABD], G=1/2[AB + ABC+ ABD — ABCD],
H=1/2[ABC+ ABD + ABCD — AB]
61 Hybrid E=ABCD, F=1/2[AD + ABD +BCD — CD], G=1/2[AD + CD + BCD — ABD],
H=1/2[AD +BD + ACD — BCD]
63 Correlated E=1/2[AC+ ABC+ AD — ABD], F=1/2[AC+ AD + ABD — ABC], G=1/2[AC+BC+BD — AD],
H=1/2[BC+ AD +BD — AC]
76 Hybrid E=ABC, F=1/2[AD +BD + CD — ABCD], G=1/2[AC+ ABC+ ABCD — ACD],
H=1/2[AD + ACD + BCD — BD]
77 Hybrid E=ABC, F=1/2[AD + ABD + ABCD — ACD], G=1/2[AD + ACD + BCD — BD],

H=1/2[ABD + CD + BCD — AD]

Two-Criterion Design Selection with a Pareto Front
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FIGURE 8 (a) Mixture plot and (b) trade-off plot for selecting
eight-factor designs from the Pareto front with the multiplicative
desirability function and the scaling based on the population of
candidate choices.

optimal design will be selected. From Figures 9a and
9b, design 4 has the overall flattest FWS curve with at
least 95% synthesized efficiency for about 47% of the
weighting space and highest worst-case synthesized
efficiency. Design 12 has a similar proportion of high
synthesized efficiency area (>95%) but with the
worst-case values dropping most quickly. Design 5
has at least 95% synthesized efficiency for the largest
(around 55%) weighting area among all designs on
the Pareto front; however, it has the lowest synthe-
sized efficiency for about 25% of the weights. Design
18 is at least 95% efficient when E(s%) is weighted less
than 30% but has the lowest synthesized efficiency
among all designs on the Pareto front for the
remaining weighting space. Generally, designs 6
and 18 are less desirable. Design 4 is best if the entire
weighting space is of interest. Design 5 or 12 should
be selected depending on whether best performance
in the high-efficiency region or low-efficiency region
is considered more important.

Again, the overall message from the analysis is that
only 24 designs should be considered as possible
ideal solutions based on E(s>) and #{AA’). Which
one is best for an experiment depends on the experi-
menter’s priorities. The same process is followed for
conducting the analysis. However, the results are
helpful for demonstrating how decisions are made
for different complication levels of the Pareto fronts.
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FIGURE 9 (a) Synthesized efficiency plot and (b) FWS plot for
selecting eight-factor designs from the Pareto front with the multi-
plicative desirability function and the scaling based on the popu-
lation of candidate choices.

In addition, a general pattern can be observed that
classical and hybrid designs are generally more
appealing and associated with better performance
than the correlated designs, and the replicated
designs are least desirable among all categories with
worst performance for both E(s*) and #1(AA’) criteria.

CONCLUSIONS

The 16-run screening designs with six to eight fac-
tors are popular for cases with tight constraints on
design size relative to the number of design factors
to be considered. Common choices include classical
designs built from a 2% factorial design with com-
pletely confounded main effects with two- and
higher-order interactions, such as the fractional fac-
torial resolution IV design for the six-factor case.
Considering that some nonregular designs (Jones
and Montgomery 2010) with specially defined design
structure can avoid complete confounding between
main effects and two-way interactions and allow
better evaluation of some of these terms, Johnson
and Jones (2010) studied the list of all orthogonal
nonisomorphic regular and nonregular designs for
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six-, seven-, and eight-factor cases and provided cat-
alogs of defining equations for design generation.
These catalogs are helpful for knowing what choices
exist but do not directly provide guidance about how
to choose among these options. Without prior infor-
mation about which of the two-way or higher-order
interactions might be active, it is still challenging to
choose from the collection of possibilities based on
only the aliasing patterns.

Building on these catalogs of designs, this article uses
two common general design criteria, £(s*) and t1(44)),
to compare the candidate choices. These criteria quan-
tify the average degree of confounding and potential
bias in the parameter estimates, if some of the
two-factor interactions are actually active. A two-stage
Pareto front approach is used to facilitate rational
decision making. The first objective stage eliminates
all inferior options and keeps only nondominated
designs on the Pareto front for further consideration.
The results from this stage provide a set of candidates
from which a best experimental design can be selected.
The second subjective stage uses a set of graphical tools
to compare the promising designs based on quantitat-
ive evaluation of their relative performance and
trade-offs as well as robustness to different weighting
preferences and provides useful information for mak-
ing a rational and defensible decision that best matches
the priorities of the experiment.

In the subjective stage, in addition to the weighting
preference, there are some choices to make for scaling
criteria values into a comparable range and combin-
ing multiple criteria into a single metric (desirability
function) for ranking the design performance. Making
these subjective choices will impact the results and
hence choices should be made to reflect experimen-
ter’s priorities and how much to penalize inferior per-
formance for a given criterion. With the summary of
design performance given in the tables, the user could
construct alternatives using different scalings and
desirability function forms, if so desired. Since the Par-
eto front remains unchanged regardless of these
choices, the Pareto approach offers great flexibility
and computational advantage for exploring alterna-
tive choices and understanding their impacts, which
was demonstrated with the six-factor case.

The results from the three case studies (six-,
seven-, and eight-factor situations) indicate that
among the four categories of design structures, the
replicated designs are least desirable, with the worst

Two-Criterion Design Selection with a Pareto Front

performance for both criteria across all cases. In gen-
eral, the classical and hybrid designs tend to associ-
ate with better performance than correlated
designs. For each case, only a small proportion of
the designs from the population are considered as
sensible choices from which to select. However,
there is no universal best design for any of the three
cases evaluated, and which design to select depends
on priorities of the study and how the experimenter
prefers to value the two criteria.

The streamlined decision-making process, includ-
ing how to use the graphical summaries for aiding
informed decision making, was illustrated with the
three cases for six, seven, and eight factors based
on the two general criteria. However, the Pareto
front approach for multiple objective optimization
can be adapted for applications with more objectives
and more complexity in design structure, randomiza-
tion, and space constraints, as well as metrics for
quantifying the objectives. In addition, the Pareto
front approach is not limited to evaluating a fixed
set of candidate choices and can be generalized to
other problems, when it is not practical to exhaus-
tively search and evaluate all possible choices, by
using global optimization search algorithms.
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