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Abstract—In recent years, data mining have been explored in
many areas such as statistics, finance, engineering and biology
etc. In order to represent the data more efficiently and effectively,
one of mining process is supported by time series segmentation.
Segmentation is looking for the change points between two
different patterns and developing a suitable model depending
on observed data. Based on the issue of limited computing
and storage capabilities, it is necessary to consider an adaptive
and online segmentation method. In this paper, we proposes an
online Bayesian Kernel Segmentation method, which considering
multivariate density function as predictive distribution instead
of calculating posterior predictive distribution. In the empirical
human pattern segmentation result, it shows 92% overall seg-
mentation accuracy.

I. INTRODUCTION

Time series analysis have been applied in many fields such
as human activity identification ([1],[2],[3]), voice recognition
([41,[5]) and sign language ([6],[7])etc. At this point, the aim
of time series analysis is to extract information from the certain
time period ([8],[9]), by considering all data points during
the time interval as a whole instead of individual points. In
addition, these extracted informations can be represented as
some target value and their target values may change over
time, i.e. the statistical properties of probability function and
fitting model may change with time. The important problem
of mining streaming scenario is dimension reduction, classi-
fication, clustering, frequency counting and segmentation [8],
which support to empirical analysis. As one of data mining
methods, segmentation algorithm can represent the observation
more effectively and efficiently.

Time series segmentation is to break a time series inter-
val into optimal non-overlapping segments automatically and
using these segments we will also develop a suitable model
based on these observations of each segments simultaneously,
such as a regression model and a probability density function.
The boundary of two connected segments represents abrupt
change. Further more, the segmentation algorithm can be
divided into two groups, offline and online algorithm. [10] and
[11] has a review on time series segmentation about bottom-
up, top-down, sliding window and SWAB (sliding window and
bottom-up) algorithm. The most common offline algorithms
are top-down and bottom-up algorithm In order to improve
accuracy, many papers extend the two offline methods based

on different technical skills. [12] introduces a local iterative
replacement and global iterative replacement methods required
by dynamic programing. Bayesian method has been applied
to discover change points [13] by posterior probability. [14]
used the fisher information as the cost function rather than
error function. However, due to the properties of continuously
incoming data, an adaptive and incremental algorithm is more
suitable for dealing with time series. For another category of
segmentation, sliding window algorithm has been applied for
defining segments as an online method. Nonetheless, sliding
window gives us undesirable experimental results [15]. There
are other several online segmentation algorithms that have
been proposed to improve the performance of online segment-
ing. These algorithms are built on different main ideas, such
as Bayesian method ([16],[17],[18]) and HMM ([19],[20], etc.

In this paper, we propose an online Bayesian Kernel
Segmentation(OBKS) method that modified Online Bayesian
Change point detection [16], which apply online kernel density
function as predictive function instead of Bayesian predictive
function. One of the advantages of Bayesian approaches is that
it considers all uncertainty as prior distribution. Another ad-
vantage is that it does not require the asymptotic assumptions
about test statistics that are present in frequentist algorithms,
which can be problematic in situations where the parametric
models considered are restricted to a finite, possibly small
intervals of time [21]. However, it’s challenging to choose
perfect prior function that can be used for many cases. On
the other word, it will cost more time if it’s far away from
true parameters. Also, there are two “prior functions” in
[16], which resulted in more difficult to choose correct prior
distribution. The detail will be given in section II. Meanwhile,
kernel density function is brought out to get away prior
function that used to generate Bayesian predictive probability.
There are few articles that discussed about multivariate online
kernel density estimation algorithms ([22],[23],[24]).

This study is organized as follows. In the following section,
a online Bayesian kernel method is proposed. Section III
discusses the application of online Bayesian kernel method
by considering simulated observation and empirical data. The
conclusion is given in section I'V.



II. THE SEGMENTATION METHOD

The proposed algorithm is motivated by [16], in which
instead of generating posterior predictive density of a new
incoming and unknown data based on all already observed
datum, we consider online multivariate kernel density based
on all already observed points. First, let’s briefly introduce the
Online Bayesian method.

A. Online Bayesian method

Homogeneous observations from a same segments are as-
sumed to follow a certain distribution, and those heteroge-
neous observations from disjointed segments follow different
distributions. Therefore, to find the change point between two
patterns becomes very important problem. Bayesian online
detecting method ([16],[25]) consider the concept of “run
length” r;, which is the observation length of the current
posterior distribution at time t and it is linear about time t.
For example, if , = 0 at t=6, z¢ is a change point; if 7, # 0,
we keep running one more time and repeat the process. :cy)
is defined as the set included all observations correspond to
run length 7. If 7, is zero, z(") is empty set. For example,
t=6, 7, = 1, then :cér) = {w5,26}. In order to find the
posterior distribution P(r¢|z1.+), we need generate a recursive
joint distribution P(ry, x1.¢),
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Here, P(r¢|ri—1) is prior probability , the joint distribution
P(ry,21.) is called growth probability and P(x¢|rs—1, x§?1)
is predictive probability. At every time recursion, we pick the
r¢ that’s associated with the largest posterior probability, which
r¢ is also associated with the largest joint distribution in recent
data. Therefore, we need to get prior distribution P(r|r;_1)
and the predictive distribution P(xt|rt_1,x,(f)) to compute
posterior distribution.

The prior distribution has two directions: one direction is
that no change point happens at time t and r, = r;_1 + 1 with
probability 1 — H(r;) = 1 — 1/, which means the new data
join the current group and follows same distribution; another
one is that a change point occurs at time t, 7; drop to 0 with
probability H(r;) = 1/A. Here, H(r;) is hazard function
based on geometric distribution with parameter A [26]. The
prior distribution is:

P(Tt|9€1:t) = S8 P(Tt, l"lzt)

H(’f’tfl) if Tt =0
P(T‘t|7’t_1): 1—H(’I‘t,1) if Tt:Tt,1+1 (2)
0 otherwise
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Fig. 1. Online Bayesian Kernel Segmentation

Here, the predictive probability P(z;y1|r, xgr)) is a multi-
variate kernel density function only depends on the recent data
set xi”, due to the distribution stays the same if not change
point occurs. The more details are discussed in section II(B).

B. Online Multivariate kernel estimation
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Fig. 2. Sample distribution p,(x) with associated detail distributions g;(x)

[22] has proposed a Online multivariate kernel (0KDE) den-
sity estimation algorithm, which created an online bandwidth
estimation method and designed a compression model that
reduce the oKDE’s complexity. The compressed model of d-
dimensional data as an N-component gaussian mixture model
is defined as:

N
ps(%) = vids,, (x — x;) 3)
=1



where

Ps(x — p)

is Gaussian kernel with center p and covariance matrix X. «;
is weight and ). «; = 1. Kernel density estimation with a
bandwidth H(covariance matrix):
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PKDE = ¢H * ps(x Z @ity u(x—%x;) (4
In order to reduce the complexity of KDE as new data being
added, we need to compress the sample distribution p4(x)
with time by replacing clusters of components. There is an
additional model ¢;(x) for each component is used for recover
from these early over-compressions (Figure 2), therefore the
combined model is:

{ps(x),{qi(x) }iz1.n} 5)

Smodel =

1) Bandwidth selection: The classic measure of difference
with pxpg and unknown underlying pdf is asymptotic mean
integrated squared error(AMISE), defined as:

AMISE = (47)"4?|H|7Y2N 1 + idQ /trQ{H%p(x)}dx
(6)

Where ¢r(-) is the trace operator, ¢, (x) is a Hessian of p(x)
and N, = (Zszl a?)~L. If we rewrite the bandwidth matrix
in terms of scale 8 and a known structure F, H = 32F.
Minimize (6) respect to scale is:

Bopt = d(4m) > No R(p, F)| 753 (7)

where

R(p,F) = /trQ{F%p(x)}dx

Usually, this function is estimated by plug-in method [27].

Here R(p, ) can be written as expectation of the derivatives
= [p x)dx. We can use the ps(x) to obtain the
appr0x1mat10n

p(x) ~ ps(x),p" (x) = p& (x) @®)

where we approximate p( )( ), the derivative of p(x) through
the kernel density estimation:

pa(x) = da(x) * ps(x Zaj¢ESJ+G ) )

The estimate pg(x) is called pilot distribution, G is pilot
bandwidth. Combine with approximation in (8), the estimation
of R(p,F) is:

R(p,F,G) = /tr(ngg(x))tr(ngs(x)) (10)

To get the functional result (10) using matrix algebra,
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We use the empirical covariance of sample observation
Ysmp to estimate F, ie F = X, We estimate pilot
bandwidth G by a multivariate normal-scale rule:

Where X, can be updated using recursive covariance
matrix rule, 3; and fi; is covariance and mean for observed ¢
data points:
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Fig. 3. Compress four components sample distribution ps(x) (1) into three
components sample distribution (2)

2) Compression: This part introduce compressing (Figure
3)and refining the original /N-component sample distribution
by a M-component model ps(x), M < N. Here, w; is weight



and >, w; = L.

M
ps(x) = D s, (x = fiy) (15)
j=1
Because of slow convergence for moderate number of dimen-
sions, there is a clustering-based approach [28], which is to
identify clusters of components in ps(x) and each cluster is
associated with a single component.Let =(M) = {m;};j=1.m
be a collection of disjoint sets of indexes (Figure 2). Therefore,

ps(ximy) = Y widhs,, (x — i) (16)
1ET;
The parameters of j — th component are defined as:
iy = Y iy = Y wi
PET PET
85 = by D wil(Si+ ) — fiyft] (17)
1ET;

Hence, the compression is to identify minimal number of M
and the clustering =Z(M ), which construct the lowest clustering
error.

M = argminy E(E(M)), s.t.E(E(M)) < Dy, (18)

where Dy, is pre-defined threshold, E(Z(M)) is largest local
clustering error. Here,

E(E(M)) = maxﬂjeE(Al)E(ps(X;7rj)7Hopt) (19)

3) Local clustering error: We want to approximate com-
ponent in (16) with a single Gaussian pg(x)using method in
(17). The local clustering error is defined as:

E(p1(x), Hopt) = D(p1xpE(X), poxpE(X))  (20)
where,
H,,is current estimated bandwidth
p1(x) = ps(x375)
p1xDpE(X) = p1(X) * ¢n,,, (X)
PorxpE(X) = po(X) * ¢H,,, (X) 2n

In addition, the distance between distribution is using
Hellinger distance,

D?(p1xpE(X), Pok DE(X))

= 1/((PlKDE(X)l/2 _pOKDE(X))l/Q)QdX

5 (22)

Because it cannot be calculated analytically for the mixture
model, we use unscented transform ([29],[30])to approximate
it.

4) compression by hierarchical error minimization: A
hierarchical approach can be used to optimize (18) with all
possible clusters Z(M) for the number of clusters M, which
start by splitting the entire sample distribution into two sub-
mixtures (16) using Goldberger’s K-means algorithm. Each
sub-mixture will estimate a single Gaussian po(x). The hier-

archical process is recursively splitting the tree until the largest
local error is sufficiently small and satisfy E(Z(M)) < Dqy.

5) online kernel density estimation: The first step is to
update sample with combine previous model and new obser-
vation using weight wy = N, !

Do) (%) = (1 — wo)ps(e—1)(X) + wodo(x — x¢) (23)

Let () (x) = ¢po(x—x¢), we have the updated sample model,

Smodel(t) = {ﬁs(t) (X)> {qz(t) (X)}izlzl\;ft}
{@iy(®) biz1qz, = 12i(3) Yi=1:,

Here, - denotes the update model before the compression. The
bandwidth in (13) as updating by N,; = (Na_é_l) (1—wp)?+

(24)
(25)

w3) ' Therefore,
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Summarize above step details, the online Bayesian kernel
density estimation (Figure 4)is as follow combined Algorithm
1, Algorithm 2 and Algorithm 3:

The sample
distribution
is updated
by the new
observation:
Algorithm 1

|

Re-
estimate the
bandwidth:
Algorithm 2

New
observation x;

Modity and
compress
the model:

Algorithm 3

Recalculate
the KDE

Replace the sample model
with the N-component
revitalized model and
initialize the cluster set

Split the sub-mixture
Ps(x;7;) that associated
with maximum local error
into two sets using K-means
and update the cluster set.
Repeat this step until Dy, <
mazs, (B)(Py(x; 7))

l

Regroup the components
of ps(x) and construct the
compressed sample model

Fig. 4. Online Multivariate Kernel Density Estimation



Algorithm 1 Update the sample model
1: procedure UPDATE THE SAMPLE MODEL
At time ¢, the sample is defined as:
: Smodel(t) = {pst(x)a {qit(x)}izlet}
Update the effective number of observed samples:
Nt+1 = Nt + 1 and Wwo = l/Nt+1
Update the sample distribution at time ¢ + 1:
¢ Pst+1) (%) = (1 — wo)pst (x) + wodo (X — X¢q1)
_ The sample model at time ¢ + 1 become to:
© Smodel(t+1) = {ﬁs(t+})(x)a {Gie+1) (%) Yizrar, )
where {G@icer1)(X) b1, =
{{ait () }imr:m, - 4z, () = Po(x — xe41) }
11: end procedure

R A S o

4

Algorithm 2 Update bandwidth

1: procedure BANDWIDTH ESTIMATION

2: Update empirical covariance flsmp using (16)to ap-

proximate the covariance from a single Gaussian

3 Update Nogr1) = (Nag' (1 — wo)? +wg) ™!
4: Re-calculate R(p, F, G) using (11) and (26)
5
6

Estimate the optimal bandwidth at time ¢+ 1 by (26 )
: end procedure

Algorithm 3 Compress the sample model

1: procedure COMPRESS THE SAMPLE MODEL

2: According to Algorithm 1 and Algorithm 2,
S'model(tﬂ) and H; is estimated

3: Re-calculate each i-th component in Smodel(tﬂ) when
E(Gi(x),Hyt1) > Dy,

4 Initialize the cluster set: M = 1,2(M) = m,m =
{1,2,..,N}

5: Do until maxﬁjeg(M)E‘(ps(x; 7)) < Dy

Select the cluster j such that =
argmaz, ez B (py(x: 7))
7: Split 7; into two sub sets ;1 and 7;ousing the Gold-
berger’s K-means
M=M+1, E(M) = {{E(M) m;}, mj1, 7j2}
: End loop
10: Construct each component in pg(x) and its detailed

model §;(x) according to the clustering Z(1/)
11: end procedure

III. EXPERIMENT RESULT

To compare with [16], instead of using Bayesian predictive
function as predictive model, we apply online multivariate
kernel density estimation as predictive function of the cur-
rent model when new data coming. Two experiments are
manipulated to evaluate the innovated Online Bayesian kernel
segmentation method. These experiments compares this pro-
posed method with [16] using simulated data and empirical
observation. Here,oBK represents online Bayesian Kernel
method and oB represents online Bayesian method.

A. Simulated data experiment

Firstly, to estimate the segmentation accuracy, we gener-
ate four different combinations of bi-normal variables using
Markov Chain Monte CarloMCMC) simulation technique:
low covariance with low correlation, low covariance with high
correlation, high covariance with low correlation and high
covariance with high correlation. Each combination includes
three types of bi-normal variables (30). The testing result is
showed in Tablel.

Combination 1: low covariance with low correlation

1.6 —0.2

1 0
s = (22), 5, = [O 0.5]

27
Combination 2: low covariance with high correlation
= (00), % = {0%7 017]
2 = (<11), 5, = [0?7 Oﬂ
Hy = (2-2), % = {0%9 (1):2}

(28)

Combination 3: high covariance with low correlation

4 —-0.4
H1 = (00)721 - l:_04 4 :l

3 0.3
H2 = (_11)722 = |:03 5 :|

5 —0.4
s = (2-2),5, = [04 ’ }

(29)

Combination 4: high covariance with low correlation

5 4.5
5 3.6
o= 1,5 = [ ]

3 2.3} (30)

Hy = (2-2), % = [2.3 3

Based on detection accuracy result in Tablel, OBK has
higher accuracy and OBK is better choice of online seg-
mentation algorithm. Even the observation has relatively large
variance, OBK can adapt the model properly. Especially when
these two variable has stronger correlation, OBK generates
clearly better result. From below (Figure 5-Figure 8), it is
clearly showed that OB method is more sensitive for updating



TABLE I
DETECTION ACCURACY OF OBK AND OB ON FOUR DIFFERENT SIMULATE
DATA

low_cov low_corr
oBK | 0.9552
oB 0.9414

low_cov high_corr
0.9995
0.9002

high_cov low_corr
0.9238
0.9147

high_cov high_corr
0.9861
0.8839

the “run length” and the estimated “run” length is more
unstable. OBK method already includes adaptive online kernel
approach, which result steadier and stronger updating ’run
length”.

)

Fig. 5. Detection Accuracy of oB and oKDE on low covariance and low
correlation bi-normal simulation data

)

Fig. 6. Detection Accuracy of oB and oKDE on low covariance and low
correlation bi-normal simulation data

Fig. 7. Detection Accuracy of oB and oKDE on high covariance and low
correlation bi-normal simulation data

i i

Fig. 8. Detection Accuracy of oB and oKDE on high covariance and high
correlation bi-normal simulation data

B. Empirical observation experiment

One of empirical data [31] we used here is three dimensional
sensor data collected by cell phone used for tracking human
pattern. The data source display six basic activities: standing,
sitting, lying, walking, walking downstairs and walking up-
stairs generated from smartphone that have been carried out

with a group of 30 volunteers. The result of using OKDE and
OB shows in Table II and Table III.

TABLE 11
ONLINE BAYESIAN KERNEL SEGMENTATION CONFUSION MATRIX

Walking | Upstairs | Downstairs | Sitting | Standing | Laying
Walking 1 0 0 0 0 0
Upstairs 0 0.8895 0.1079 0 0.0026 0
Downstairs | 0.0172 0.0989 0.8839 0 0 0
Sitting 0 0 0 0.8941 | 0.1059 0
Standing 0 0.0445 0 0.1096 | 0.8450 0.0009
Laying 0 0 0 0.0006 | 0.0043 0.9993

TABLE III

ONLINE BAYESIAN SEGMENTATION CONFUSION MATRIX

Walking | Upstairs | Downstairs | Sitting | Standing | Laying
‘Walking 0.9434 0 0.0053 0 0 0.0053
Upstairs 0.0310 0.7451 0.1720 0 0.0518 0
Downstairs | 0.1379 0.3162 0.5364 0 0.0095 0
Sitting 0 0 0 0.7717 | 0.1080 0.1203
Standing 0 0.0314 0 0.0828 | 0.8406 0.0452
Laying 0.0196 0 0 0.0557 | 0.0595 0.8653

The accuracy for each activities is displayed in Table II,
which shows this algorithm can automatically and efficiently
detect changing and find activities time interval. To compare
with OBKS method, we use online Bayesian segmentation
algorithm [16] as a optional choice and the confusion table III
preforms accuracy rates. It’s not easy to distinguish Upstair
and Downstair, 31.62 % Downstairs observation are misclas-
sified into Upstair category. OBKS has better performance
than OBS for each activities, such as there are 89.4 % Sitting
observations correctly classified into Sitting using OBKS and
there are 77.17% Sitting observations classified into Sitting
using OBS. The overall performance is displayed in Table IV.

TABLE IV
DETECTION ACCURACY OF OB AND OKDE ON FOUR DIFFERENT
SIMULATE DATA

Human Pattern Observations overall
oBK | 0.9186
oB 0.7834

IV. CONCLUSION

As a important procedure in data mining, time series seg-
mentation divides a whole time series into disjointed subse-
quences, each subsequence can be represented as a model,
such as distribution and regression model. In addition, the
subsequence data sets and their associated models are benefit
for other data mining algorithm, such as classification and
clustering. We propose a Online Bayesian Kernel Segmen-
tation (OBKS) method that breaks a time series automati-
cally based on Bayesian (OB) method combined with online
multivariate kernel density estimation. Instead of considering
Bayesian predictive function, we apply online kernel function



as predictive function to get rid of assumption of multi-
normality. At this point, normality of observation is not strict
requirement. Further, kernel density estimation is more flexible
and adaptive that is suitable for any distributions. In this work,
we apply this innovated method in simulated data and smart
phone accelerometer data. Based on simulated result, OKDE
still performance better on four different cases. The overall
performance has been showed in Table IV, OBKS also has
higher overall accuracy than OB method. In the future work,
we can test this method in more applications.
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