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ABSTRACT In many optimization situations, there are several responses

associated with a product or process that need to be jointly considered. In

this article we present Pareto front multiple objective optimization as an

option to complement other statistical and mathematical methods in the

response surface methodology toolkit. We demonstrate the Pareto front

approach for multiple response process optimization based on evaluating

a fine grid of input variable combinations within the range of operating con-

ditions, as well as the use of a set of graphical tools to aid in decision making,

with an example process involving two inputs and three responses of inter-

est. We also discuss a simple way to examine the impact that variability in the

responses can have on the solution by considering the estimated mean and

worst-case response values. R code for implementing the methods discussed

in this article is available upon request (jchapman@stlawu.edu).

KEYWORDS graphical summary, multiple response optimization, response

surface, trade-offs

INTRODUCTION

In many optimization situations, there are several responses associated

with a product or process that need to be jointly considered for improved

decision making. For example, Myers et al. (2009, p. 253) described a chemi-

cal process involving two input variables (n1¼ time and n2¼ temperature)

and three responses of interest (y1¼ yield, y2¼ viscosity, y3¼number-

average molecular weight). In this example, it is desired to identify the set

of operating conditions that jointly optimizes the three responses. The opti-

mization problem can be formulated with the objective of simultaneously

maximizing yield while minimizing both molecular weight and the distance

between the viscosity and a target value of 65, the midpoint of the desired

range (62 to 68) specified in Myers et al. (2009). It is believed that the opti-

mal operating conditions occur when the time of the process is between 77

and 93min and when the temperature is between 167 and 183�F. It is also

believed that either a second-order or simpler model is appropriate for all

of the responses in this region. To investigate this region of operating
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conditions, an experiment using a central composite

design (Myers et al. 2009, p. 297) was run. The

design points (on the natural and coded scales) as

well as the observed responses from this experiment

are displayed in Table 1.

Complete second-order models were fitted for

each of the three responses independently. How-

ever, when molecular weight was used as the

response variable, none of the higher order terms

were significant (at any reasonable significance

level), suggesting that a first-order model would

suffice. The three fitted models are as follows:

by1y1 ¼79:94þ 0:995x1 þ 0:52x2 þ 0:25x1x2 � 1:38x2
1

� 1:00x2
2

by2y2 ¼70:0� 0:16x1 � 0:95x2 � 1:25x1x2 � 0:69x2
1

� 6:69x2
2

by3y3 ¼ 3386:2þ 205:1x1 þ 177:4x2:

Contour plots displaying each of the estimated

response surfaces are shown in Figure 1. The

maximum yield, near 80, occurs for times between

85 and 89min and temperatures between 173 and

179�F. The contour plot for molecular weight indi-

cates that decreasing both time and temperature

results in the desired lower molecular weight. The

contour plots on the right side of Figure 1 display

the estimated response surface for viscosity (top)

and distance between the estimated viscosity and

the target viscosity 65, which we would like to

minimize (bottom). This target can be achieved

at nearly any time in the operating range when the

temperature is near either 171 or 178�F.

Simultaneously optimizing the three responses

will clearly require some trade-offs to be made,

particularly between yield and molecular weight

as the optimal inputs for one differ considerably than

those for the other. Overlaying the contour plots,

as displayed in Figure 2, is an informal method by

TABLE 1 Central Composite Design with Three Responses from Myers et al. (2009, p. 253)

Natural variables Coded variables Responses

n1 (time) n2 (temperature) x1 x2 y1 (yield) y2 (viscosity) y3 (molecular weight)

80 170 �1 �1 76.5 62 2,940

80 180 �1 1 77.0 60 3,470

90 170 1 �1 78.0 66 3,680

90 180 1 1 79.5 59 3,890

85 175 0 0 79.9 72 3,480

85 175 0 0 80.3 69 3,200

85 175 0 0 80.0 68 3,410

85 175 0 0 79.7 70 3,290

85 175 0 0 79.8 71 3,500

92.07 175 1.414 0 78.4 68 3,360

77.93 175 �1.414 0 75.6 71 3,020

85 182.07 0 1.414 78.5 58 3,630

85 167.93 0 �1.414 77.0 57 3,150

FIGURE 1 Contour plots for each of the estimated response

surfaces for the three responses and the distance between the

estimated viscosity and its target of 65. Lighter colors indicate

better values of the criteria: (a) yield; (b) viscosity; (c) molecular

weight; and (d) |Viscosity –65|.
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which the three responses could be considered sim-

ultaneously to suggest potentially promising regions

with adequate performance for all of the responses.

When looking for the optimal solution, one should

consider the lighter shaded regions (corresponding

to near-optimal values of the viscosity criterion) with

at least moderately good performance for both of the

other criteria. However, it is difficult to identify a

specific best solution to implement or to compare

the merits of competing solutions with this approach.

In this article, we use a Pareto front approach to

aid in identifying the operating conditions that simul-

taneously optimize the three responses by examining

a fine grid of points within the region considered. In

the following section we provide some background

on Pareto front multiple objective optimization and

use the Pareto front approach to identify a solution

for the optimal operating conditions of the process

based on the estimated response surfaces for the

three response variables. Then we compare the

Pareto front solutions to those obtained by alterna-

tive approaches presented in Myers et al. (2009,

pp. 260–262). Due to the uncertainty associated with

estimated response surfaces as well as the natural

variability in the response of the process, a simple

approach for investigating the impact of variability

in predicting the responses and on the Pareto front

is presented in the next section. We conclude with

some final remarks and discussion of future work.

PARETO FRONT MULTIPLE OBJECTIVE
OPTIMIZATION

Multiple Objective Optimization

Myers et al. (2009) described two possible ways to

identify the optimal operating conditions for this

chemical process approximated by the estimated

response surfaces: formulating the problem as a con-

strained optimization problem and using desirability

functions. Constrained optimization focuses on one

response as the primary goal, subject to one or more

constraints. In this case, where yield is considered

the primary response, Myers et al. (2009) suggested

formulating the problem as optimizing yield subject

to constraints on viscosity and molecular weight:

Maximize ŷy1 ; subject to 62 � ŷy2 � 68 and ŷy3 � 3400:

This type of problem is encountered frequently in

the field of operations research, and common solu-

tions are found by direct search and numerical opti-

mization methods. Carlyle et al. (2000) provided an

overview of these methods useful in situations such

as this. The solutions found by Myers et al. (2009)

via constrained optimization are presented in Table 2.

The desirability function (DF) approach of Derrin-

ger and Suich (1980) is commonly used to simul-

taneously optimize multiple objectives, particularly

in the area of design of experiments. In the DF

approach, the different criteria are converted to

a common desirability scale, typically between 0

(worst) and 1 (best), and are combined to create

a single summary of the overall merit of a possible

solution. Common forms of the DF are additive and

multiplicative desirability. In the case of optimizing

three objectives, the additive DF is expressed as

DFadd j;wð Þ ¼ w1C1 jð Þ þw2C2 jð Þ þ w3C3 jð Þ;

where Ci( j ) represents the scaled value for criterion

i for solution j, for i¼ 1, 2, 3, and w is the weight

vector, with wi� 0 representing the user-specified

weight given to criterion i and
P3

i¼1wi ¼ 1. The

multiplicative DF is expressed as

DFmult j;wð Þ ¼ C1 jð Þw1 �C2 jð Þw2 �C3 jð Þw3 :

The additive form of the DF allows for the very

good performance of one or more of the criteria to

override poor performance by another criterion,

FIGURE 2 Overlaid contours plots for the three estimated

response surfaces. The grayscale contours correspond to dis-

tance between the estimated viscosity and the target viscosity

of 65, with lighter colors indicating better values. The solid line

contours correspond to the yield criterion. The dashed line con-

tours correspond to the molecular weight criterion.
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whereas the poor performance of a single criterion is

more strongly penalized with the multiplicative form.

Since the weights capture user prioritization about

the criteria, the choice of ‘‘best’’ design is strongly

influenced by the wis, the scaling schemes, and the

DF forms. Making a decision without understanding

the impact of these subjective choices can be risky.

Myers et al. (2009) used the multiplicative DF with

the three criteria being weighted as equally impor-

tant to find two solutions. To scale the yield variable,

they specified a target of 80 for the maximum yield

and 70 as the lowest acceptable yield. Viscosity is

scaled so that the target viscosity is 65 and the mini-

mum and maximum acceptable viscosities are 62 and

68, respectively. The final variable, molecular

weight, is scaled by specifying 3,200 to 3,400 as the

acceptable range (see Myers et al. 2009, p. 261).

The corresponding desirability solutions suggested

in Myers et al. (2009) are displayed in Table 2.

Another technique, the Pareto front approach, has

been extensively used in many disciplines as a tool

for optimizing multiple responses (Gronwald et al.

2008; Kasprzak and Lewis 2001; Trautmann and

Mehnen 2009). Lu et al. (2011) adapted the Pareto

front approach for design of experiments problems

and enhanced it with graphical assessment tools to

aid in the decision-making process. The method

consists of two stages: (1) the objective Pareto optimi-

zation step, where poor candidates (strictly inferior to

others) are removed from the set of contenders, and

(2) the subjective decision analysis step, where solu-

tions from the Pareto front are examined to investi-

gate trade-offs between the criteria and robustness

to different weightings of the criteria. The objective

step of identifying the Pareto front allows the exper-

imenter to see the full set of competing choices

before considering the subjective aspects of the

decision, which can be tailored to match study goals.

A solution is said to Pareto dominate another if it

is at least as good for all criteria and strictly better for

at least one. The Pareto set contains all solutions that

are not Pareto dominated by others, and their corre-

sponding criteria vectors form the Pareto front in the

criteria space. Geometrically, the Pareto set consists

of the points on the outer edge of all obtainable solu-

tions closest to the ideal value for each objective

(illustrated in Figure 3). In the Pareto front literature,

the utopia point is defined as the vector that simul-

taneously achieves the best values for all criteria,

but because of trade-offs between objectives it is

generally not attainable. The Pareto set represents

the collection of points from which a solution should

be selected, as any dominated point has at least one

better alternative on the Pareto front. Lu et al. (2011)

described how to use an adapted utopia point

approach to reduce a large Pareto set to a smaller,

more manageable set of solutions for the

decision-making step.

Solutions on the Pareto front can be evaluated on

three different aspects: (1) performance for a parti-

cular set of weights which match the user’s study

goals, (2) robustness of the solution based on a range

of weightings close to user preferences, and (3) per-

formance as measured as a synthesized efficiency

FIGURE 3 Illustration of Pareto front when two criteria are

being minimized simultaneously.

TABLE 2 Solutions Presented in Myers et al. (2009) Found via Constrained Optimization and Desirability Functions

Method Optimal operating conditions Estimated responses

Constrained optimization #1 n1¼ 83.5 and n2¼ 177.1 ŷy1 ¼ 79.6, ŷy2 ¼ 68.6, ŷy3 ¼ 3,399

#2 n1¼ 86.6 and n2¼ 172.25 ŷy1 ¼ 79.6, ŷy2 ¼ 68.6, ŷy3 ¼ 3,354

Desirability function #1 n1¼ 86.1 and n2¼ 170.3 ŷy1 ¼ 78.7, ŷy2 ¼ 65.2, ŷy3 ¼ 3,264

#2 n1¼ 80.3 and n2¼ 179.2 ŷy1 ¼ 77.7, ŷy2 ¼ 65.0, ŷy3 ¼ 3,342
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relative to the best allocation possible for a particular

set of weight choices (Lu and Anderson-Cook 2012).

A final decision about the optimal solution should be

made by the user based on the priorities of the study

after considering the trade-offs between candidate

solutions and the robustness of candidate solutions

to different subjective choices. Compared to the stan-

dard DF method, the Pareto approach provides sum-

maries of what range of solutions are available, more

intuition about the relative performance of different

solutions, and quantitative information for making

a defensible choice.

Pareto Front Approach for Optimizing
the Chemical Process

To create a set of solutions from which we identify

the Pareto set, we first define a grid of 630 points,

displayed in Figure 4, that fill in the circular region

defined by the points used for the central composite

design. Adjacent points in the same row or column of

the grid are separated by a distance of 0.1 for the

scaled variables, since this was assumed to match

the finest gradation possible when setting the factor

levels. The points on the grid are labeled from 1 to

630 beginning with the bottom row of points in

Figure 4 and moving from the left to the right. Once

the end of a row is reached, the labeling system

wraps around to continue with the leftmost point

of the next lowest row. The labels of the leftmost

points for each row on the grid are listed along the

left edge of Figure 4.

The grid of points and the fitted models were used

to approximate response surfaces for each of the

three response variables. From this set of 630 possible

solutions, the Pareto set was identified; the set con-

sists of 181 solutions that are contenders for simul-

taneously maximizing yield, achieving a target

viscosity of 65, and minimizing molecular weight.

The locations of the Pareto solutions, considered on

both the coded and natural variable scales, are dis-

played in Figure 4 with the points on the front ident-

ified by the dark closed points. Overlaid square and

diamond points indicate solutions (#1 and #2,

respectively) identified by Myers et al. (2009) via con-

strained optimization, and the solutions found using

the desirability function approach are displayed with

inverted triangular (#1) and triangular (#2) symbols.

We notice immediately that three of the four solutions

presented in Myers et al. (2009) are close to points on

the Pareto front, and one of the desirability solutions

(#2) lies well away from the front.

Figure 5 displays pairwise scatterplots of the esti-

mated responses, with points on the three criteria

Pareto front represented by the darker points. In

each plot, dashed lines are used to identify the opti-

mal estimation for each response, and thus the inter-

section of lines on the plot displays the utopia point

for the two criteria. It is apparent that there is con-

siderable trade-off between yield and molecular

weight, since no points are close to the utopia point

for this pairwise plot. The solutions identified from

Myers et al. (2009) are close to the Pareto front

except for solution desirability #2, which is clearly

outperformed by many possible solutions on the Par-

eto front. Both DF solutions achieve the target value

for viscosity with some sacrifices in the other two

responses.

Identifying the Pareto front eliminates all but 181

of the locations as contenders for the best solution

to simultaneously optimize the three responses.

However, the user must ultimately choose a single

FIGURE 4 Grid of points used to approximate response

surfaces for each response and the resulting Pareto front

(dark points). The solutions from Table 2 are also displayed

(square=constrained optimization #1, diamond=constrained

optimization #2, inverted triangle=desirability function #1, and

triangle=desirability function #2). Labeled solutions are those

identified as optimal for at least 1% of weights when the multipli-

cative DF is used (see Figure 6).
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solution as the recommended optimal setting for the

process. Next, we illustrate how to examine the per-

formance robustness of contending solutions across

different prioritizations while examining the

trade-offs between solutions.

In this situation, since we may have little a priori

knowledge about the relative importance of the

three criteria, we explore all possible weighing

schemes to see how the choice of the optimal design

location varies. We scale each of the three criteria so

that the best value on the front maps to 1 and the

worst maps to 0. Additionally, we must choose

how to combine the individual scaled criteria values

into a single metric. For the remaining decision

analysis, we choose the multiplicative form of the

DF to be consistent with Myers et al. (2009). The

choice of scaling and the form of the desirability

function are subjective decisions that should match

user priorities and do influence subsequent results.

If the experimenter is uncertain about these choices,

a sensitivity analysis is recommended. This requires

little extra computational effort once the Pareto front

has been identified.

Figure 6 displays the mixture plot (or simplex) of

the best solutions for different weightings of the

three criteria (Lu et al. 2011), using a multiplicative

desirability function. The vertices and the edges cor-

respond to optimization based on a single criterion

and two of the three criteria, respectively. More

detailed description of the mixture plot is available

in Cornell (2002, p. 24). Of the 181 solutions on

the Pareto front, 13 are identified as being optimal

for a relatively large percentage of the possible

weightings considered (at least 1% of the total

simplex area). Additionally, solution 484, which is

optimal when yield is weighted around 80% and

FIGURE 5 Pairwise scatterplots of estimated responses, with points on the three-criteria Pareto front identified as the dark points.

FIGURE 6 Mixture plot based on using the multiplicative

desirability function. The 13 solutions that are optimal for at least

1% of weighting space are labeled in their corresponding regions.

Allocation 484 is also highlighted as a promising solution when

yield is weighted around 80% and the remaining two criteria are

weighted equally.
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the other two criteria are weighted equally, is also

identified. Table 3 reports the actual mixture area

for each of these highlighted solutions; the 13 more

robust (larger area) solutions are labeled in Figure 4.

Solutions 75 and 76 are each the optimal solution

for about 17% of the weights considered (Table 3)

and account for the largest areas in Figure 6. The

weightings for which solution 75 is optimal range

from all weight to very little weight on viscosity with

more weight on molecular weight than yield. Sol-

ution 76 generally gives more weight to yield com-

pared to solution 75 and balances the three criteria

more evenly, including the case where the three cri-

teria are equally weighted. Solution 531 is optimal for

about 12% of the weights considered (Table 3),

specifically those that put more emphasis on yield

and=or viscosity but little emphasis on the molecular

weight. Solution 91 is optimal for about 8% of the

weights considered (Table 3), specifically those that

put little emphasis on yield. Finally, the corner corre-

sponding to the best yield consists of many solutions

that are optimal for very small regions of the weight

space, such as solution 484, which is only optimal for

0.29% of the weights considered (Table 3). This indi-

cates that if a solution that values yield highly is

desired, then there are no robust solutions which

are best for many weight combinations. However,

since yield is likely the primary response, we may

want to weigh it slightly more heavily than the other

criteria, say around 50%–60% of the total weight with

the remaining weight equally split between the other

two criteria. Solution 79 is optimal for weightings

(w1, w2, w3)¼ (0.5, 0.25, 0.25) and (0.6, 0.2, 0.2), as

well as similar weighting schemes.

The estimated responses for the solutions ident-

ified in Figure 6 are detailed in Table 3. Solution

484 has the highest estimated yield at the cost of both

viscosity and molecular weight. Solutions 530–531

have estimated yields and molecular weights that

are similar to those of solution 484 but have viscos-

ities closer to 65. Solutions 90–92 are located in the

lower left corner of the Pareto front in Figure 4.

These solutions have the lowest estimated yields in

Table 3 with the best molecular weight and good vis-

cosity, in accordance with the weight combinations

suggested in Figure 6. The remaining solutions (73–

79) located on the bottom edge of the front in

Figure 4 represent generally more balanced perfor-

mance for all three responses.

Figure 7 displays the trade-off plot for the solu-

tions that are optimal for at least one set of weights

using the multiplicative DF. Those most robust solu-

tions as identified by the mixture plot (those with at

least 1% of the total simplex area) are represented by

the larger, darker symbols, and solution 484 (of

potential interest if yield is highly desired) is indi-

cated with an open symbol. The innermost axes on

Figure 7 represent the scaled values of the three cri-

teria, with 1 corresponding to the best value of each

criterion and 0 the worst. The remaining axes detail

TABLE 3 The 13 Solutions Identified as Optimal for more than 1% of the Weights Considered in the Mixture Plot (Figure 6) Based on

Using Multiplicative DF. Allocation 484 is also Included as a Promising Solution when Yield is Weighted Around 80% and the Remaining

Two Criteria are Weighted Equally

Solution # % Area in mixture (Figure 6)

Coded variables Natural variables Estimated responses

x1 x2 n1 n2 ŷy1 ŷy2 ŷy3

73 1.44 �0.6 �0.9 82 170.5 77.70 64.61 3,103.48

74 2.38 �0.5 �0.9 82.5 170.5 77.93 64.78 3,123.99

75 16.54 �0.4 �0.9 83 170.5 78.14 64.94 3,144.47

76 16.68 �0.3 �0.9 83.5 170.5 78.31 65.08 3,164.99

77 5.07 �0.2 �0.9 84 170.5 78.46 65.21 3,185.50

78 4.43 �0.1 �0.9 84.5 170.5 78.57 65.33 3,206.03

79 3.04 0 �0.9 85 170.5 78.66 65.44 3,226.54

90 1.26 �1.1 �0.8 79.5 171 76.35 64.72 3,018.62

91 8.16 �1 �0.8 80 171 76.72 64.95 3,039.13

92 3.70 �0.9 �0.8 80.5 171 77.05 65.16 3,059.69

484 0.29 0.2 0.6 86 178 80.06 66.81 3,533.60

530 1.87 �0.1 0.8 84.5 179 79.58 65.07 3,507.61

531 11.82 0 0.8 85 179 79.71 64.96 3,528.05

532 1.10 0.1 0.8 85.5 179 79.82 64.84 3,548.63
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the ranges of the actual criteria values. The solutions

are ordered, from left to right, based on the worst to

best yield.

Solutions 90–92 perform poorly in terms of yield

(very near the worst possible yield) but do well on

the viscosity and molecular weight criteria (very near

the best possible for each). Recall that these solutions

were found to be optimal when the yield received

minimal weight. With Solutions 73–79 (shown in

sequential order in Figure 7 with solutions 73 and

78 labeled), viscosity has the best performance.

The molecular weight performs reasonably well,

and yield performs the worst of the three responses.

Among these solutions, solution 76 has most

balanced performance among the three responses.

Solution 79 has better yield by sacrificing slightly

on molecular weight and viscosity. Solutions

530–532 perform very well with respect to both yield

and viscosity, in both cases achieving the best, or

nearly the best, possible values while performing

poorly for molecular weight. On the right side of

Figure 7, there are a large number of solutions with

good performance on yield and some oscillation in

the viscosity and molecular weight responses, which

leads to the many solutions optimal for small weight

regions in Figure 6. Solution 484 is among these solu-

tions, with near-optimal performance on the yield

criterion, good performance on the viscosity cri-

terion, and poor performance on molecular weight.

Synthesized efficiency plots (Lu and Anderson-

Cook 2012) can be used to compare individual

promising solutions to the best possible solution

for different choices of weights. When using desir-

ability functions to combine the three criteria into

a single metric, the synthesized efficiency of solution

j at the weight vector w, relative to the optimal

solution for weight w, is defined as SE j;wð Þ ¼
DF j;wð Þ

maxj DF j;wð Þð Þ : The synthesized efficiency plots for the

five most promising solutions from Table 3, as well

as solution 484, which emphasizes yield, are dis-

played in Figure 8. The white–gray–black shading

represents high to low synthesized efficiency, with

each of the 20 shades of gray corresponding to a

5% band of synthesized efficiencies. The synthesized

efficiency plots for solutions 75 and 76 (adjacent grid

points that together account for roughly 34% of the

area [see Table 3] in the mixture plot in Figure 6)

look quite similar, with both having large white

regions that indicates there are a large number of

weight combinations for which they are at least

95% efficient relative to the best possible solution.

These solutions are at least 80% efficient for 87%

and 90% of the weighting area, respectively. The

minimum efficiencies achieved by solutions 75 and

76 are 49% and 54%, respectively (hence the absence

of dark gray and black in the synthesized efficiency

plot). Solution 79 also has a large white region,

though it is located more towards the yield corner

than for solutions 75 and 76, as is also seen in the

weight combinations where solution 79 is best in

Figure 6. Solution 79 is at least 80% efficient for

90% of the weight combinations considered. The

minimum efficiency for solution 79 is about 62%.

Solutions 91 and 531 are at least 80% efficient for

FIGURE 7 Trade-off plot for the multiplicative form of DF (solutions numbered in Figure 6 are highlighted in black or open symbols).
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only 41% and 47% of the weight combinations,

respectively, and the weight regions of best perfor-

mance are in quite different locations compared the

other highlighted solutions. Additionally, the synthe-

sized efficiency plots for both solutions contain very

large dark regions, indicating a large number of

weight combinations for which the solutions perform

very poorly compared to the best possible solution at

that weight (as low as 15% efficiency in the yield cor-

ner for solution 91 and 19% in the molecular weight

corner for solution 531). Solution 484 is at least 80%

efficient for only 28% of the weight considered and

has a minimum efficiency of 19% in the molecular

weight vertex of Figure 8. If the process manager is

interested in a specific region of the weighting area,

the ideal solution can be selected based on its perfor-

mance in that focused region.

To summarize the efficiencies across the weight-

ing region, Lu et al. (2013) suggested the fraction

of weighting space (FWS) plot, adapted from the

fraction of design space plot (Zahran et al. 2003). It

provides an overall, quantitative summary of the per-

formance of an individual solution across the entire

weighting space and can be used to easily compare

competing solutions. The line for each solution plots

the fraction of the weighting space for which the

solution’s synthesized efficiency is at least the speci-

fied percentage. For instance, examining the line for

solution 91 in Figure 9 indicates that approximately

40% of weights have an efficiency higher than 80%,

about 60% of weights have an efficiency higher than

65%, and about 80% of weights have an efficiency

higher than approximately 45%. Further, the mini-

mum efficiency can be observed at an FWS value

of 1 (about 15% for solution 91).

Five of the selected solutions (all except solution

484) have very high synthesized efficiency for at least

20% of the weighting space. After that, the synthe-

sized efficiency drops off relatively quickly for solu-

tions 91 and 531, with solution 531 having slightly

better synthesized efficiency for the remaining

weighting space. Solutions 75 and 76 have similar

synthesized efficiencies for the entire weighting

space, with solution 76 having slightly better perfor-

mance; the similarity of the curves for these solutions

is reassuring as they are adjacent solutions on the grid

in Figure 4. Solution 79 has slightly lower synthesized

efficiency than both solutions 75 and 76 for up to

about 80% of the weighting space, but after that point

it has slightly higher synthesized efficiency and the

best worst-case (minimum) efficiency of the solutions

considered in Figure 9. Solution 484 has the lowest

synthesized efficiency of the solutions considered

for nearly the entire weighting space.

The figures discussed in this section provide a

means of visualizing the Pareto front and examining

the robustness and merits of different potential solu-

tions. These figures, especially Figures 6–9, should be

FIGURE 8 Synthesized efficiency plots for some selected allocations.
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used to assist in the subjective decision-making pro-

cess to find a good solution that matches user priori-

ties. As an illustration, suppose that yield is the

primary interest to the manager of this chemical pro-

cess. Thus, the manager wants to choose as the opti-

mal process setting a solution that performs well

when the importance of yield is emphasized over

the other two response variables, and perhaps the

manager suggests relative weights on yield, viscosity,

and molecular weight of around 0.6, 0.2, and 0.2,

respectively. The mixture plot in Figure 6 suggests

that solution 79 is the optimal solution around that

region and, because of the size of the region, has

some reasonable robustness to uncertainty in the

manager-specified weight. Figure 7 shows the actual

criterion values of the solution, relative to the ranges

observed for other possible solutions on the Pareto

front. Figures 8 and 9 suggest that solution 79 has

good performance not only for the likely focused

region of interest but also across the entire weighting

space. Hence, by beginning with a region of interest

in the weight space that matches the manager’s prio-

rities, solution 79 is found to be the dominating

choice for the manager of this chemical process. We

note that if the manager used the multiplicative desir-

ability function approach with this weighting scheme,

the same solution would be identified. However, the

desirability function approach would not allow the

manager to assess the robustness of the solution to

uncertainty in the specified weight or to examine

the trade-offs between the criteria and the perfor-

mance of this solution relative to other solutions.

COMPARISON OF PARETO
SOLUTIONS TO OTHER METHODS

In this section we compare the performance of the

promising solutions identified in the previous subsec-

tion to those suggested in Myers et al. (2009). Figure 9

displays the synthesized efficiency of the four solu-

tions in Table 2. Immediately obvious is the general

dark coloring of three of the four solutions from

Table 2 (both of those found via constrained optimi-

zation and the second desirability solution, the latter

of which is not located on the front in Figure 4).

The most promising of these solutions is the first desir-

ability function solution (inverted triangular symbol in

Figure 4). This solution lies in relatively close proxim-

ity to solution 79 on the grid and, not surprisingly, the

synthesized efficiency plots for the two solutions look

similar. The first desirability solution has at least 80%

efficiency for about 88% of the weight combinations

considered and has a minimum efficiency of 60%.

As noted in Figure 10, the FWS plot in Figure 11

suggests that the first desirability function solution

from Table 2 performs comparably to solution 79,

with solution 79 being slightly better for at least half

of the weighting space. Interestingly, the other three

solutions from Table 2 have considerably lower

synthesized efficiency for much of the weighting

space than the solutions highlighted from the Pareto

set (with the exception of solution 484, which

performs only slightly better than the constrained opti-

mization solutions). However, these three solutions

eventually surpass solutions 91, 484, and 531 and

FIGURE 9 Fraction of the weighting space (FWS) for which the synthesized efficiency exceeds a specified value for selected

allocations.
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actually have better worst-case (minimum) efficiency

than any of these three solutions.

INVESTIGATING THE IMPACT OF

PREDICTED RESPONSE VARIABILITY
ON THE PARETO FRONT

In the section Pareto Front Multiple Objective

Optimization, the Pareto front was identified based

on the estimated responses at each point on the grid.

However, when the goal of the study is to find a best

condition for future operation in a process, there is

no guarantee that future observed responses will

be equal to these estimated responses when the pro-

cess is run at a chosen design location due to the

existence of natural variability in any process and

the uncertainty associated with the estimated

reponses. In this section we consider the impact that

FIGURE 10 Synthesized efficiency plots for the solutions presented in Table 2.

FIGURE 11 FWS plot comparing selected solutions using the Pareto front approach (gray lines) to the solutions from Table 2 (black

lines).
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variability in the prediction of future responses has

on the Pareto front and the design location selected

as optimal for the process.

Consider fitting a linear model of the form

Y ¼ Xbþ E;

where Y is an n� 1 vector of the responses, X is the

n� p model matrix, b is the p� 1 parameter vector,

and E is an n� 1 vector of independent and identi-

cally distributed random errors. Suppose it is of inter-

est to predict the response, ŶY , at a specific

combination of the input variables x0, where

x0
0 ¼ ðx01; x02; . . . ; x0pÞ is expected to match the

model form. This prediction is given by ŶY ¼ x00b̂b,

and a 95% two-sided prediction interval for the

response at input vector x0 is given by

x00b̂b� t0:975;n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE 1þ x00 X 0Xð Þ�1x0

� �q
:

In the context of our example, suppose we want

to use the fitted model from the Introduction to

predict the yield at x1¼ 0.5 and x2¼ �1 (a time of

87.5min and temperature of 170�F). Thus, x00 ¼
ð1; 0:5;�1;�0:5; 0:25; 1Þ. The predicted yield at this

setting is 78.45, and a 95% prediction interval for

the yield at this setting is (77.73, 79.18), indicating

that about 95% of yields observed at this setting are

expected to be in this range. Note that the natural

variability and estimation uncertainty of each of the

responses is potentially different and so the predic-

tion intervals will reflect this with different widths.

In addition, the prediction variance of observations

changes depending upon where we are in the design

region—with best prediction at the center (0, 0) and

worst prediction at the edges.

In the Pareto Front Multiple Objective

Optimization section, the Pareto front was based

on the mean estimated responses at each grid point.

We might think of this as an estimate of the ‘‘typical’’

performance of each of the responses. Here we con-

sider the impact of the variability in the predicted

responses by using prediction intervals, such as the

above, to select a conservative or worst-case estimate

for the predicted response. In the case of yield,

which is being maximized, we use the lower bound

on the 95% prediction interval as our worst-case

estimate of the response. Since we are minimizing

molecular weight, we choose the upper bound of

the prediction interval as a worst-case estimate of

the molecular weight response. Finally, in the case

of viscosity, where we are attempting to hit a

target, we consider both bounds of the prediction

interval and use the one that is furthest from the

target viscosity of 65. These worst-case estimates,

which balance the different precisions of esti-

mation from the various responses as well as

where we are in the design space, were then used

to identify the solutions on the Pareto front

(Figure 12).

In this application, the shape of the front did not

change substantially when the worst-case predicted

responses were used in place of the mean-estimated

response. There were three points that were on the

mean-estimated front but not on the worst-case

response front (identified with open diamond sym-

bols in Figure 12). Additionally, many of the same

design locations from Figure 4 are flagged in

Figure 12 as being optimal for a relatively large per-

centage of the different weighting combinations con-

sidered. The primary difference is that a new region,

solutions 510 and 511, is identified; as indicated in

Table 4, these solutions, which emphasize yield,

FIGURE 12 Pareto front based on worst-case estimates of

the predicted response. Labeled solutions are those identified

as optimal for at least 1% of weights when the multiplicative form

of the DF is used. Solutions on the mean-estimated response

surface Pareto front but not on the worst-case front are identified

with open diamond symbols.

264 J. L. Chapman et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
25

 0
6 

A
pr

il 
20

15
 



are optimal for 1.08% and 1.13% of the weights con-

sidered, respectively. The mixture and trade-off plots

for the optimal solutions are displayed in Figures A1

and A2 in the Appendix.

It is helpful to quantify the potential impact from

variability of the predicted responses on decision

making. By comparing the worst-case predicted

response estimates in Table 4 with the mean-

estimated response in Table 3, we see dramatically

different variability associated with the three

responses. The worst-case estimates for yield for

the solutions in Table 4 decreased by less than 1%.

The worst-case viscosity estimates changed by 9%–

11% from the mean estimates. The worst-case esti-

mates for molecular weight increased by 11%–13%

when compared to the mean case. We note that

the dramatically different variabilities for the three

responses are illustrated by the very different mean

squared errors for the estimated models (the mean

square errors for the yield, viscosity, and molecular

weight models are 0.0709, 5.175, and 27431,

respectively).

The approach to decision making taken in this

article is to look at both the mean-estimated

response and a measure of the worst-case esti-

mated performance for the different responses.

This provides information about the Pareto front

choices across the range of uncertainty associated

with the predicted values. In this example, the sug-

gested input combinations that are best for both

cases are quite similar, although the range of pre-

dicted values for each response varies consider-

ably. However, the practitioner can feel quite

confident that the locations identified are suitable

for both typical and worst-case values of the

responses. If the results had not been similar, the

experimenter would then have needed to decide

whether focusing on the typical results or protect-

ing against worst-case outcomes is a higher priority

when selecting an optimal combination of input

levels.

In considering the impact of response variability

and estimate uncertainty, it is important to examine

several aspects of the optimization. In the objective

phase of the process, the Pareto front solutions could

change with different realized values of the estimated

parameters. In the subjective phase, the designs that

are best for a given weight combination of the cri-

teria may also vary due to the change of the Pareto

front. Additionally, once we have selected a parti-

cular ‘‘best’’ location, the range of response values

is an important consideration. For our example, the

yield response has relatively little associated varia-

bility, whereas the molecular weight experiences

the most extensive possible fluctuations. The mean

and worst-case approaches allow us to examine each

of these aspects in a simple way, but there are cer-

tainly a variety of alternate approaches to looking

at variability and its potential impact on decision

making.

TABLE 4 The 13 Solutions Identified as Optimal for more than 1% of the Weights Considered in the Multiplicative Mixture Plot (Figure

A1 in the Appendix) Based on Worst-Case Prediction Interval Bounds

Solution #

% Area in mixture

(Figure A1)

Coded variables Natural variables Worst-case response estimates

x1 x2 n1 n2 ŷyC
1 ŷyC

2 ŷyC
3

74 2.26 �0.5 �0.9 82.5 170.5 77.22 70.87 3,529.80

75 15.93 �0.4 �0.9 83 170.5 77.43 70.98 3,548.42

76 19.06 �0.3 �0.9 83.5 170.5 77.61 59.07 3,567.46

77 5.67 �0.2 �0.9 84 170.5 77.75 59.22 3,586.91

78 4.71 �0.1 �0.9 84.5 170.5 77.87 59.35 3,606.79

79 2.67 0 �0.9 85 170.5 77.97 59.46 3,627.09

91 3.52 �1 �0.8 80 171 75.95 71.45 3,456.97

92 3.51 �0.9 �0.8 80.5 171 76.31 58.81 3,473.59

93 1.14 �0.8 �0.8 81 171 76.64 59.14 3,490.59

510 1.08 0.3 0.7 86.5 178.5 79.35 59.78 3,967.49

511 1.13 0.4 0.7 87 178.5 79.36 59.61 3,989.51

530 1.79 �0.1 0.8 84.5 179 78.88 59.15 3,904.68

531 12.14 0 0.8 85 179 79.02 70.88 3,924.98
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DISCUSSION AND CONCLUSIONS

The two-stage Pareto front optimization approach

can facilitate improved decision making for multiple

response optimization and provides an alternative to

constrained optimization and desirability function

approaches. In the first objective stage, inferior candi-

dates are removed from consideration, allowing the

focus to shift to the more promising alternatives. In

the subjective stage, the promising candidates can be

compared and the ranges and trade-offs of the criteria

examined to help refine the priorities of the study. The

graphical summaries highlight which input combina-

tions perform well for the preferred weighting choices

of the responses and how robust these combinations

are across alternative prioritizations. The summaries

help both with the decision-making process as well

as provide supporting documentation to help per-

suade others about the merits of the decision.

One of the most important steps when using this

approach is to specify the criteria over which the

optimization should be performed. In our example,

we focused on maximizing yield, getting close to

the target viscosity of 65, and minimizing molecular

weight. If, as was alternately suggested in Myers

et al. (2009), we had changed the requirement for

molecular weight to being in the range 3,200 to

3,400, with the ideal of 3,300, then the resulting Par-

eto front changes substantially. In Figure 13, we see

that while some of the locations remain similar

(those centered around (x1, x2)¼ (0, 0.8)), other

new locations emerge as promising candidates (for

instance, around (x1, x2)¼ (�1, 0.7) and in the lower

right corner of the design space). These Pareto front

locations overlap well with the solutions identified in

Myers et al. (2009) for this formulation of the prob-

lem. This should serve as a cautionary tale for practi-

tioners to think carefully about what the objectives of

the optimization are and then formulate the quanti-

tative criteria to best match these goals.

Another important consideration is whether there

are any constraints on how precisely the input factor

levels can be set in the experiment. In such a case,

the coarseness of the grid for approximating the

response surfaces should match these constraints.

Chapman et al. (2013) investigated using a coarser

grid to estimate the response surfaces in this

application. They found that the use of the coarser

grid identified near-optimal solutions and missed

the overall optimal choice. However, a coarse grid

is computationally more efficient for identifying the

larger region of the Pareto front and promising solu-

tions. The experimenter then has the flexibility of

fine-tuning the top performance choices for finding

the best overall solution.

In this example, there are only two input factors

over which to optimize the three responses. When

considering the scalability of the problem, both

the number of input factors as well as the number

of criteria over which to optimize should be con-

sidered. First, we consider the number of inputs.

When there are only two inputs, visualization of

each of the response surfaces as well as the Pareto

front locations in the design space is relatively sim-

ple. When the number of factors increases beyond

two, some of the graphics need to be adapted.

The contour plots of each individual response

become problematic, and a dynamic summary, such

as the profiler in JMP (version 9, SAS Institute, Cary,

NC) can allow more flexible exploration. Of the

Pareto approach plots, only the figures displaying

the design locations, such as Figure 4, need to be

changed. With three or more input factors, a sum-

mary table may provide the simplest summary of

the location of the front. Alternately, dynamic rotat-

ing plots in many statistical software packages

FIGURE 13 Impact of slightly modifying the optimization prob-

lem on the Pareto front.
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would allow three of the dimensions to be viewed

simultaneously.

Second, we consider changes in the number of

criteria considered. Finding the Pareto front based

on an increasing number of criteria remains

straightforward, although the computational burden

of fully populating the front will grow. Lu and

Anderson-Cook (2013) showed how the mixture plot

(Figure 6), trade-off plot (Figure 7), and synthesized

efficiency plot (Figure 8) can be adapted to accom-

modate four criteria. The FWS plot of Figure 9

remains unchanged regardless of the number of cri-

teria considered. A parallel plot (Lu and

Anderson-Cook 2013) can be used to show the cri-

teria values and their interrelationship and trade-offs

for any number of criteria. If too many criteria are

considered, the number of candidate solutions will

increase substantially, making effective comparisons

between alternatives difficult. Consequently, it is

important to carefully bound the number of

responses to consider, without losing the ability to

solve the problem of interest.

The Pareto front optimization approach for mul-

tiple responses provides a strategy for identifying

and comparing the performance of several preferred

input combinations. The strategy of examining the

front for both the mean-estimated responses as well

as a worst-case percentile allows for the estimation

uncertainty and variation in the responses to be

taken into account, and the range of values to expect

for the chosen solution is easily identified. If, as in

this case, the fronts for both of these cases align, then

the decision making for the practitioner is simple.

However, we anticipate that there will be many situa-

tions when the fronts identified differ. In such situa-

tions, the practitioner should carefully consider

whether primary interest lies in focusing on average

or worst-case performance.

R code (R Development Core Team 2012) for

implementing the methods discussed in this article

is available upon request (jchapman@stlawu.edu).
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APPENDIX

FIGURE A1 Mixture plot for multiplicative desirability based on worst-case prediction of the response.

FIGURE A2 Trade-off plot for multiplicative desirability when the worst-case prediction of the responses is considered.
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