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Process Optimization for Multiple
Responses Utilizing the Pareto
Front Approach
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Lu Lu?, ABSTRACT In many optimization situations, there are several responses
Christine M. Anderson-Cook associated with a product or process that need to be jointly considered. In
'Department of Mathematics, this article we present Pareto front multiple objective optimization as an
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option to complement other statistical and mathematical methods in the
response surface methodology toolkit. We demonstrate the Pareto front
approach for multiple response process optimization based on evaluating

and Statistics, University of South a fine grid of input variable combinations within the range of operating con-
Florida, Tampa, Florida ditions, as well as the use of a set of graphical tools to aid in decision making,
3Statistical Science Group, with an example process involving two inputs and three responses of inter-
Los Alamos National Laboratory, est. We also discuss a simple way to examine the impact that variability in the

Los Alamos, New Mexico responses can have on the solution by considering the estimated mean and

worst-case response values. R code for implementing the methods discussed
in this article is available upon request (jchapman@stlawu.edu).

KEYWORDS graphical summary, multiple response optimization, response
surface, trade-offs

INTRODUCTION

In many optimization situations, there are several responses associated
with a product or process that need to be jointly considered for improved
decision making. For example, Myers et al. (2009, p. 253) described a chemi-
cal process involving two input variables (¢; =time and &, =temperature)
and three responses of interest (y;=yield, y,=viscosity, y;=number-
average molecular weight). In this example, it is desired to identify the set
of operating conditions that jointly optimizes the three responses. The opti-
mization problem can be formulated with the objective of simultaneously

Add d to Jessica L. . . . .
ress correspondence fo Jessica maximizing yield while minimizing both molecular weight and the distance

Chapman, Department of

Mathematics, Computer Science, and between the viscosity and a target value of 65, the midpoint of the desired
Statistics, St. Lawrence University, 23 range (62 to 68) specified in Myers et al. (2009). It is believed that the opti-
Romoda Dr., Canton, NY 13617. . . . .

E-mail: jchapman@stlawu.edu mal operating conditions occur when the time of the process is between 77

and 93 min and when the temperature is between 167 and 183°F. It is also
Color versions of one or more of the beli d that eith d-ord . 1 del i iate f 1l
figures in the article can be found elieved that either a second-order or simpler model is appropriate for a
online at www.tandfonline.com/Igen. of the responses in this region. To investigate this region of operating
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TABLE 1 Central Composite Design with Three Responses from Myers et al. (2009, p. 253)

Natural variables Coded variables

Responses

&q (time) &, (temperature) X1 X2 y, (yield) ¥> (viscosity) y3 (molecular weight)
80 170 -1 -1 76.5 62 2,940
80 180 -1 1 77.0 60 3,470
90 170 1 -1 78.0 66 3,680
90 180 1 1 79.5 59 3,890
85 175 0 0 79.9 72 3,480
85 175 0 0 80.3 69 3,200
85 175 0 0 80.0 68 3,410
85 175 0 0 79.7 70 3,290
85 175 0 0 79.8 71 3,500
92.07 175 1.414 0 78.4 68 3,360
77.93 175 -1.414 0 75.6 71 3,020
85 182.07 0 1.414 78.5 58 3,630
85 167.93 0 —-1.414 77.0 57 3,150

conditions, an experiment using a central composite
design (Myers et al. 2009, p. 297) was run. The
design points (on the natural and coded scales) as
well as the observed responses from this experiment
are displayed in Table 1.

Complete second-order models were fitted for
each of the three responses independently. How-
ever, when molecular weight was used as the
response variable, none of the higher order terms
were significant (at any reasonable significance
leveD, suggesting that a first-order model would
suffice. The three fitted models are as follows:

1 =79.94 + 0.995x; + 0.52x; + 0.25x1%, — 1.38x7
— 1.00x5

32 =70.0 — 0.16x; — 0.95x; — 1.25x720; — 0.69x7
— 6.69x;

3 = 3386.2 + 205.1x, + 177.4x,.

Contour plots displaying each of the estimated
response surfaces are shown in Figure 1. The
maximum yield, near 80, occurs for times between
85 and 89 min and temperatures between 173 and
179°F. The contour plot for molecular weight indi-
cates that decreasing both time and temperature
results in the desired lower molecular weight. The
contour plots on the right side of Figure 1 display
the estimated response surface for viscosity (top)
and distance between the estimated viscosity and
the target viscosity 65, which we would like to
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minimize (bottom). This target can be achieved
at nearly any time in the operating range when the
temperature is near either 171 or 178°F.
Simultaneously optimizing the three responses
will clearly require some trade-offs to be made,
particularly between yield and molecular weight
as the optimal inputs for one differ considerably than
those for the other. Overlaying the contour plots,
as displayed in Figure 2, is an informal method by
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FIGURE 1 Contour plots for each of the estimated response
surfaces for the three responses and the distance between the
estimated viscosity and its target of 65. Lighter colors indicate
better values of the criteria: (a) yield; (b) viscosity; (c) molecular
weight; and (d) |Viscosity —65|.
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FIGURE 2 Overlaid contours plots for the three estimated
response surfaces. The grayscale contours correspond to dis-
tance between the estimated viscosity and the target viscosity
of 65, with lighter colors indicating better values. The solid line
contours correspond to the yield criterion. The dashed line con-
tours correspond to the molecular weight criterion.

which the three responses could be considered sim-
ultaneously to suggest potentially promising regions
with adequate performance for all of the responses.
When looking for the optimal solution, one should
consider the lighter shaded regions (corresponding
to near-optimal values of the viscosity criterion) with
at least moderately good performance for both of the
other criteria. However, it is difficult to identify a
specific best solution to implement or to compare
the merits of competing solutions with this approach.
In this article, we use a Pareto front approach to
aid in identifying the operating conditions that simul-
taneously optimize the three responses by examining
a fine grid of points within the region considered. In
the following section we provide some background
on Pareto front multiple objective optimization and
use the Pareto front approach to identify a solution
for the optimal operating conditions of the process
based on the estimated response surfaces for the
three response variables. Then we compare the
Pareto front solutions to those obtained by alterna-
tive approaches presented in Myers et al. (2009,
pp. 260-262). Due to the uncertainty associated with
estimated response surfaces as well as the natural
variability in the response of the process, a simple
approach for investigating the impact of variability
in predicting the responses and on the Pareto front
is presented in the next section. We conclude with
some final remarks and discussion of future work.

Pareto Front Optimization for Multiple Responses

PARETO FRONT MULTIPLE OBJECTIVE
OPTIMIZATION

Multiple Objective Optimization

Myers et al. (2009) described two possible ways to
identify the optimal operating conditions for this
chemical process approximated by the estimated
response surfaces: formulating the problem as a con-
strained optimization problem and using desirability
functions. Constrained optimization focuses on one
response as the primary goal, subject to one or more
constraints. In this case, where yield is considered
the primary response, Myers et al. (2009) suggested
formulating the problem as optimizing yield subject
to constraints on viscosity and molecular weight:

Maximize y; , subjectto 62 < j, < 68andy; < 3400.

This type of problem is encountered frequently in
the field of operations research, and common solu-
tions are found by direct search and numerical opti-
mization methods. Carlyle et al. (2000) provided an
overview of these methods useful in situations such
as this. The solutions found by Myers et al. (2009)
via constrained optimization are presented in Table 2.

The desirability function (DF) approach of Derrin-
ger and Suich (1980) is commonly used to simul-
taneously optimize multiple objectives, particularly
in the area of design of experiments. In the DF
approach, the different criteria are converted to
a common desirability scale, typically between 0
(worst) and 1 (best), and are combined to create
a single summary of the overall merit of a possible
solution. Common forms of the DF are additive and
multiplicative desirability. In the case of optimizing
three objectives, the additive DF is expressed as

DFaa4(j, w) = w1 C1(j) + w2Ca(f) + w3 Cs(5),

where C;(j) represents the scaled value for criterion
i for solution j, for i=1, 2, 3, and w is the weight
vector, with w; >0 representing the user-specified
weight given to criterion i and Z?Zl w; = 1. The
multiplicative DF is expressed as

DEa(jsw) = G - C()"™ - G5 ().

The additive form of the DF allows for the very
good performance of one or more of the criteria to
override poor performance by another criterion,
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TABLE 2 Solutions Presented in Myers et al. (2009) Found via Constrained Optimization and Desirability Functions

Method Optimal operating conditions Estimated responses

Constrained optimization #1 ¢1=83.5and &, =177.1 y1=79.6, y, =68.6, y3 = 3,399
#2 £,=286.6 and & =172.25 y1=79.6, y, =68.6, y3 =3,354

Desirability function #1 £,=86.1and ¢,=170.3 y1=78.7, ¥y, =65.2, y3=3,264
#2 £,=80.3 and £,=179.2 y1=77.7, y, =65.0, y3 =3,342

whereas the poor performance of a single criterion is
more strongly penalized with the multiplicative form.
Since the weights capture user prioritization about
the criteria, the choice of “best” design is strongly
influenced by the w;s, the scaling schemes, and the
DF forms. Making a decision without understanding
the impact of these subjective choices can be risky.
Myers et al. (2009) used the multiplicative DF with
the three criteria being weighted as equally impor-
tant to find two solutions. To scale the yield variable,
they specified a target of 80 for the maximum yield
and 70 as the lowest acceptable yield. Viscosity is
scaled so that the target viscosity is 65 and the mini-
mum and maximum acceptable viscosities are 62 and
68, respectively. The final variable, molecular
weight, is scaled by specifying 3,200 to 3,400 as the
acceptable range (see Myers et al. 2009, p. 261).
The corresponding desirability solutions suggested
in Myers et al. (2009) are displayed in Table 2.
Another technique, the Pareto front approach, has
been extensively used in many disciplines as a tool
for optimizing multiple responses (Gronwald et al.
2008; Kasprzak and Lewis 2001; Trautmann and
Mehnen 2009). Lu et al. (2011) adapted the Pareto
front approach for design of experiments problems
and enhanced it with graphical assessment tools to
aid in the decision-making process. The method
consists of two stages: (1) the objective Pareto optimi-
zation step, where poor candidates (strictly inferior to
others) are removed from the set of contenders, and
(2) the subjective decision analysis step, where solu-
tions from the Pareto front are examined to investi-
gate trade-offs between the criteria and robustness
to different weightings of the criteria. The objective
step of identifying the Pareto front allows the exper-
imenter to see the full set of competing choices
before considering the subjective aspects of the
decision, which can be tailored to match study goals.
A solution is said to Pareto dominate another if it
is at least as good for all criteria and strictly better for
at least one. The Pareto set contains all solutions that
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are not Pareto dominated by others, and their corre-
sponding criteria vectors form the Pareto front in the
criteria space. Geometrically, the Pareto set consists
of the points on the outer edge of all obtainable solu-
tions closest to the ideal value for each objective
(illustrated in Figure 3). In the Pareto front literature,
the utopia point is defined as the vector that simul-
taneously achieves the best values for all criteria,
but because of trade-offs between objectives it is
generally not attainable. The Pareto set represents
the collection of points from which a solution should
be selected, as any dominated point has at least one
better alternative on the Pareto front. Lu et al. (2011)
described how to use an adapted utopia point
approach to reduce a large Pareto set to a smaller,
more manageable set of solutions for the
decision-making step.

Solutions on the Pareto front can be evaluated on
three different aspects: (1) performance for a parti-
cular set of weights which match the user’s study
goals, (2) robustness of the solution based on a range
of weightings close to user preferences, and (3) per-
formance as measured as a synthesized efficiency

Dominated point /
il _/

Criterion 2
1
1epeg

Pareto Front

lnopla, point <

Beg’ter

Critenion 1

I T

FIGURE 3 Illustration of Pareto front when two criteria are
being minimized simultaneously.
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relative to the best allocation possible for a particular
set of weight choices (Lu and Anderson-Cook 2012).
A final decision about the optimal solution should be
made by the user based on the priorities of the study
after considering the trade-offs between candidate
solutions and the robustness of candidate solutions
to different subjective choices. Compared to the stan-
dard DF method, the Pareto approach provides sum-
maries of what range of solutions are available, more
intuition about the relative performance of different
solutions, and quantitative information for making
a defensible choice.

Pareto Front Approach for Optimizing
the Chemical Process

To create a set of solutions from which we identify
the Pareto set, we first define a grid of 630 points,
displayed in Figure 4, that fill in the circular region
defined by the points used for the central composite
design. Adjacent points in the same row or column of
the grid are separated by a distance of 0.1 for the
scaled variables, since this was assumed to match
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FIGURE 4 Grid of points used to approximate response
surfaces for each response and the resulting Pareto front
(dark points). The solutions from Table 2 are also displayed
(square =constrained optimization #1, diamond=constrained
optimization #2, inverted triangle = desirability function #1, and
triangle = desirability function #2). Labeled solutions are those
identified as optimal for at least 1% of weights when the multipli-
cative DF is used (see Figure 6).

Pareto Front Optimization for Multiple Responses

the finest gradation possible when setting the factor
levels. The points on the grid are labeled from 1 to
630 beginning with the bottom row of points in
Figure 4 and moving from the left to the right. Once
the end of a row is reached, the labeling system
wraps around to continue with the leftmost point
of the next lowest row. The labels of the leftmost
points for each row on the grid are listed along the
left edge of Figure 4.

The grid of points and the fitted models were used
to approximate response surfaces for each of the
three response variables. From this set of 630 possible
solutions, the Pareto set was identified; the set con-
sists of 181 solutions that are contenders for simul-
taneously maximizing vyield, achieving a target
viscosity of 65, and minimizing molecular weight.
The locations of the Pareto solutions, considered on
both the coded and natural variable scales, are dis-
played in Figure 4 with the points on the front ident-
ified by the dark closed points. Overlaid square and
diamond points indicate solutions (#1 and #2,
respectively) identified by Myers et al. (2009) via con-
strained optimization, and the solutions found using
the desirability function approach are displayed with
inverted triangular (1) and triangular (#2) symbols.
We notice immediately that three of the four solutions
presented in Myers et al. (2009) are close to points on
the Pareto front, and one of the desirability solutions
(#2) lies well away from the front.

Figure 5 displays pairwise scatterplots of the esti-
mated responses, with points on the three criteria
Pareto front represented by the darker points. In
each plot, dashed lines are used to identify the opti-
mal estimation for each response, and thus the inter-
section of lines on the plot displays the utopia point
for the two criteria. It is apparent that there is con-
siderable trade-off between yield and molecular
weight, since no points are close to the utopia point
for this pairwise plot. The solutions identified from
Myers et al. (2009) are close to the Pareto front
except for solution desirability #2, which is clearly
outperformed by many possible solutions on the Par-
eto front. Both DF solutions achieve the target value
for viscosity with some sacrifices in the other two
responses.

Identifying the Pareto front eliminates all but 181
of the locations as contenders for the best solution
to simultaneously optimize the three responses.
However, the user must ultimately choose a single
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FIGURE 5 Pairwise scatterplots of estimated responses, with points on the three-criteria Pareto front identified as the dark points.

solution as the recommended optimal setting for the
process. Next, we illustrate how to examine the per-
formance robustness of contending solutions across
different  prioritizations while examining the
trade-offs between solutions.

In this situation, since we may have little a priori
knowledge about the relative importance of the
three criteria, we explore all possible weighing
schemes to see how the choice of the optimal design
location varies. We scale each of the three criteria so
that the best value on the front maps to 1 and the
worst maps to 0. Additionally, we must choose
how to combine the individual scaled criteria values
into a single metric. For the remaining decision
analysis, we choose the multiplicative form of the
DF to be consistent with Myers et al. (2009). The
choice of scaling and the form of the desirability
function are subjective decisions that should match
user priorities and do influence subsequent results.
If the experimenter is uncertain about these choices,
a sensitivity analysis is recommended. This requires
little extra computational effort once the Pareto front
has been identified.

Figure 6 displays the mixture plot (or simplex) of
the best solutions for different weightings of the
three criteria (Lu et al. 2011), using a multiplicative
desirability function. The vertices and the edges cor-
respond to optimization based on a single criterion
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and two of the three criteria, respectively. More
detailed description of the mixture plot is available
in Cornell (2002, p. 24). Of the 181 solutions on
the Pareto front, 13 are identified as being optimal
for a relatively large percentage of the possible
weightings considered (at least 1% of the total
simplex area). Additionally, solution 484, which is
optimal when vyield is weighted around 80% and

Mol. Weight

08

Yield 08 06 04 02 Viscosity
FIGURE 6 Mixture plot based on using the multiplicative
desirability function. The 13 solutions that are optimal for at least
1% of weighting space are labeled in their corresponding regions.
Allocation 484 is also highlighted as a promising solution when
yield is weighted around 80% and the remaining two criteria are
weighted equally.

J. L. Chapman et al.
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TABLE 3 The 13 Solutions Identified as Optimal for more than 1% of the Weights Considered in the Mixture Plot (Figure 6) Based on
Using Multiplicative DF. Allocation 484 is also Included as a Promising Solution when Yield is Weighted Around 80% and the Remaining

Two Criteria are Weighted Equally

Coded variables

Natural variables

Estimated responses

-

Solution # % Area in mixture (Figure 6) X1 X2 & & V1 V2 V3
73 1.44 -0.6 -0.9 82 170.5 77.70 64.61 3,103.48
74 2.38 -0.5 -0.9 82.5 170.5 77.93 64.78 3,123.99
75 16.54 -0.4 -0.9 83 170.5 78.14 64.94 3,144.47
76 16.68 -0.3 -0.9 83.5 170.5 78.31 65.08 3,164.99
77 5.07 -0.2 -0.9 84 170.5 78.46 65.21 3,185.50
78 4.43 -0.1 -0.9 84.5 170.5 78.57 65.33 3,206.03
79 3.04 0 -0.9 85 170.5 78.66 65.44 3,226.54
90 1.26 -1.1 -0.8 79.5 171 76.35 64.72 3,018.62
91 8.16 —1 -0.8 80 171 76.72 64.95 3,039.13
92 3.70 -0.9 -0.8 80.5 171 77.05 65.16 3,059.69
484 0.29 0.2 0.6 86 178 80.06 66.81 3,533.60
530 1.87 -0.1 0.8 84.5 179 79.58 65.07 3,507.61
531 11.82 0 0.8 85 179 79.71 64.96 3,528.05
532 1.10 0.1 0.8 85.5 179 79.82 64.84 3,548.63

the other two criteria are weighted equally, is also
identified. Table 3 reports the actual mixture area
for each of these highlighted solutions; the 13 more
robust (larger area) solutions are labeled in Figure 4.

Solutions 75 and 76 are each the optimal solution
for about 17% of the weights considered (Table 3)
and account for the largest areas in Figure 6. The
weightings for which solution 75 is optimal range
from all weight to very little weight on viscosity with
more weight on molecular weight than yield. Sol-
ution 76 generally gives more weight to yield com-
pared to solution 75 and balances the three criteria
more evenly, including the case where the three cri-
teria are equally weighted. Solution 531 is optimal for
about 12% of the weights considered (Table 3),
specifically those that put more emphasis on yield
and/or viscosity but little emphasis on the molecular
weight. Solution 91 is optimal for about 8% of the
weights considered (Table 3), specifically those that
put little emphasis on yield. Finally, the corner corre-
sponding to the best yield consists of many solutions
that are optimal for very small regions of the weight
space, such as solution 484, which is only optimal for
0.29% of the weights considered (Table 3). This indi-
cates that if a solution that values yield highly is
desired, then there are no robust solutions which
are best for many weight combinations. However,
since yield is likely the primary response, we may
want to weigh it slightly more heavily than the other
criteria, say around 50%—60% of the total weight with

Pareto Front Optimization for Multiple Responses

the remaining weight equally split between the other
two criteria. Solution 79 is optimal for weightings
(wq, w,, w3)=1(0.5, 0.25, 0.25) and (0.6, 0.2, 0.2), as
well as similar weighting schemes.

The estimated responses for the solutions ident-
ified in Figure 6 are detailed in Table 3. Solution
484 has the highest estimated yield at the cost of both
viscosity and molecular weight. Solutions 530-531
have estimated yields and molecular weights that
are similar to those of solution 484 but have viscos-
ities closer to 65. Solutions 90-92 are located in the
lower left corner of the Pareto front in Figure 4.
These solutions have the lowest estimated yields in
Table 3 with the best molecular weight and good vis-
cosity, in accordance with the weight combinations
suggested in Figure 6. The remaining solutions (73—
79) located on the bottom edge of the front in
Figure 4 represent generally more balanced perfor-
mance for all three responses.

Figure 7 displays the trade-off plot for the solu-
tions that are optimal for at least one set of weights
using the multiplicative DF. Those most robust solu-
tions as identified by the mixture plot (those with at
least 1% of the total simplex area) are represented by
the larger, darker symbols, and solution 484 (of
potential interest if yield is highly desired) is indi-
cated with an open symbol. The innermost axes on
Figure 7 represent the scaled values of the three cri-
teria, with 1 corresponding to the best value of each
criterion and 0 the worst. The remaining axes detail
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the ranges of the actual criteria values. The solutions
are ordered, from left to right, based on the worst to
best yield.

Solutions 90-92 perform poorly in terms of yield
(very near the worst possible yield) but do well on
the viscosity and molecular weight criteria (very near
the best possible for each). Recall that these solutions
were found to be optimal when the yield received
minimal weight. With Solutions 73-79 (shown in
sequential order in Figure 7 with solutions 73 and
78 labeled), viscosity has the best performance.
The molecular weight performs reasonably well,
and yield performs the worst of the three responses.
Among these solutions, solution 76 has most
balanced performance among the three responses.
Solution 79 has better yield by sacrificing slightly
on molecular weight and viscosity. Solutions
530-532 perform very well with respect to both yield
and viscosity, in both cases achieving the best, or
nearly the best, possible values while performing
poorly for molecular weight. On the right side of
Figure 7, there are a large number of solutions with
good performance on yield and some oscillation in
the viscosity and molecular weight responses, which
leads to the many solutions optimal for small weight
regions in Figure 6. Solution 484 is among these solu-
tions, with near-optimal performance on the yield
criterion, good performance on the viscosity cri-
terion, and poor performance on molecular weight.

Synthesized efficiency plots (Lu and Anderson-
Cook 2012) can be used to compare individual
promising solutions to the best possible solution
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for different choices of weights. When using desir-
ability functions to combine the three criteria into
a single metric, the synthesized efficiency of solution
j at the weight vector w, relative to the optimal

solution for weight w, is defined as SE(j,w) =
DF(j,w)

max;(DF(j,w))

five most promising solutions from Table 3, as well

as solution 484, which emphasizes yield, are dis-
played in Figure 8. The white—gray-black shading
represents high to low synthesized efficiency, with
each of the 20 shades of gray corresponding to a
5% band of synthesized efficiencies. The synthesized
efficiency plots for solutions 75 and 76 (adjacent grid
points that together account for roughly 34% of the
area [see Table 3] in the mixture plot in Figure 6)
look quite similar, with both having large white
regions that indicates there are a large number of
weight combinations for which they are at least
95% efficient relative to the best possible solution.
These solutions are at least 80% efficient for 87%
and 90% of the weighting area, respectively. The
minimum efficiencies achieved by solutions 75 and
76 are 49% and 54%, respectively (hence the absence
of dark gray and black in the synthesized efficiency
plot). Solution 79 also has a large white region,
though it is located more towards the yield corner
than for solutions 75 and 76, as is also seen in the
weight combinations where solution 79 is best in
Figure 6. Solution 79 is at least 80% efficient for
90% of the weight combinations considered. The
minimum efficiency for solution 79 is about 62%.
Solutions 91 and 531 are at least 80% efficient for

. The synthesized efficiency plots for the
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FIGURE 8 Synthesized efficiency plots for some selected allocations.

only 41% and 47% of the weight combinations,
respectively, and the weight regions of best perfor-
mance are in quite different locations compared the
other highlighted solutions. Additionally, the synthe-
sized efficiency plots for both solutions contain very
large dark regions, indicating a large number of
weight combinations for which the solutions perform
very poorly compared to the best possible solution at
that weight (as low as 15% efficiency in the yield cor-
ner for solution 91 and 19% in the molecular weight
corner for solution 531). Solution 484 is at least 80%
efficient for only 28% of the weight considered and
has a minimum efficiency of 19% in the molecular
weight vertex of Figure 8. If the process manager is
interested in a specific region of the weighting area,
the ideal solution can be selected based on its perfor-
mance in that focused region.

To summarize the efficiencies across the weight-
ing region, Lu et al. (2013) suggested the fraction
of weighting space (FWS) plot, adapted from the
fraction of design space plot (Zahran et al. 2003). It
provides an overall, quantitative summary of the per-
formance of an individual solution across the entire
weighting space and can be used to easily compare
competing solutions. The line for each solution plots
the fraction of the weighting space for which the
solution’s synthesized efficiency is at least the speci-
fied percentage. For instance, examining the line for
solution 91 in Figure 9 indicates that approximately

Pareto Front Optimization for Multiple Responses

40% of weights have an efficiency higher than 80%,
about 60% of weights have an efficiency higher than
65%, and about 80% of weights have an efficiency
higher than approximately 45%. Further, the mini-
mum efficiency can be observed at an FWS value
of 1 (about 15% for solution 91).

Five of the selected solutions (all except solution
484) have very high synthesized efficiency for at least
20% of the weighting space. After that, the synthe-
sized efficiency drops off relatively quickly for solu-
tions 91 and 531, with solution 531 having slightly
better synthesized efficiency for the remaining
weighting space. Solutions 75 and 76 have similar
synthesized efficiencies for the entire weighting
space, with solution 76 having slightly better perfor-
mance; the similarity of the curves for these solutions
is reassuring as they are adjacent solutions on the grid
in Figure 4. Solution 79 has slightly lower synthesized
efficiency than both solutions 75 and 76 for up to
about 80% of the weighting space, but after that point
it has slightly higher synthesized efficiency and the
best worst-case (minimum) efficiency of the solutions
considered in Figure 9. Solution 484 has the lowest
synthesized efficiency of the solutions considered
for nearly the entire weighting space.

The figures discussed in this section provide a
means of visualizing the Pareto front and examining
the robustness and merits of different potential solu-
tions. These figures, especially Figures 6-9, should be
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used to assist in the subjective decision-making pro-
cess to find a good solution that matches user priori-
ties. As an illustration, suppose that yield is the
primary interest to the manager of this chemical pro-
cess. Thus, the manager wants to choose as the opti-
mal process setting a solution that performs well
when the importance of yield is emphasized over
the other two response variables, and perhaps the
manager suggests relative weights on yield, viscosity,
and molecular weight of around 0.6, 0.2, and 0.2,
respectively. The mixture plot in Figure 6 suggests
that solution 79 is the optimal solution around that
region and, because of the size of the region, has
some reasonable robustness to uncertainty in the
manager-specified weight. Figure 7 shows the actual
criterion values of the solution, relative to the ranges
observed for other possible solutions on the Pareto
front. Figures 8 and 9 suggest that solution 79 has
good performance not only for the likely focused
region of interest but also across the entire weighting
space. Hence, by beginning with a region of interest
in the weight space that matches the manager’s prio-
rities, solution 79 is found to be the dominating
choice for the manager of this chemical process. We
note that if the manager used the multiplicative desir-
ability function approach with this weighting scheme,
the same solution would be identified. However, the
desirability function approach would not allow the
manager to assess the robustness of the solution to
uncertainty in the specified weight or to examine
the trade-offs between the criteria and the perfor-
mance of this solution relative to other solutions.
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COMPARISON OF PARETO
SOLUTIONS TO OTHER METHODS

In this section we compare the performance of the
promising solutions identified in the previous subsec-
tion to those suggested in Myers et al. (2009). Figure 9
displays the synthesized efficiency of the four solu-
tions in Table 2. Immediately obvious is the general
dark coloring of three of the four solutions from
Table 2 (both of those found via constrained optimi-
zation and the second desirability solution, the latter
of which is not located on the front in Figure 4).
The most promising of these solutions is the first desir-
ability function solution (inverted triangular symbol in
Figure 4). This solution lies in relatively close proxim-
ity to solution 79 on the grid and, not surprisingly, the
synthesized efficiency plots for the two solutions look
similar. The first desirability solution has at least 80%
efficiency for about 88% of the weight combinations
considered and has a minimum efficiency of 60%.

As noted in Figure 10, the FWS plot in Figure 11
suggests that the first desirability function solution
from Table 2 performs comparably to solution 79,
with solution 79 being slightly better for at least half
of the weighting space. Interestingly, the other three
solutions from Table 2 have considerably lower
synthesized efficiency for much of the weighting
space than the solutions highlighted from the Pareto
set (with the exception of solution 484, which
performs only slightly better than the constrained opti-
mization solutions). However, these three solutions
eventually surpass solutions 91, 484, and 531 and
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FIGURE 10 Synthesized efficiency plots for the solutions presented in Table 2.

actually have better worst-case (minimum) efficiency
than any of these three solutions.

INVESTIGATING THE IMPACT OF
PREDICTED RESPONSE VARIABILITY
ON THE PARETO FRONT

In the section Pareto Front Multiple Objective
Optimization, the Pareto front was identified based

on the estimated responses at each point on the grid.
However, when the goal of the study is to find a best
condition for future operation in a process, there is
no guarantee that future observed responses will
be equal to these estimated responses when the pro-
cess is run at a chosen design location due to the
existence of natural variability in any process and
the uncertainty associated with the estimated
reponses. In this section we consider the impact that
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FIGURE 11 FWS plot comparing selected solutions using the Pareto front approach (gray lines) to the solutions from Table 2 (black

lines).
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variability in the prediction of future responses has
on the Pareto front and the design location selected
as optimal for the process.

Consider fitting a linear model of the form

Y=Xf+e

where Yis an 7 X 1 vector of the responses, X is the
n x p model matrix, B is the p x 1 parameter vector,
and ¢ is an n x 1 vector of independent and identi-
cally distributed random errors. Suppose it is of inter-
est to predict the response, Y, at a specific
combination of the input variables x, where
X}, = (Xo1, X025 - - .,X0p) is expected to match the
model form. This prediction is given by ¥ = x{)[?,
and a 95% two-sided prediction interval for the
response at input vector x, is given by

x{,ﬁ + f0'9757ﬂ,p\/MSE(1 + X6(X/X)_1X()) .

In the context of our example, suppose we want
to use the fitted model from the Introduction to
predict the yield at x; =0.5 and x, = —1 (a time of
87.5min and temperature of 170°F). Thus, x;=
(1,0.5,—1,-0.5,0.25,1). The predicted yield at this
setting is 78.45, and a 95% prediction interval for
the yield at this setting is (77.73, 79.18), indicating
that about 95% of yields observed at this setting are
expected to be in this range. Note that the natural
variability and estimation uncertainty of each of the
responses is potentially different and so the predic-
tion intervals will reflect this with different widths.
In addition, the prediction variance of observations
changes depending upon where we are in the design
region—with best prediction at the center (0, 0) and
worst prediction at the edges.

In the Pareto Front Multiple Objective
Optimization section, the Pareto front was based
on the mean estimated responses at each grid point.
We might think of this as an estimate of the “typical”
performance of each of the responses. Here we con-
sider the impact of the variability in the predicted
responses by using prediction intervals, such as the
above, to select a conservative or worst-case estimate
for the predicted response. In the case of yield,
which is being maximized, we use the lower bound
on the 95% prediction interval as our worst-case
estimate of the response. Since we are minimizing
molecular weight, we choose the upper bound of
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the prediction interval as a worst-case estimate of
the molecular weight response. Finally, in the case
of viscosity, where we are attempting to hit a
target, we consider both bounds of the prediction
interval and use the one that is furthest from the
target viscosity of 65. These worst-case estimates,
which balance the different precisions of esti-
mation from the various responses as well as
where we are in the design space, were then used
to identify the solutions on the Pareto front
(Figure 12).

In this application, the shape of the front did not
change substantially when the worst-case predicted
responses were used in place of the mean-estimated
response. There were three points that were on the
mean-estimated front but not on the worst-case
response front (identified with open diamond sym-
bols in Figure 12). Additionally, many of the same
design locations from Figure 4 are flagged in
Figure 12 as being optimal for a relatively large per-
centage of the different weighting combinations con-
sidered. The primary difference is that a new region,
solutions 510 and 511, is identified; as indicated in
Table 4, these solutions, which emphasize yield,
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FIGURE 12 Pareto front based on worst-case estimates of
the predicted response. Labeled solutions are those identified
as optimal for at least 1% of weights when the multiplicative form
of the DF is used. Solutions on the mean-estimated response
surface Pareto front but not on the worst-case front are identified
with open diamond symbols.
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TABLE 4 The 13 Solutions Identified as Optimal for more than 1% of the Weights Considered in the Multiplicative Mixture Plot (Figure
A1 in the Appendix) Based on Worst-Case Prediction Interval Bounds

% Area in mixture

Coded variables

Natural variables

Worst-case response estimates

Solution # (Figure A1) X X5 & & y< ys v§
74 2.26 -0.5 -0.9 82.5 170.5 77.22 70.87 3,529.80
75 15.93 -04 -0.9 83 170.5 77.43 70.98 3,548.42
76 19.06 -0.3 -0.9 83.5 170.5 77.61 59.07 3,567.46
77 5.67 -0.2 -0.9 84 170.5 77.75 59.22 3,586.91
78 4.71 -0.1 -0.9 84.5 170.5 77.87 59.35 3,606.79
79 2.67 0 -0.9 85 170.5 77.97 59.46 3,627.09
91 3.52 -1 -0.8 80 171 75.95 71.45 3,456.97
92 3.51 -0.9 -0.8 80.5 171 76.31 58.81 3,473.59
93 1.14 -0.8 -0.8 81 171 76.64 59.14 3,490.59

510 1.08 0.3 0.7 86.5 178.5 79.35 59.78 3,967.49

511 1.13 0.4 0.7 87 178.5 79.36 59.61 3,989.51

530 1.79 -0.1 0.8 84.5 179 78.88 59.15 3,904.68

531 12.14 0 0.8 85 179 79.02 70.88 3,924.98

are optimal for 1.08% and 1.13% of the weights con-
sidered, respectively. The mixture and trade-off plots
for the optimal solutions are displayed in Figures Al
and A2 in the Appendix.

It is helpful to quantify the potential impact from
variability of the predicted responses on decision
making. By comparing the worst-case predicted
response estimates in Table 4 with the mean-
estimated response in Table 3, we see dramatically
different wvariability associated with the three
responses. The worst-case estimates for yield for
the solutions in Table 4 decreased by less than 1%.
The worst-case viscosity estimates changed by 9%—
11% from the mean estimates. The worst-case esti-
mates for molecular weight increased by 11%—13%
when compared to the mean case. We note that
the dramatically different variabilities for the three
responses are illustrated by the very different mean
squared errors for the estimated models (the mean
square errors for the yield, viscosity, and molecular
weight models are 0.0709, 5.175, and 27431,
respectively).

The approach to decision making taken in this
article is to look at both the mean-estimated
response and a measure of the worst-case esti-
mated performance for the different responses.
This provides information about the Pareto front
choices across the range of uncertainty associated
with the predicted values. In this example, the sug-
gested input combinations that are best for both

Pareto Front Optimization for Multiple Responses

cases are quite similar, although the range of pre-
dicted values for each response varies consider-
ably. However, the practitioner can feel quite
confident that the locations identified are suitable
for both typical and worst-case values of the
responses. If the results had not been similar, the
experimenter would then have needed to decide
whether focusing on the typical results or protect-
ing against worst-case outcomes is a higher priority
when selecting an optimal combination of input
levels.

In considering the impact of response variability
and estimate uncertainty, it is important to examine
several aspects of the optimization. In the objective
phase of the process, the Pareto front solutions could
change with different realized values of the estimated
parameters. In the subjective phase, the designs that
are best for a given weight combination of the cri-
teria may also vary due to the change of the Pareto
front. Additionally, once we have selected a parti-
cular “best” location, the range of response values
is an important consideration. For our example, the
yield response has relatively little associated varia-
bility, whereas the molecular weight experiences
the most extensive possible fluctuations. The mean
and worst-case approaches allow us to examine each
of these aspects in a simple way, but there are cer-
tainly a variety of alternate approaches to looking
at variability and its potential impact on decision
making.
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DISCUSSION AND CONCLUSIONS

The two-stage Pareto front optimization approach
can facilitate improved decision making for multiple
response optimization and provides an alternative to
constrained optimization and desirability function
approaches. In the first objective stage, inferior candi-
dates are removed from consideration, allowing the
focus to shift to the more promising alternatives. In
the subjective stage, the promising candidates can be
compared and the ranges and trade-offs of the criteria
examined to help refine the priorities of the study. The
graphical summaries highlight which input combina-
tions perform well for the preferred weighting choices
of the responses and how robust these combinations
are across alternative prioritizations. The summaries
help both with the decision-making process as well
as provide supporting documentation to help per-
suade others about the merits of the decision.

One of the most important steps when using this
approach is to specify the criteria over which the
optimization should be performed. In our example,
we focused on maximizing yield, getting close to
the target viscosity of 65, and minimizing molecular
weight. If, as was alternately suggested in Myers
et al. (2009), we had changed the requirement for
molecular weight to being in the range 3,200 to
3,400, with the ideal of 3,300, then the resulting Par-
eto front changes substantially. In Figure 13, we see
that while some of the locations remain similar
(those centered around (x;, x,)=(0, 0.8)), other
new locations emerge as promising candidates (for
instance, around (x, x,) =(—1, 0.7) and in the lower
right corner of the design space). These Pareto front
locations overlap well with the solutions identified in
Myers et al. (2009) for this formulation of the prob-
lem. This should serve as a cautionary tale for practi-
tioners to think carefully about what the objectives of
the optimization are and then formulate the quanti-
tative criteria to best match these goals.

Another important consideration is whether there
are any constraints on how precisely the input factor
levels can be set in the experiment. In such a case,
the coarseness of the grid for approximating the
response surfaces should match these constraints.
Chapman et al. (2013) investigated using a coarser
grid to estimate the response surfaces in this
application. They found that the use of the coarser
grid identified near-optimal solutions and missed
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FIGURE 13 Impact of slightly modifying the optimization prob-
lem on the Pareto front.

the overall optimal choice. However, a coarse grid
is computationally more efficient for identifying the
larger region of the Pareto front and promising solu-
tions. The experimenter then has the flexibility of
fine-tuning the top performance choices for finding
the best overall solution.

In this example, there are only two input factors
over which to optimize the three responses. When
considering the scalability of the problem, both
the number of input factors as well as the number
of criteria over which to optimize should be con-
sidered. First, we consider the number of inputs.
When there are only two inputs, visualization of
each of the response surfaces as well as the Pareto
front locations in the design space is relatively sim-
ple. When the number of factors increases beyond
two, some of the graphics need to be adapted.
The contour plots of each individual response
become problematic, and a dynamic summary, such
as the profiler in JMP (version 9, SAS Institute, Cary,
NC) can allow more flexible exploration. Of the
Pareto approach plots, only the figures displaying
the design locations, such as Figure 4, need to be
changed. With three or more input factors, a sum-
mary table may provide the simplest summary of
the location of the front. Alternately, dynamic rotat-
ing plots in many statistical software packages
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would allow three of the dimensions to be viewed
simultaneously.

Second, we consider changes in the number of
criteria considered. Finding the Pareto front based
on an increasing number of criteria remains
straightforward, although the computational burden
of fully populating the front will grow. Lu and
Anderson-Cook (2013) showed how the mixture plot
(Figure 0), trade-off plot (Figure 7), and synthesized
efficiency plot (Figure 8) can be adapted to accom-
modate four criteria. The FWS plot of Figure 9
remains unchanged regardless of the number of cri-
teria considered. A parallel plot (Lu and
Anderson-Cook 2013) can be used to show the cri-
teria values and their interrelationship and trade-offs
for any number of criteria. If too many criteria are
considered, the number of candidate solutions will
increase substantially, making effective comparisons
between alternatives difficult. Consequently, it is
important to carefully bound the number of
responses to consider, without losing the ability to
solve the problem of interest.

The Pareto front optimization approach for mul-
tiple responses provides a strategy for identifying
and comparing the performance of several preferred
input combinations. The strategy of examining the
front for both the mean-estimated responses as well
as a worst-case percentile allows for the estimation
uncertainty and variation in the responses to be
taken into account, and the range of values to expect
for the chosen solution is easily identified. If, as in
this case, the fronts for both of these cases align, then
the decision making for the practitioner is simple.
However, we anticipate that there will be many situa-
tions when the fronts identified differ. In such situa-
tions, the practitioner should carefully consider
whether primary interest lies in focusing on average
or worst-case performance.

R code (R Development Core Team 2012) for
implementing the methods discussed in this article
is available upon request (jchapman@stlawu.edu).
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APPENDIX
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FIGURE A1 Mixture plot for multiplicative desirability based on worst-case prediction of the response.
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