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Reliability demonstration tests are usually performed in product design or validation processes to demon-

strate whether a product meets specified requirements on reliability. For binomial demonstration tests, the

zero-failure test has been most commonly used due to its simplicity and use of minimum sample size to

achieve an acceptable consumer’s risk level. However, this test can often result in unacceptably high risk for

producers as well as a low probability of passing the test even when the product has good reliability. This

paper explicitly explores the interrelationship between multiple objectives that are commonly of interest

when planning a demonstration test and proposes structured decision-making procedures using a Pareto

front approach for selecting an optimal test plan based on simultaneously balancing multiple criteria. Differ-

ent strategies are suggested for scenarios with different user priorities and graphical tools are developed to

help quantify the trade-offs between choices and to facilitate informed decision making. Potential impacts

of some subjective user inputs on the final decision are studied to offer insights and useful guidance for

general applications.
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1. Introduction

R
ELIABILITY demonstration tests are commonly

used in product development and validation
processes to ensure a certain reliability requirement
is met. For example, they can be used to demonstrate
reliability performance of a new design or a modifi-
cation of an existing design in the early stages of its
product-development cycle. They can also be used to
assess if reliability of an existing design required to
operate in new environmental or operational condi-
tions exceeds the minimum acceptable requirement
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prior to releasing it into service. The tests are usually
performed at the system level and set up as pass/fail
tests.

Demonstration tests have been broadly em-
ployed in many industries, including microelectron-
ics, aerospace, and healthcare, to guide decisions of
the acceptance of some products or designs. To im-
plement the test, one needs to develop a test plan for
demonstrating a certain reliability performance with
some desired level of confidence based on the avail-
able budget and resources. This requires the practi-
tioners to answer questions including how many units
should be tested, for how long each unit needs to be
tested and under what conditions, as well as the de-
cision rule for a successful or failed test.

This paper considers the binomial demonstration
test for nonrepairable systems, where a sample of
units is tested for a given length of time under some
regular or stressed conditions to observe if the units
survive or fail the test. The goal is to demonstrate
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that the reliability that is measured by the probabil-
ity that a unit survives the test is at or above a cer-
tain required level with a desired level of confidence.
The determination of a test plan requires specifying
a combination of (n, c) values, where n is the number
of test units and c is the maximum number of fail-
ures allowed for a test to be considered successful.
The structure of the test is based on controlling the
potential risks associated with making an incorrect
decision.

Two types of risks are commonly considered in
determining the parameters of a demonstration test
plan. One is the consumer’s risk, which considers the
connection between passing the test when the relia-
bility of the unit is not sufficiently good. The other is
the producer’s risk, which focuses on the connection
between failing the test when the reliability is good
enough. Let π denote the actual reliability at a given
time point of interest and let π0 and π1 denote the
minimum acceptable reliability level and the max-
imum rejectible reliability level, respectively, where
π1 ≤ π0. The region π ∈ (π1, π0) is called an indiffer-
ence region (Hamada et al. (2008), p. 344) and can
be thought of as the acceptable target region for the
true reliability of the unit.

From the frequentist (classical) point of view, the
consumer’s risk is formally defined as

FCR = P (Test is passed | π1)

=
c∑

y=0

(
n

y

)
(1 − π1)yπn−y

1 ,

where y denotes the number of observed failures out
of n units in the binomial test. Hence, the frequentist
consumer’s risk (FCR) can be considered as the type-
II error probability for passing the test when in fact
it should have been failed. Similarly, the frequentist
producer’s risk (FPR) is defined as

FPR = P (Test is failed | π0)

=
n∑

y=c+1

(
n

y

)
(1 − π0)yπn−y

0 .

It can be considered as the type-I error probabil-
ity for failing the test when in fact it should have
been passed. Easterling (1970) expanded the classi-
cal risk criteria by considering the average operating
characteristics for a range of acceptable or rejection
reliability values. The proposed average risk criteria
are defined as follows. The average consumer’s risk
(ACR) is defined as the probability of passing a test
when reliability is actually in the rejection region,

i.e., π ≤ π1, which can be obtained by

ACR = P (Test is passed | π ≤ π1)

=

∫ π1

0

[
c∑

y=0

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ∫ π1

0

p(π)dπ

.

Calculating ACR requires specifying a suitable prior
distribution, p(π), for reliability π, which represents
underlying knowledge about the reliability perfor-
mance before conducting the test. This is usually
identified based on either historical data for simi-
lar products or subject matter expert judgement. If
no such prior information is available, then a nonin-
formative or diffuse prior distribution can be used.
The integration in the above formula can be approx-
imated through a discrete numerical approximation,
such as Monte Carlo simulation. The average pro-
ducer’s risk (APR) is defined as the probability of
failing the test when reliability is actually in the ac-
ceptable region, i.e., π ≥ π0, which can be calculated
by

APR = P (Test is failed | π ≥ π0)

=

∫ 1

π0

[
n∑

y=c+1

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

∫ 1

π0

p(π)dπ

.

In recent decades, Bayesian methods have been
used more often in reliability analysis and allow the
ability to answer a broader range of questions of in-
terest. In the Bayesian framework, the two types of
risks can be measured by their corresponding pos-
terior probabilities (Hamada et al. (2008), pp. 346–
347). More specifically, the posterior consumer’s risk
(PCR) is defined as the probability that reliability is
in fact in the rejection region given that the test is
passed, which is the posterior probability of π ≤ π1

given that no more than c failures have been ob-
served. For a binomial test, the PCR can be obtained
by

PCR = P (π ≤ π1 | Test is passed)

=

∫ π1

0

[
c∑

y=0

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

∫ 1

0

[
c∑

y=0

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

. (1)

It should be noted that the conditional probability
here has been reversed. In the frequentist version of
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the average consumer’s risk, the assumption is that
the part is not good enough (π ≤ π1) and the risk
measures how likely it is that the test is passed. The
Bayesian version of the consumer’s risk looks at a
different summary, which asks about the probabil-
ity that the part is not good enough, conditioning on
seeing a pass on the test. One could argue that this is
more likely to be what the consumer is interested in
because it presupposes that the test has been passed
and the product is being distributed as sufficiently
reliable. The posterior producer’s risk (PPR) is de-
fined as the posterior probability of π ≥ π0 given
that more than c failures have been observed (test is
failed), which can be calculated by

PPR = P (π ≥ π0 | Test is failed)

=

∫ 1

π0

[
n∑

y=c+1

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

∫ 1

0

[
n∑

y=c+1

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

. (2)

Again, the conditional probability has been reversed
compared with the frequentist version to focus on
what is at risk if the test has been deemed a failure.

The different versions of risk criteria allow the
practitioners to have more flexibility to choose the
most suitable criteria for their applications. For ex-
ample, if a practitioner has specific desirable and un-
desirable reliability values in mind, then the classic
risk criteria can be better indications of the quan-
tity of real interest. But if the practitioner considers
a range of values to be acceptable or unacceptable,
then the average risk criteria or the posterior risk
criteria can be more suitable metrics for quantifying
the risks associated with the range of possible val-
ues. The choice between the two depends on which
point of view among the frequentist and Bayesian
analysis the practitioner is more comfortable taking,
as the former measures the conditional probability of
observing a certain test result given a certain range
of reliability values, while the latter measures the
reversed conditional probability of having a certain
range of reliability given a certain observed test re-
sult (pass or fail). The practitioner should choose the
right metric for quantifying their relevant risk prob-
abilities. An additional advantage of using either the
average or posterior risk criteria is that they make
use of supplementary data and information, such as
earlier test results and/or subject expert knowledge.
The additional information leveraged from supple-
mentary data or information can be used to reduce

the amount of testing required. In our paper, we use
the Bayesian risk criteria for evaluating and selecting
test plans because it seems to better capture the risks
that many consumers and producers would be inter-
ested in. More details regarding the computation of
the Bayesian risk criteria for a binomial demonstra-
tion test are given in Section 2.

Once the risk criteria are chosen, then the demon-
stration test plans are based on the level of risks the
practitioners are willing to accept for their particular
applications and given resources. For example, the
most popular test plans in current practices are the
zero-failure test or success run test (O’Connor and
Kleyner (2012)), in which case a test is passed only if
there are no failures observed for all tested units. The
number of test units is determined by the minimum
n needed to ensure the consumer’s risk within an ac-
ceptable level. The zero-failure test plans are popular
because they minimize cost by testing the smallest
number of possible units while controlling the con-
sumer’s risk. However, this test plan completely ig-
nores the producer’s risk, which has a strong trade-off
with the consumer’s risk. In other words, simply fo-
cusing on reducing consumer’s risk leads to the dete-
rioration of the producer’s risk and vice versa. Hence,
using the zero-failure test plan could force the pro-
ducer to take on unacceptably large risk by requiring
the investment of large amounts of resources and ef-
fort to produce unnecessarily highly reliable product
to be able to confidently pass the test.

In addition, having too rigorous a test plan is often
associated with a low probability of having a success-
ful test. In product development, this leads to extra
cost and effort in redesign and retesting of the prod-
uct. Hence, focusing too much on the cost of the test
may lead to an unnecessarily low probability of pass-
ing the test. In other applications, it is beneficial to
not have too large a demonstration test as the cost of
implementing the test might be prohibitive. There-
fore, rather than simply adopting the zero-failure test
plan, it makes more sense to quantitatively evaluate
the actual criteria for different tests and then exam-
ine the trade-offs between consumer’s and producer’s
risks, the cost of the test, and how hard it is to pass.
With this information available, it is possible to make
a balanced decision more tailored to the specific goals
of the test and the practitioner’s needs.

Given the multiple facets to consider for a demon-
stration test plan, this paper explores the selection of
an optimal plan based on simultaneously balancing
these four criteria. The relationship between them
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and their impacts on the decision is studied using
a case study from Hart (1990) and re-evaluated by
Hamada et al (2008, p. 347). In this case study, a
binomial test plan (n, c) is sought for a new modem
“B”, which is similar to an earlier modem “A” that
is highly reliable and currently in production. The
two modems are built by the same production line
and use most of the same components and the main
difference is that modem B operates at a different
frequency than modem A. Hart (1990) reports a bi-
nomial test for modem A on 150 units with six fail-
ures. This results in a 0.1 quantile of A’s posterior
reliability as 0.938, which is adopted as the lowest ac-
ceptable reliability for the new modem B. Due to the
similarity between the designs of the two modems,
Hamada et al. (2008, p. 347) suggested making use of
test A data by incorporating this information into the
prior distribution. Because the modems are thought
to be very similar but not identical, they treat an A
test as “worth” 60% of a B test, which is equivalent
to treating 150 modem A test units as 150×0.6 = 90
modem B test units with 6 × 0.6 = 3.6 failures and
144×0.6 = 86.4 successes. Because the beta distribu-
tion is the conjugate prior for the binomial distribu-
tion (Gelman et al. (2003)), a beta(a+1, b+1) distri-
bution is commonly used in Bayesian reliability anal-
ysis for capturing historical data on a + b test units
with a observed successes and b failures (Pintar et al.
(2012)). Hence, we initially assume a beta(87.4, 4.6)
prior distribution for reliability π to summarize the
information from the earlier test. However, we do re-
alize the 60% equivalence of test A data is a subjec-
tive choice made based on subject expert’s opinion
about the similarity of units and their potential fail-
ure modes, which could vary between different peo-
ple. Therefore, different prior distributions are ex-
plored later to understand their potential impact on
the results and decision making.

The remainder of this paper is organized as fol-
lows. Section 2 provides more details on the calcu-
lation of the criteria values for the consumer’s and
producer’s risks and the probability of accepting the
test using a Bayesian approach and includes a brief
introduction on the Pareto front approach used for
multiple objective optimization. Section 3 explores
the relationship between the multiple criteria and
their trade-offs using the case study example from
Hart (1990). Three decision-making strategies based
on considering multiple criteria simultaneously for
different user priorities are outlined and illustrated.
Then sensitivity analyses to evaluate the impact of
different subjective user choices, such as the thresh-

old value for capping the consumer’s risk and the use
of different prior distributions, are discussed in Sec-
tion 4. Section 5 contains some concluding remarks.

2. Optimization Criteria and
the Pareto Front Approach

In this section, we present background on several
building blocks required for selecting a best demon-
stration test plan while simultaneously balancing
multiple objectives using the Pareto front approach.
The first part gives detailed information on calcu-
lating the different criteria values including the con-
sumer’s and producer’s risks and the probability of
accepting the test. The second part provides some
background on multiple objective optimization using
a Pareto front approach.

2.1. Bayesian Posterior Risks

In this paper, we choose to use the Bayesian pos-
terior risks defined in Equations (1) and (2) for quan-
tifying the risk criteria of interest for a demonstra-
tion test because we feel the posterior risks are of
more direct interest to many consumers and produc-
ers because they measure their specific risks based
on having observed test results. In addition, they al-
low us to incorporate earlier test data results. Based
on the adjusted number of observed successes (86.4)
and failures (3.6), we construct a prior distribution of
π ∼ Beta(87.4, 4.6) from the modem A test data. Us-
ing this, we obtain a large number, say M = 1,000,
draws of possible π values from its prior distribu-
tion. Suppose the jth draw is denoted by π(j), where
j = 1, . . . ,M . Then we can evaluate the posterior
risks by using Monte Carlo integration based on the
M simulated samples from the prior distribution.
More specifically, we can approximate the posterior
consumer’s risk by

PCR = P (π ≤ π1 | Test is passed)

=

{
M∑

j=1

[
c∑

y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]

× I(π(j) ≤ π1)

}

÷
⎧⎨⎩

M∑
j=1

[
c∑

y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]⎫⎬⎭ .

(3)

Similarly, the posterior producer’s risk can be ap-
proximated by
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PPR = P (π ≥ π1 | Test is failed)

=

{
M∑

j=1

[
1 −

c∑
y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]

× I(π(j) ≥ π1)

}

÷
⎧⎨⎩

M∑
j=1

[
1 −

c∑
y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]⎫⎬⎭ .

(4)

The probability of accepting the design, called the
acceptance probability (AP), is the probability of
passing the test and can be estimated approximately
using

AP = P (Test is passed)

=
1
M

M∑
j=1

[
c∑

y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]
. (5)

Note that, even though we choose to use Bayesian
criteria for our case study, the general methodologies
for considering and balancing multiple objectives can
be easily adapted for a variety of metrics, including
the frequentist classical or average risks, selected as
the quantitative risk criteria. For simplicity of discus-
sion below, we abbreviate the notation and use CR
and PR to represent the consumer’s risk and the pro-
ducer’s risk in the remainer of the paper (including
tables and plots), even though, for this case study,
they are the posterior risks calculated with Equa-
tions (3) and (4). Also, M = 1000 was chosen in
our example for fast computing for demonstrating
the proposed methods. However, slightly more pre-
cise approximations of the criteria values could be
achieved with a larger M value.

2.2. Pareto Front Optimization

We now provide a brief background on multiple
objective optimization using a Pareto front approach.
Optimal decision making based on multiple objec-
tives or responses has been receiving more atten-
tion recently in many fields due to the increasingly
constrained budgets and resources. In many applica-
tions, different objectives compete for resources when
considered simultaneously. The “ideal” solution of
attaining the best possible outcome for all criteria
usually does not exist. Hence, because some com-
promise is needed, it is important to understand the
trade-offs between the objectives to make a balanced
decision to match the goals of a particular study.

Constrained optimization (Lange (2013), p. 10)
and the desirability function approach (Derringer
and Suich (1980)) were among the most popular
tools used for finding a single “best” solution for op-
timizing multiple objectives until the Pareto front
approach (Kasprzak and Lewis (2001), Gronwald et
al. (2008), Trautmann and Mehnen (2009), Lu et al.
(2011)) came to be used more extensively to find a
set of competing solutions for all objectives under
consideration. A feasible solution is said to Pareto
dominate another solution if it is as good as the other
solution based on all objectives and is strictly better
for at least one of the objectives. The Pareto op-
timal set contains all nondominated solutions that
cannot improve any of the objectives without dete-
riorating one of the other objectives and hence pro-
vides a complete set of superior solutions from which
a rational final choice should be selected. The cor-
responding objective function values of all solutions
in a Pareto optimal set form a Pareto front in the
criteria space. For problems with an infinite or ex-
tremely large solution space that is infeasible to enu-
merate, some search algorithms are needed to effi-
ciently populate the Pareto front. Compared with
mathematical programming-based methods, the evo-
lutionary algorithms (Deb (2009)) based on applying
Pareto ranking to solutions has become more pop-
ular recently to generate Pareto optimal solutions
for multiple response optimization problems. Lu et
al. (2011) further developed the Pareto front ap-
proach into a structured two-stage decision-making
process: the first stage is an objective stage that
identifies superior choices (the Pareto optimal set)
and eliminates noncontenders from future consider-
ation, while the second stage examines the identi-
fied choices and selects which one(s) is (are) best to
match the specific goals of the study. The overall ap-
proach matches the define-measure-reduce-combine-
select process described in Anderson-Cook and Lu
(2015).

In this paper, the Pareto front approach is used to
find a collection of nondominating test plans based
on considering multiple criteria simultaneously to
help eliminate noncontenders from decision making.
Due to the relative small size of the problem for spec-
ifying practically realistic demonstration tests, the
Pareto optimal solutions are identified from an enu-
merated set of possible tests for specified ranges of
(n, c) values based on directly applying Pareto rank-
ing to all solutions under consideration. If a larger
scale test becomes possible for certain applications,
then a tailored evolutionary search algorithm could

Journal of Quality Technology Vol. 48, No. 4, October 2016



MULTIPLE OBJECTIVE OPTIMIZATION IN RELIABILITYDEMONSTRATION TESTS 331

be used to more efficiently populate the Pareto front.
For the case study, once the superior choices have
been identified, we then highlight some graphical
summaries that can help the practitioner determine
which demonstration test is best suited to the par-
ticular needs of the study.

3. Case Study

This section illustrates the decision-making pro-
cess for choosing a best demonstration test plan
based on simultaneously considering multiple objec-
tives using the case study from Hart (1990) intro-
duced in Section 1. Four criteria described in Sections
1 and 2, including the consumer’s risk (CR = PCR),
producer’s risk (PR = PPR), acceptance probability
(AP), and cost, which is measured by the number of
test units (n), are considered. To fully examine the
relationship between the four criteria with the test
plan parameters (n, c), an exhaustive evaluation of all
possible test plans for a range of possible parameters
with c ∈ [0, 20] and n ∈ [c + 1, 500] was conducted.
Larger (n, c) values are not examined because these
tests are not considered practical for many real appli-
cations. However, the methodology and the general
conclusions can be easily adapted to evaluate any set
of tests under consideration.

There are 10,290 test plans [(n, c) = (1, 0), (2, 0),
. . . , (500, 0), (2, 1), (3, 1), . . . , (500, 1), (3, 2), . . .] eval-
uated in this case study. For each test plan (n, c),
the four criteria values are calculated using the for-
mulas given in Equations (3)–(5) plus the number of
test units n. Before starting the selection process for
a particular scenario, it is helpful to investigate the
relationship between these criteria to gain some in-
tuition about the degree of trade-off between them
and how strongly correlated they are. Figure 1 shows
several snapshots highlighting different pairs of cri-
teria to illustrate interrelationships between the four
criteria. Figure 1(a) is a plot of CR vs. PR for all the
examined test plans, which displays a set of curves in
different gray shades for different c values with darker
colors representing smaller c values. A few prominent
patterns can be observed from this plot. First, for
each fixed c (corresponding to a single curve), there
is a strong trade-off between CR and PR because, as
one risk improves, the other gets worse. Second, as
we increase the maximum allowable failures (c), both
CR and PR can be simultaneously improved by in-
creasing n, which is evidenced by the progression of
gray shades becoming lighter as the curves moving
closer to the ideal bottom left corner (corresponding
to no risk for either producer or consumer). However,

there are diminishing returns as c increases. Third,
the range of CR is bounded between 0 and 0.25, while
the range of PR is substantially wider between 0 and
around 0.75. When the popular zero-failure test plan
is used (c = 0), the minimal PR is around 0.59, which
is considerably higher than any typically acceptable
standard, and this is achieved when testing a single
unit with CR around 0.25. As we increase n to reduce
CR, the PR becomes even larger. When CR is con-
trolled to be around 0.1, the PR is above 0.68. One
of the big drawbacks of using the minimum sample
size test plan is that it offers no protection from the
producer’s risk, which means that a producer is faced
with a difficult option—produce units with reliabil-
ity well above the required range of reliability or bear
considerable risk of failing the test. In addition to the
curves, symbols shows some specific test plans with
n = 50, 100, 200, 300, and 400 to highlight the effects
of changing the sample size. We can see that, first,
for any fixed n, we can reduce the CR by allowing
fewer maximum failures (c). However, this results in
a quick rise in PR. On the other hand, allowing more
maximum failures reduces the PR but increases the
CR. Second, for any fixed maximum allowable fail-
ures c, increasing n reduces the CR but increases the
PR, and vice versa. There is also diminishing effect
on the amount of risk reduction possible by adjusting
the sample size while sacrificing the other risk.

Figure 1(b) plots AP vs. sample size n for all of
the test plans with different c values (dark to light
gray, indicating small to large c values). The follow-
ing patterns can be observed: First, for each fixed
c value, the probability of passing the test drops as
sample size n increases. This is because, for fixed
maximum allowable failures, the more units we test,
the smaller chance there is to pass the test. Second,
for a fixed sample size n, the chance of accepting the
test increases as more maximum failures are allowed.
In addition to the curves with different c values, test
plans achieving controlled CR levels at 0, 0.02, 0.04,
0.06, 0.08, and 0.1 and test plans with controlled PR
levels at 0.1, 0.2, 0.3, 0.4, and 0.5 are highlighted
with different symbols. We can see that, for fixed
n, higher AP is generally associated with larger CR,
but smaller PR. This is intuitive because, as we al-
low fewer maximum failures to reduce CR for a fixed
sample size, passing the test becomes less probable
and the risk for the producer increases. Meanwhile, if
we control the CR at a fixed level, we can increase the
probability of passing the test by increasing the sam-
ple size n and/or allowing more maximum failures c.
Alternately, if we control the level of PR, reducing
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FIGURE 1. Plots Showing the Interrelationships Between the Consumer’s Risk (CR), the Producer’s Risk (PR), the

Acceptance Probability (AP), and the Sample Size n. In each panel, test plans with the same c value are on the same

curve and darker to lighter gray shades are used for smaller to larger c values in [0, 20]. Different symbols indicate some

representative levels for other criteria: for example, different symbols are used to display different n values in (a) and different

controlled risk levels in (b)–(d).
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the sample size and maximum allowable failures in-
creases the AP.

Figure 1(c) shows the plot of PR vs. sample size
n for different c values, while highlighting some test
plans with controlled CR levels at 0, 0.02, 0.04, 0.06,
0.08, and 0.1. Similar information as discussed for
other subfigures can be obtained from the plot. For
example, the PR increases as more units are tested
for fixed c, while the CR is simultaneously reduced.
For a fixed sample size, we can reduce the PR by
allowing more failures, while increasing CR. If we
control the CR at a fixed level, we can reduce the
PR by simultaneously increasing n and c. Similarly,
Figure 1(d) shows the plot of CR vs. sample size n for
different c values, while highlighting some test plans
with controlled PR levels at 0.1, 0.2, 0.3, 0.4, and 0.5.
Again, the CR can be reduced and PR is increased as
more units are tested with fixed maximum allowable
failures. For fixed sample size, the CR is reduced and
PR increases by allowing fewer failures. If the PR is
controlled at a fixed level, then we can also reduce
the CR by simultaneously increasing n and c.

As a summary, the CR and PR have the most
trade-off among all criteria under consideration.
When one of n or c are fixed, we can adjust the
other parameter to reduce one of the risks, but it
also raises the other risk. The only way to reduce
both types of risks is to simultaneously increase n
and c. However, this increases the cost of the test
and possibly reduces the chance of passing the test.
Hence, as is often the case when considering multiple
objectives, there is no universal solution to simulta-
neously optimize all criteria under consideration. In
order to select the best test for a given scenario, the
practitioner needs to prioritize the competing objec-
tives and make a tailored decision to best match their
study goals. Below we present three possible paths to
guide test selection based on different user priorities.
The strategies begin by constructing the Pareto front
of nondominating solutions after initially controlling
one of the criterion values. From there, it is possible
to examine the remaining choices in a more manage-
able form and select one that is well suited to the
demonstration test goals.

The first strategy considers when the practitioner
determines that the consumer’s risk is most impor-
tant among all criteria. This is not unusual consider-
ing the majority of current demonstration tests focus
solely on controlling CR without actively consider-
ing other aspects of their decision. Assume that we
wish to bound the consumer’s risk at no more than

0.2. Then among all the test plans with acceptable
CR, we can construct the Pareto front with the set
of nondominated solutions based on the remaining
three criteria. Figure 2 shows the PR, AP, and n
for all the test plans on the Pareto front given the
upper bound of CR chosen at 0.2. The most promi-
nent feature of Figure 2 is the tremendous simpli-
fication that is achieved with this constraint. This
Pareto front contains only 21 test plans with a single
test plan for each different c value. This indicates, for
each fixed c value, there is a universal optimal test
plan when simultaneously considering PR, AP, and
n given the constraint on CR. This property allows
the practitioner to quickly reduce their options to a
manageable number and then choose a single best
test plan based on their goals for the other three cri-
teria. Figure 2 shows the trade-offs between the three
criteria given the constraint on CR. The test plans
are sorted from left to right with increasing c value
from 0 to 20. The left vertical axis is scaled between 0
and 1. The PR and AP are measured on a probability
scale, which is labeled on the left axis. For cost mea-
sure with the number of test units n, the right axis
values are scaled between 0 and 250 to include all test
plans on the Pareto front. This plot, called the trade-
off plot (Lu et al. (2011)), is effective in showing the
amount of trade-offs between competing solutions.
The sample size increases from 7 for c = 0 to 214 for
c = 20, the PR drops from around 0.6 to below 0.05,
and the AP increases from 0.7 to close to 0.95. As we
increase n and c, we can simultaneously reduce PR
and improve AP. However, the rate of improvement
diminishes as n and c increase. The criteria values
are listed in the first four columns of Table 1. With
this trade-off plot, users can make their own tailored
decision based on the available budget and time, the
level of risk they can tolerate, or the lowest proba-
bility acceptable for a successful test. For example,
if the practitioner can tolerate up to 0.2 level of PR,
then the best plan is to test 74 units allowing up to 7
failures for a successful test. With this plan, there is
a 0.92 probability of accepting the design while con-
trolling both CR and PR to be no larger than 0.2.
However, if the practitioner has a tight budget and
can afford no more than 50 units, then the best plan
is to test 44 units while allowing no more than 4 fail-
ures. With this plan, there is nearly a 0.3 producer’s
risk and nearly a 0.9 probability to pass the test.

The second strategy prioritizes the producer’s risk
as most important among all criteria. Consider that
we want the PR at or below the 0.2 level. The Pareto
front of all contending solutions considering the re-
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FIGURE 2. Trade-Off Plot for the 21 Choices on the Three Criteria Pareto Front Based on Producer’s Risk, Acceptance

Probability and Cost, Given the Constraint That Consumer’s Risk Is No Greater than 0.2. Note each choice corresponds to

a different c value ranging between 0 and 20, sorted from left to right with increasing c values. The left-axis scale gives the

producer’s risk (PR) and acceptance probability (AP). The scale on the right axis shows the number of test units n.

TABLE 1. Summary of 21 Options on the Pareto Front Based on Producer’s Risk (PR), Acceptance Probability (AP), and

the Number of Test Units (n) with the Upper Bound for the Consumer’s Risk Set at 0.20, 0.10, and 0.05 when A Test Data

Are Considered to Be 60% Equivalent to B Test Data. Note that there is a unique optimal test plan for each choice of c

Consumer’s risk (CR) upper bound

0.2 0.1 0.05

c PR AP n PR AP n PR AP n

0 0.6192 0.7087 7 0.6803 0.3131 26 0.7095 0.1679 43
1 0.5099 0.8237 15 0.6183 0.4646 39 0.6701 0.2844 59
2 0.4221 0.8661 24 0.5636 0.5536 52 0.6343 0.3646 75
3 0.3546 0.8839 34 0.5193 0.6037 66 0.5998 0.4284 90
4 0.2984 0.8967 44 0.4809 0.6388 80 0.5712 0.4709 106
5 0.2516 0.9062 54 0.4429 0.6711 93 0.5427 0.5089 121
6 0.2125 0.9135 64 0.4130 0.6905 107 0.5197 0.5345 137
7 0.1798 0.9193 74 0.3865 0.7059 121 0.4989 0.5552 153
8 0.1562 0.9208 85 0.3626 0.7185 135 0.4772 0.5764 168
9 0.1327 0.9250 95 0.3374 0.7330 148 0.4601 0.5905 184

10 0.1160 0.9260 106 0.3180 0.7415 162 0.4415 0.6061 199
11 0.1016 0.9269 117 0.3005 0.7488 176 0.4242 0.6195 214
12 0.0868 0.9298 127 0.2844 0.7551 190 0.4111 0.6282 230
13 0.0764 0.9303 138 0.2697 0.7607 204 0.3961 0.6387 245
14 0.0674 0.9309 149 0.2561 0.7655 218 0.3848 0.6452 261
15 0.0596 0.9313 160 0.2406 0.7725 231 0.3717 0.6537 276
16 0.0528 0.9318 171 0.2291 0.7762 245 0.3593 0.6613 291
17 0.0455 0.9337 181 0.2185 0.7796 259 0.3502 0.6658 307
18 0.0404 0.9339 192 0.2086 0.7826 273 0.3392 0.6722 322
19 0.0359 0.9342 203 0.1994 0.7854 287 0.3288 0.6780 337
20 0.0320 0.9345 214 0.1908 0.7880 301 0.3214 0.6812 353

Journal of Quality Technology Vol. 48, No. 4, October 2016



MULTIPLE OBJECTIVE OPTIMIZATION IN RELIABILITYDEMONSTRATION TESTS 335

FIGURE 3. Trade-Off Plot for the 2592 Test Plans on the Pareto Front Based on the Consumer’s Risk, the Acceptance

Probability and the Cost, Given a Producer’s Risk Is No Greater than 0.2. Different shades of gray colors distinguish test

plans with different c values, with darker gray for smaller c values. The left-axis scale gives consumer’s risk and the right-axis

scale is for the acceptance probability. Both scales display the best values at the top (the minimum value for the consumer’s

risk and the maximum value for the acceptance probability) and the worst values at the bottom.

maining three criteria is shown in Figure 3. In this
figure, the horizontal axis shows the number of test
units (i.e., the cost). For each test plan of a certain
sample size, the diamond and triangle symbols are
used to display its CR and AP values, respectively.
The left axis shows the CR scale with the best value
(the minimum risk for all the choices on the front)
on the top and the worst value (the maximum risk)
at the bottom. The right axis shows the range of
the AP for test plans on the Pareto front, with also
the best value (the maximum AP) shown on the top
and worst value (the minimum AP) at the bottom.
Note, for this plot, the ideal values for each criterion
are scaled to be at the top of the figure. Similar to
Figure 1, the darker to lighter gray shades are used
to identify smaller to larger c values.

A key pattern highlighted in Figure 3 is how much
richer the set of nondominated choices is when con-
trolling the PR with an upper bound compared with
controlling the CR. The Pareto front based on the
three criteria other than the PR contains 2592 test

plans, with a maximum sample size of 310 units, the
CR between 0.1 and 0.25 and the AP above 0.78.
There are many choices for each possible c value. This
indicates that, given a fixed number of maximum al-
lowable failures, there are trade-offs between cost and
the other two criteria. Particularly, as we increase the
sample size, we see incremental improvements in the
CR with simultaneous reduction in the AP. Also, as
more failures are allowed, there are more competing
options with more largely varied sample size, which
allows even more trade-offs between the competing
CR and AP criteria. Due to the richness of the Pareto
front, further decision making is less straightforward
compared with controlling CR primarily. To proceed,
the user should prioritize the remaining criteria to re-
duce the number of options to a manageable number.
For example, based on cost and logistical constraints,
there might be a limited number of testing devices
available, say less than 100, which can reduce the set
of options to choose between based on CR and AP to
identify minimum (n, c) values to accommodate the
requirements on both criteria.
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FIGURE 4. Trade-Off Plot for Test Plans on the Four Criteria Pareto Front for Fixed c Values (Maximum Allowable

Failures) at c = 0, 3, 6, and 9. For each panel, the left axis is for the consumer’s and producer’s risks while the right axis is

for the acceptance probability. Note that, for all criteria, the best values are displayed at the top.

A third strategy involves the user specifying a par-
ticular c value for the test. Figure 4 shows the trade-
off plot for all test plans on the four criteria Pareto
front for specific fixed c values of 0, 3, 6, and 9. For
each panel with a fixed c, the horizontal axis shows
the sample size. The CR, PR, and AP values for all
contending test plans on the front are shown in dif-
ferent line types across the range of sample size for
n ∈ [1, 500]. The left axis provides the CR and PR
scales with the best value (minimum risk at 0) at the
top and the worst value (maximum risk at 1) at the
bottom. The right axis is for the AP scale with the
best value (maximum acceptance probability at 1) on
the top and worst value (0) on the bottom. Therefore,
the closer a curve is to the top of the plot, the better
the performance for the corresponding criterion.

Consider the top left panel for example. This plot
corresponds to the commonly used zero-failure test.
As more units are tested, the CR quickly improves.

But the trade-off is that both AP and PR become
worse. The AP drops quickly to below 0.2 as sam-
ple size increase to around 50 and CR is reduced to
around 0.1. The PR increases from around 0.6 to 0.7,
both of which are extremely high from the producer’s
perspective. However, the changes diminish when n
is increased beyond 100 units. If c = 3 is selected,
then a plan with around 80 test units allows around
0.1 for CR, 0.5 for AP, and slightly above 0.5 for
PR. Similar patterns are observed from the bottom
two panels, with larger c values encouraging improve-
ment in PR and AP by increasing the sample size to
achieve a more acceptable balance between the CR
and those two criteria.

As a summary, we have illustrated three strategies
of decision-making when choosing a best demonstra-
tion test plan. Which strategy to choose and which
final plan is selected depends on the users’ priorities
as well as the available resources and logistic con-
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straints for their particular applications. However,
the complexity associated with the three decision-
making processes are quite different. Primarily con-
trolling the CR leads to the simplest choices and is
most straightforward for reaching a final decision. Fo-
cusing on a particular c value leads to a rich set of
contending options due to the large amount of trade-
offs between all four criteria under consideration.
However, there is a simple and clear pattern of in-
terrelationships between the criteria, and the trade-
off plot shown in Figure 4 is effective in capturing
this pattern and helping make an informed decision.
Compared with the above two scenarios, primarily
controlling the PR could lead to an overwhelmingly
rich set of options. However, using the Pareto front
approach to eliminate inferior solutions (from 10,290
to 2592) and using tailored graphical summaries such
as the trade-off plot in Figure 3 can be effective for
extracting key patterns and helping guide the re-
maining decision making in a more structured and
justifiable way.

4. Sensitivity Analysis

This section explores the impacts of some of the
subjective user choices on the decision. We focus
our exploration by following the first decision-making
path outlined in Section 3 due to its broad applicabil-
ity and simplicity of implementation. However, this
type of study could be conducted for any of the three
strategies.

The first user input that could have substantial
impact on the set of superior options to consider is
the threshold value (upper bound) we use to con-
trol the consumer’s risk level. Depending on if the
user employs a stringent or liberal constraint on the
consumer’s risk, we could end up with very different
sets of superior options from which to choose. Figure
5 shows the trade-off plot for using three different
cut-off values for the CR at 0.05, 0.1, and 0.2 lev-
els. For each constraint level, there are three curves
representing the criteria values for all test plans on
the Pareto front based on the PR, AP, and cost cri-
teria. Note there is again a single best choice for

FIGURE 5. Trade-Off Plot for Test Plans on the Four Criteria Pareto Front for Fixed c Values (Maximum Allowable

Failures) at c = 0, 3, 6, and 9. For each panel, the left axis is for the consumer’s and producer’s risks while the right axis is

for the acceptance probability. Note that, for all criteria, the best values are displayed at the top.

Vol. 48, No. 4, October 2016 www.asq.org



338 LU LU, MINGYANG LI, AND CHRISTINE M. ANDERSON-COOK

each c value. Three dark-to-light gray shades are used
to represent the three stringent-to-liberal constraint
levels on the CR. Table 1 shows the actual criteria
values for all 21 superior choices with different c val-
ues for the three selected threshold levels for CR.

Some observations can be made from Figure 5
and Table 1. First, using a smaller threshold value
for the CR requires testing more units for a fixed
c value. This also results in considerably higher PR
and lower AP values, and the amount of changes in
PR and AP values initially increase quickly as c in-
creases but start to diminish as c reaches a certain
value. For example, if the user can tolerate no more
than 0.5 for producer’s risk, then with the use of 0.2
threshold for CR, only 24 units need to be tested to
achieve 0.42 for PR and 0.87 for AP. However, with
the more stringent constraint on CR, the user needs
to increase the number of units tested to 80 to get
0.48 for PR and only 0.64 for AP for using 0.1 thresh-
old, or test 153 units to get 0.50 for PR and only 0.56
for AP for a 0.05 CR cut-off value. Second, consider-
ing the diminishing effect of increasing sample size on
simultaneously improving PR and AP, if too harsh a
standard is used for the CR, then it may be impos-
sible to meet reasonable standards on either PR or
AP regardless of the number of units tested. For ex-
ample, if a 0.05 threshold is used for CR, then, from
Figure 5, achieving an AP above 0.80 or a PR below
0.2 is not possible for n ∈ [c+1, 500]. Therefore, it is
necessary to evaluate the test performance with dif-
ferent levels of constraint on CR to understand the
severity of its impact on the available choices.

When using a Bayesian approach for quantifying
the different criteria, the calculated risk criteria and
probability of accepting the test can be sensitive to
the user-specified prior distribution. Recall that re-
sults in Section 3 were based on treating the A test
data as 60% equivalent to B test data, which was
determined by the subject matter expert based on
the similarity of the designs for the two modems.
In reality, this is just an approximation and differ-
ent subject matter experts are likely to have differ-
ent opinions regarding the relevance and value of the
historical data. For example, another subject matter
expert may consider A test data as only 40% equiv-
alent to B test data. In this case, the 150 modem A
test units are treated as 150×0.4 = 60 modem B test
units with 6×0.4 = 2.4 failures and 144×0.4 = 57.6
successes. Hence, a prior distribution of the form of
π ∼ Beta(58.6, 3.4) should be used. To study the
impact of this subjective choice on the amount of

FIGURE 6. Probability Density Curves for Prior Distribu-

tions Based on Leveraging Different Amounts (60%, 40%,

and 20%) of the A Test Data, Which Result in the Use of

Beta(87.4, 4.6), Beta(58.6, 3.4), and Beta(29.8,2.2) Prior

Distributions, Respectively.

information leveraged from the earlier test data, we
consider reducing the amount of equivalent informa-
tion from A test data down to 40% and 20%. Figure
6 shows the probability density curves for the three
prior distributions specified based on using relation-
ships of 60%, 40%, and 20% between the current
study and the A test data. The center of the three
prior distributions are quite similar, while the spread
of the distribution increases as less information from
earlier test data is leveraged. The lower end of the
possible reliability values drops from around 0.85 to
0.8 and further down to 0.75 when the amount of in-
formation borrowed from A test data is reduced from
60% to 40% and then to 20%. This matches our in-
tuition that using more historical data can provide
stronger evidence of an assumed high reliability for
the new modems in our case study.

Figure 7 explores sensitivity to the amount of prior
information incorporated from historical data. Fig-
ure 7(a) shows the trade-off plot with different con-
straint levels on CR when using weaker prior infor-
mation (A test data only 40% equivalent to B test
data). Compared with Figure 5, testing more units
is required to achieve the same levels on CR with a
fixed c. Meanwhile, the corresponding PR is slightly
reduced, while AP drops considerably. Figure 7(b)
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FIGURE 7. Trade-Off Plots Based on Different Prior Distributions. (a) Considering A test data as 40% equivalent to B

test data; (b) Considering A test data as 20% equivalent to B test data.

TABLE 2. Summary of 21 Options on the Pareto Front Based on Producer’s Risk (PR), Acceptance Probability (AP),

and the Number of Test Units (n) with the Upper Bound for the Consumer’s Risk Set at 0.20, 0.10, and 0.05

when A Test Data Are Considered to Be 40% Equivalent to B Test Data

Consumer’s risk (CR) upper bound

0.2 0.1 0.05

c PR AP n PR AP n PR AP n

1 0.4438 0.6143 25 0.5337 0.3550 46 0.5802 0.2285 64
2 0.3706 0.6797 36 0.4822 0.4343 60 0.5427 0.2996 80
3 0.3119 0.7197 47 0.4386 0.4881 74 0.5097 0.3519 96
4 0.2643 0.7466 58 0.4012 0.5268 88 0.4808 0.3917 112
5 0.2299 0.7593 70 0.3689 0.5559 102 0.4553 0.4228 128
6 0.1971 0.7748 81 0.3407 0.5785 116 0.4299 0.4519 143
7 0.1737 0.7818 93 0.3160 0.5967 130 0.4098 0.4720 159
8 0.1503 0.7920 104 0.2942 0.6116 144 0.3918 0.4887 175
9 0.1337 0.7963 116 0.2748 0.6239 158 0.3728 0.5062 190

10 0.1194 0.7999 128 0.2605 0.6308 173 0.3582 0.5180 206
11 0.1071 0.8029 140 0.2447 0.6400 187 0.3448 0.5283 222
12 0.0940 0.8088 151 0.2304 0.6480 201 0.3301 0.5400 237
13 0.0848 0.8108 163 0.2174 0.6550 215 0.3189 0.5477 253
14 0.0767 0.8127 175 0.2055 0.6611 229 0.3063 0.5571 268
15 0.0696 0.8143 187 0.1947 0.6666 243 0.2968 0.5631 284
16 0.0632 0.8158 199 0.1871 0.6690 258 0.2858 0.5707 299
17 0.0576 0.8171 211 0.1778 0.6736 272 0.2777 0.5755 315
18 0.0526 0.8182 223 0.1692 0.6777 286 0.2680 0.5819 330
19 0.0481 0.8193 235 0.1612 0.6814 300 0.2610 0.5857 346
20 0.0440 0.8203 247 0.1538 0.6848 314 0.2524 0.5911 361
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TABLE 3. Summary of 21 Options on the Pareto Front Based on Producer’s Risk (PR), Acceptance Probability (AP),

and the Number of Test Units (n) with the Upper Bound for the Consumer’s Risk Set at 0.20, 0.10, and 0.05

when A Test Data Are Considered to Be 20% Equivalent to B Test Data

Consumer’s risk (CR) upper bound

0.2 0.1 0.05

c PR AP n PR AP n PR AP n

0 0.3800 0.3163 21 0.4264 0.1816 36 0.4513 0.1238 49
1 0.3008 0.4205 34 0.3638 0.2773 51 0.4042 0.1988 67
2 0.2431 0.4829 46 0.3177 0.3347 66 0.3665 0.2506 84
3 0.2049 0.5138 59 0.2825 0.3726 81 0.3366 0.2869 101
4 0.1726 0.5414 71 0.2547 0.3995 96 0.3103 0.3167 117
5 0.1505 0.5555 84 0.2322 0.4195 111 0.2906 0.3367 134
6 0.1299 0.5714 96 0.2135 0.4350 126 0.2719 0.3553 150
7 0.1156 0.5793 109 0.1953 0.4508 140 0.2559 0.3703 166
8 0.1036 0.5855 122 0.1820 0.4606 155 0.2440 0.3803 183
9 0.0914 0.5947 134 0.1705 0.4687 170 0.2317 0.3910 199

10 0.0829 0.5987 147 0.1604 0.4756 185 0.2208 0.4002 215
11 0.0756 0.6022 160 0.1494 0.4841 199 0.2110 0.4081 231
12 0.0691 0.6052 173 0.1415 0.4890 214 0.2023 0.4150 247
13 0.0621 0.6107 185 0.1345 0.4933 229 0.1943 0.4211 263
14 0.0572 0.6128 198 0.1264 0.4994 243 0.1854 0.4284 278
15 0.0528 0.6147 211 0.1206 0.5027 258 0.1789 0.4331 294
16 0.0489 0.6163 224 0.1139 0.5076 272 0.1728 0.4374 310
17 0.0454 0.6178 237 0.1091 0.5101 287 0.1672 0.4413 326
18 0.0413 0.6214 249 0.1047 0.5124 302 0.1621 0.4449 342
19 0.0385 0.6226 262 0.0994 0.5163 316 0.1559 0.4496 357
20 0.0359 0.6236 275 0.0957 0.5181 331 0.1515 0.4525 373

shows the trade-off plot for considering A test data as
20% equivalent to B test data, with a prior distribu-
tion of π ∼ beta(29.8, 2.2). Now the PR is reduced to
below 0.50, while the AP has dropped to below 0.65
for all constraint levels. The criteria values of the
21 optimal plans with different constraint levels on
CR for using 40% and 20% historical information are
summarized in Tables 2 and 3, respectively. In sum-
mary, a stronger connection between the historical
data and the current test leads to a less diffuse prior
distribution, which in turn leads to requiring fewer
units to be tested in order to achieve the same level
on the consumer’s risk. Consequently, we can achieve
a higher probability of passing the test with slightly
more producer’s risk. This is because the historical
data have a higher success rate 144/150 = 0.96 than
the specified π0 = π1 = 0.938. In other words, the
historical data support higher reliability, hence the
more prior information is used, the fewer units need
to be tested in the new demonstration test. On the

other hand, if the historical data indicated lower re-
liability, then more units would need to be tested for
a stronger prior distribution.

5. Discussion and Conclusions

Strategically choosing a best plan for conducting
a demonstration test is of great practical importance
in product design and innovation. The common prac-
tice of using the zero-failure test with minimum sam-
ple size for controlling only the consumer’s risk can
result in a test plan with unacceptably high risk for
the producer and possibly a low probability of pass-
ing the test. Without good understanding of the im-
plied levels of these other characteristics of the test,
the choice of which test to use can be over-simplified
and lead to an inferior choice that is not in the best
interest of the different stakeholders.

In this paper, we have shown how enumeration
of a large number of choices combined with quan-

Journal of Quality Technology Vol. 48, No. 4, October 2016



MULTIPLE OBJECTIVE OPTIMIZATION IN RELIABILITYDEMONSTRATION TESTS 341

titative evaluation to explicitly explore the interre-
lationships between four relevant criteria can lead
to better understanding of choices when planning
a demonstration test. We have focused on the con-
sumer’s and producer’s risks, the acceptance proba-
bility for a successful test, and the cost. By exam-
ining a set of different choices of (n, c) values, useful
conclusions are drawn regarding the general relation-
ship between the design parameters and the test cri-
teria, which can provide useful practical guidance for
the practitioners facing similar problems. Quantify-
ing the trade-offs between the consumer’s and pro-
ducer’s risks when changing the sample size and/or
the number of maximum allowable failures can help
reshape the way the practitioners approach the gen-
eral problems and encourage them to consider mul-
tiple aspects of their decision to make the best use
of available resources.

Tactically, given the competing objectives for op-
timizing a demonstration test plan, we recommend
a structured approach using a Pareto front to elim-
inate noncontending choices and to guide the pro-
cess of making a quantitative and justifiable decision
that match the goals of the test. Once a more man-
ageable number of choices have been identified, then
the practitioner can identify which of these choices
most closely match their study goals. The approach
presents strategies for making a decision based on
different user priorities and practical/logistical con-
straints. For each strategy, the method sets a thresh-
old for the primary criterion and finds the Pareto
front based on simultaneously optimizing the remain-
ing criteria. A set of graphical tools helps practition-
ers extract useful information and provides guide-
lines for making a further decision. It is worth not-
ing that, among the three scenarios explored, con-
trolling the consumer’s risk first, which is the most
common practice, can lead to a simple set of opti-
mal solutions with a universal best plan to simul-
taneously optimize the remaining three criteria for
each possible c value. Having found the set of supe-
rior solutions with the clear-cut trade-offs summa-
rized in the trade-off plot in Figure 2 and Table 1,
the user can make an easy and straightforward de-
cision based on their requirements for PR and AP
as well as how big a test they can afford. The other
two scenarios involve richer trade-offs with a larger
set of contending options. However, graphical tools
provide compact summaries of useful information for
supporting a tailored optimal decision. Despite that
controlling consumer’s risk primarily can lead to the
smallest and simplest set of solutions, it is impor-

tant for the practitioners to think carefully about
what is most important for their particular applica-
tion and choose the most appropriate approach to
match their test goals. The R code for implementing
the three decision-making strategies and generating
the graphical summaries is available from the authors
on request. Finally, the user-specified thresholds and
prior distribution choices in a Bayesian analysis can
have substantial impact on the final decision. We rec-
ommend explicitly exploring the subjective user in-
puts to gain a better understanding of their impact
before making a final decision.

Note that, in demonstration test planning, there
are many aspects that could be considered in the
decision making. The producer’s risk can be quan-
tified by the probability of the producer rejecting a
good product when it is actually good. This is use-
ful to help a producer to make a direct decision on
whether to release the product or not based on their
level of tolerance for this risk. The cost of conducting
the test is another important dimension in a decision,
which is often a critical aspect to allow the producer
to choose only an affordable test plan. However, a
broader consideration of cost can also include the po-
tential cost associated with a poor decision. For ex-
ample, the cost from the producer’s risk by rejecting
a product can include the extra cost for re-inspecting
the production process and redesigning and retesting
the product, when it actually was sufficiently good.
On the other hand, the cost from the consumer’s risk
by releasing an unacceptable product can include the
extra cost generated due to product returns and the
loss of customer loyalty, etc. A quantitative summary
of these costs as consequences associated with pro-
ducer’s and consumer’s risks can be evaluated based
on their expectations over the posterior distribution
of the reliability given different decisions. For exam-
ple, the expected cost from the producer’s risk (de-
noted by ECPR) can be quantified by

ECPR
= E(Cost | Test is failed)

=

{∫ 1

π0

[
n∑

y=c+1

(
n

y

)
(1 − π)yπn−y

]
p(π)C1(π)dπ

}

÷
{∫ 1

0

[
n∑

y=c+1

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

}
,

where C1(π) is the cost associated with the pro-
ducer’s risk when reliability is at π for π ≥ π0. Simi-
larly, the expected cost from the consumer’s risk (de-
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noted by ECCR) can be calculated as

ECCR
= E(Cost | Test is passed)

=

{∫ π1

0

[
c∑

y=0

(
n

y

)
(1 − π)yπn−y

]
p(π)C2(π)dπ

}

÷
{∫ 1

0

[
c∑

y=0

(
n

y

)
(1 − π)yπn−y

]
p(π)dπ

}
,

where C2(π) is the cost associated with the con-
sumer’s risk when reliability is at π for π ≤ π1. These
expected costs can be approximately estimated based
on Monte Carlo integration usinĝECPR

=

{
M∑

j=1

[
1 −

c∑
y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]

× I(π(j) ≥ π0)C1(π(j))

}

÷
⎧⎨⎩

M∑
j=1

[
1 −

c∑
y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]⎫⎬⎭
and̂ECCR

=

{
M∑

j=1

[
c∑

y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]

× I(π(j) ≤ π0)C2(π(j))

}

÷
⎧⎨⎩

M∑
j=1

[
c∑

y=0

(
n

y

)
(1 − π(j))y(π(j))n−y

]⎫⎬⎭ .

Then, the estimated expected cost from the pro-

ducer’s and consumer’s risks can be used separately
or in combination to give an estimated overall ex-
pected cost for selected test plans.
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