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Abstract: A two-stage Pareto front approach can improve the process of making a decision about which input values
simultaneously optimize multiple responses. However, ignoring estimation uncertainty and natural variability in the responses
can potentially lead to suboptimal choices about those input values. A simulation-based approach is used to quantify and
examine the impact that variability has on the superior solutions identified on the Pareto front and their performance. Because
each optimization scenario has its own unique characteristics, including responses with different amounts of natural variability,
the impact of variability on the solutions varies from situation to situation. We study how varying the amount of response
variability affects the locations identified for the front and the characteristics of the most promising solutions on the front. We
illustrate the method with an application involving process improvement through variance reduction. © 2015 Wiley Periodicals,
Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal 8: 314–328, 2015
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1. INTRODUCTION

When optimizing a process with multiple responses,
combinations of input factors are sought to simultaneously
optimize all responses. A common practice for making
this selection includes conducting a designed experiment to
estimate the multiple response surfaces within the operating
space of the input factors and then using the desirability
function (DF) approach [1] to find a solution that optimizes
an overall metric that combines the multiple responses for
a set of predetermined weights. However, this method can
be sensitive to the subjective choices of the user-specified
priorities of the responses (as summarized by the weights),
the scaling scheme for converting the response values to
desirability values between 0 and 1, and the metric for
integrating multiple responses into a single quantitative
measure.

Chapman et al. [2] used a Pareto front (PF) approach
([3–5]) to find promising input combinations using a
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structured decision-making process, which allows prac-
titioners to explore all promising solutions (on the PF)
and examine their trade-offs and performance as well as
understand the impact of various subjective choices made
throughout the process. The PF approach has been used
extensively in many different disciplines, such as engineer-
ing and computer science, as a tool for multiple response
optimization. However, the majority of the literature has
focused on how to find the PF with its most promising
choices without providing more insights on how to pro-
ceed from those choices to a final decision. Lu et al. [3]
first introduced the method in design selection and pro-
posed a structured process with statistical tools developed
([3–5]) for guiding informed decision-making. The pro-
cess can be divided into two stages: (1) an objective stage
where the PF consisting of all superior solutions that are
not strictly outperformed by any other solutions based on
all responses is identified by strategically eliminating all
non-contending (i.e. inferior) solutions and (2) a subjective
stage that introduces user-specified choices to hone in on
the most appropriate solution to match the user’s priorities.
For every solution on the PF, no uniformly better options
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exist. Hence the PF provides an objective set of promis-
ing solutions that are sensible to be considered in further
steps. By seeing the complete set of promising solutions,
the users are offered more flexibility on understanding the
potential impact from various subjective choices and hence
more confidence in making an informed decision.

The simplest implementation of this approach optimizes
the estimated response surfaces using the point estimates
of the parameters (referred to as the mean model) and
examines a fine grid of input factor combinations to find
the Pareto optimal solutions. However, due to sampling
variability, a range of values for the model parameters are
plausible to be consistent with the observed data. Hence, the
uncertainty in the estimated response surfaces introduces
uncertainty in the decisions for optimizing the multiple
responses.

To incorporate estimation uncertainty into the decision-
making process, Chapman et al. [6] expand the two-stage
PF approach to quantify the variability in the identified PF
to evaluate its potential impact and facilitate an informed
decision. More specifically, the method simulates a large
number of response surfaces that are consistent with the
observed data and finds the PF associated with each set
of the simulated response surfaces. By characterizing the
PFs across a large number of simulations, the objective
stage can be expanded to also summarize the frequency
with which locations appear on the fronts and examine
the uncertainty in the PFs, which is propagated from the
uncertainty in estimating the models. Furthermore, in
the subjective stage, promising solutions based on user-
specified priorities, scaling, and metric choices are explored
and summarized across all simulated PFs. By understanding
the robustness of different solutions to the subjective
choices and across the simulations, decision makers can
identify solutions that are best, most frequently, for their
particular weighting priorities.

Since each optimization situation has its own unique
characteristics, how the variability in the responses impacts
results can vary considerably. Different responses have
different degrees of natural variability, which may have
substantial impact on the variability associated with the PF
choices as well as the final decisions. Additionally, the role
of variability interacts with other features impacting the
PF, including how much the response values vary across
the operating space and the degree of trade-off between the
responses. For instance, in a simplistic example, if all of the
responses are optimized at the same location, then changes
in identifying the PF would only be a function of how much
uncertainty there is around that best location. On the other
hand, if the best location for each response lies in different
regions of the operating space, then different amounts of
variability can shift the front more as the trade-offs between
responses change.

In this paper, we evaluate the impact of differing amounts
of variability in individual responses on the identification
of the PF (the objective first stage in the approach [6]) and
on the characteristics of the promising solutions based on
flexible weighting choices (evaluated early in the second
subjective stage). We focus primarily on these portions
of the process because they identify and characterize a
subset of input combinations from which all subsequent
decisions are made. We consider optimizing the same
chemical process described in Myers et al. ([7], p. 253) and
conduct a simulation study to investigate how changing the
amount of variability for each of the responses affects the
choice of the PFs and further decisions about the optimal
operating conditions.

The chemical process considered has two input variables
(ξ1 = time and ξ2 = temperature) and three responses
of interest (y1 = yield, y2 = viscosity, and y3 = number-
average molecular weight). The operating region was
selected to include the time of the process (between
77 and 93 minutes) and the temperature (between 167
and 183 degrees Fahrenheit). A 13-run central composite
design (CCD) ([7], p. 297) for a circular coded region
with maximum radius of

√
2 was run to estimate the

three independent response surfaces. After fitting quadratic
models and removing nonsignificant terms for all responses,
the estimated response surfaces, in terms of x1 and x2, the
coded time, and the temperature variables, respectively, are
given in Eq. (1) for yield, Eq. (2) for viscosity, and Eq. (3)
for molecular weight.

ŷ1 = 79.94 + 0.995x1 + 0.52x2 + 0.25x1x2

− 1.38x2
1 − 1.00x2

2 (1)

ŷ2 = 70.0 − 0.16x1 − 0.95x2 − 1.25x1x2

− 0.69x2
1 − 6.69x2

2 (2)

ŷ3 = 3386.2 + 205.1x1 + 177.4x2 (3)

The goal of optimization is to maximize yield, y1,
and minimize both molecular weight, y3, and distance
from the viscosity to a target value of 65, |y2 − 65|.
Fig. 1(a) displays the overlaid contours for the mean
model estimated by Eqs. (1)–(3). For yield, the maximum
occurs around (ξ1, ξ2) ∈ [85, 89] × [173, 179], with lower
response values for locations farther away from this region.
As both time and temperature decrease, molecular weight
becomes smaller and more desirable. Viscosity achieves its
target value (lightest gray contour in Fig. 1(a)) when the
temperature is near either 171 or 178 degrees Fahrenheit
and becomes less desirable as it moves away from these
regions. Therefore, there is no location that is universally
best for all responses. Simultaneously optimizing the
three responses requires making some trade-offs, especially
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Fig. 1 (Top) Overlaid contours for the three estimated response
surfaces (mean model), as estimated from Eqs. (1)–(3). Grayscale
contours are for viscosity’s distance from target (with the lightest
gray corresponding to the ideal values), oval contours are for yield
(to be maximized), and diagonal line contours are for molecular
weight (to be minimized). The colored rectangles identify regions
with good performance in different combinations of priorities:
green: good for molecular weight and viscosity; orange: good
for yield and viscosity; blue: excellent for yield but poor for
others; pink: most balanced for the three responses. (Bottom)
Circular region defined by the points used in the CCD. Numbers
along the left edge identify the specific points on the grid. All
subsequent circle plots are plotted with the same scale. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

between yield and molecular weight, as the optimal
locations for one of the two responses are generally
associated with poor performance for the other.

In Fig. 1(a), four regions are highlighted in different
colors that correspond to locations where there is good
performance for different priorities. The rectangular region
in green at the bottom left identifies locations that perform
well on molecular weight and viscosity, but poorly on
yield. The pink region at the bottom consists of locations
with more balanced performance across the three responses.
The blue region toward the top right has locations that
perform extremely well on yield but not as well on the other
two responses. The orange region above the blue region
generally has better performance on yield and viscosity than
molecular weight.

To create a set of solutions from which the PF can be
identified, Chapman et al. [2] describe creating a set of
grid points within the desired operating range. Here, we
construct a grid of 630 points located inside the circular
coded region defined by the points used in the central
composite design (CCD) (Fig. 1(b)). We assume that a
distance of 0.1 for the coded values is the smallest possible
increment when adjusting the factor levels, and thus the
adjacent points in the same row or column are separated
by 0.1. Beginning in the bottom row and moving from
left to right, the points in Fig. 1(b) are labeled from 1
to 630; once the end of a row is reached, the labeling
scheme continues with the leftmost point in the next
lowest row. The regions identified in Fig. 1(a) are also
marked in Fig. 1(b) to connect the factor input values with
the estimated responses in the mean model. For each of
the three responses, Table 1 summarizes the smallest and
largest estimated responses, using Eqs. (1)–(3), for the
locations in Fig. 1(b) (with the corresponding grid point
identified in parentheses).

As seen in Table 1, the three responses have different
variability of the response values across the operating
space. Yield has the smallest absolute range in the
estimated responses (4.44), followed by viscosity (14.88),
and molecular weight has the largest range (752.8).
However, the absolute range of the estimated responses
should be interpreted in the context of their natural
variability. The estimated models for the three responses
(Eqs. (1)–(3)) have substantially different mean square
errors (MSE), which, assuming adequate models with no
substantial lack of fit, measure the natural variability in each
response. The ratio of the range of the estimated responses
relative to its estimated variability (square root of the MSE)
provides a measure of the signal-to-noise ratio. A large ratio
indicates that the response changes considerably across the
operating region relative to its variability (noise). We would
anticipate that responses with a large signal-to-noise ratio
might influence the PF quite differently than a response that
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Table 1. Summaries of the range of estimated response values, using Eqs. (1)–(3), relative to the estimated variability as measured by
max(ŷ)−min(ŷ)√

MSE
for the three responses in the original study.

Estimated response surfaces

Response
√

MSE Min ŷ Max ŷ Range ŷ max(ŷ)−min(ŷ)√
MSE

Yield 0.2665 75.78 (244) 80.21 (406) 4.44 16.66
Viscosity 2.2749 55.15 (630) 70.03 (287) 14.88 6.54
Molecular weight 165.6231 3003.66 (49) 3756.46 (519) 752.8 4.55

appears relatively flat across the operating space relative to
its variability. For our example, the yield response has a
substantially larger signal-to-noise ratio (16.66) than the
other two responses. Viscosity has slightly larger signal-to-
noise ratio (6.54) than molecular weight (4.55).

The amount of variability in the responses also inter-
acts with trade-offs between the responses. To quantify the
degree of trade-off between the three responses as well as
between each pair of responses, we can calculate the hyper-
volume under the PF (HVUPF) [8]. With a chosen scaling
that maps the best performance for a criterion to desirabil-
ity value 1 and the worst performance to desirability value
0, the shape of the PF relative to the rectangular region
[0, 1]m can indicate the amount of trade-off between the
m criteria under consideration. The closer the PF is to the
Utopia point (which corresponds to simultaneously achiev-
ing the optimal values for all criteria), the less trade-off
there is between the criteria, indicated by larger HVUPF
values. The HVUPF is a single numerical summary with
values between 0 and 1 that measures the hypervolume of
the region between the origin (worst case for all criteria)
and the PF within the rectangular region [0, 1]m.

For our example, defining the best and the worst
estimated responses in the operating region to have
desirability values 1 and 0, respectively, the HVUPF for
all three responses (corresponding to the volume under the
PF within [0, 1]3) is 0.73. The HVUPF values for each
pair of the responses (corresponding to the area under the
PF within [0, 1]2) are 0.97 for yield and viscosity, 0.79
for yield and molecular weight, and 0.99 for viscosity
and molecular weight. This indicates only a little trade-
off between viscosity and either yield or molecular weight,
while there is much more trade-off between yield and
molecular weight. Therefore, it is possible to achieve
quite good performance simultaneously on viscosity and
yield (such as the orange region in Fig. 1(a)) or on
viscosity and molecular weight (such as the green region in
Figure 1(a)); however, considerable trade-offs between the
responses are required when considering all three responses
simultaneously.

To study the impact of the amount of response variability
on the decisions made using the PF approach, we evaluate
eight (23) combinations of degrees of variability for the

three responses by adding or removing 50% of the observed
variability from the mean model from Eqs. (1)–(3) (i.e.
considering either 0.5MSE or 1.5MSE for each response).
For each of the eight scenarios, we conduct a simulation
study to generate a large number of response surfaces
consistent with the estimates of the model parameters
and the particular amount of variability. Compared to the
unchanged response variability scenario, we can investigate
how changes in the degree of natural variability in the
responses are propagated to the PF choices. Additionally,
in some processes, there may be opportunities to invest
in reducing the natural variability of one or more responses
through process improvement. Understanding how variation
impacts the choices of the best input factor locations can
help to guide decision-making about where to invest in
these reductions.

The remainder of the paper is organized as follows.
Section 2 details the simulation study. Section 3 describes
the results of the simulated PFs across the different
scenarios. Section 4 presents results from the subjective
stage of the PF optimization process for a particular
choice of the DF form. In Section 5, we consider
a process improvement scenario and describe how a
user might decide which variability reduction strategy is
most beneficial. Section 6 provides some discussion and
concluding remarks.

2. SIMULATIONS WITH VARIED VARIABILITY
FOR MULTIPLE RESPONSES

To investigate the impact of response variability, simu-
lations are conducted to generate new response surfaces
that are consistent with the mean models in Section 1
(Eqs. (1)–(3)), but with different levels of variability. These
simulations are modeled after ‘Step 0’ in [6]. To begin, let
y = Xβ + ε denote the general form of the linear models
for all responses, where y is the vector of responses, X
is the model matrix, β is the vector of model parameters,
and ε is the vector of random errors assumed to be nor-
mally and independently distributed with a common vari-
ance σ 2. Then, the least squares estimates of the coefficient
parameters in β follow the multivariate normal distribution,
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β̂ ∼ MV N(β, σ 2(X′X)−1), and σ̂ 2 = MSE = SSE
(n−p)

is an
unbiased estimator of σ 2, where p is the number of terms
in the model.

To generate new response surfaces, we repeatedly
simulate new β̂

∗
s from the multivariate normal distribution

with mean β̂, as in the mean models (Eqs. (1)–(3)), but
different choices for the variance. We opted to generate new
model parameters centered around the estimated parameter
values to simulate the increased or decreased variability
in the responses, instead of working directly with new
observations. This approach has the advantage of keeping
the mean model the same for all of the different scenarios
considered, which simplifies the comparison of results.
Recall that the variability of β̂ is a direct function of σ 2,
which is estimated from the observations. Since our focus is
on understanding the impact of changes in variability, this
allows us to generate models of the response that differ by
only the magnitude of the natural variability.

The detailed steps for the simulation are described as
follows:

1. For each of the three responses, randomly gener-
ate β̂j

∗
from MV N(β̂j , σ̂ 2

j dj (X
′
j Xj )

−1), j = 1, 2, 3,
where dj ∈ {0.5, 1.5} is a multiplying factor of the
variance that determines the natural variability of the
response variable.

2. For each response, approximate the response surface
by estimating the response values using the simulated
coefficients from Step 1 over a grid of points in the
chosen operating region (Fig. 1(b)).

Eight combinations of multiplicative factors of the
variance for the three responses are evaluated with
(d1, d2, d3) ∈ {(0.5,0.5,0.5), (1.5,0.5,0.5), (0.5,1.5,0.5),
(1.5,1.5,0.5), (0.5,0.5,1.5), (1.5,0.5,1.5), (0.5,1.5,1.5),
(1.5,1.5,1.5)}. For each scenario, 500 simulated response
surfaces are generated using the process described above.
In the following sections, these results are compared to the
original variability scenario with 500 simulations generated
as (d1, d2, d3) = (1, 1, 1).

3. IMPACT ON THE PF

Based on the simulated response surfaces obtained fol-
lowing the procedure described in Section 2, this section
describes the objective step [6] where the PFs made up of
superior locations are identified and the range and variabil-
ity of the PF choices among the simulations are evaluated.
Thus, this step highlights the locations on the PFs as well
as how frequently they appear on the PFs. In practice,
non-contending locations that do not, or rarely, appear on
the PFs should be eliminated from further consideration.

Hence, this step is useful for identifying the input combi-
nations, which give consistently superior performance for
many combinations of simulated responses. In studying the
different variability scenarios, interest lies in understanding
how the proportion of times that a location is found on the
PF changes.

Fig. 2 shows the locations that appear at least once on
the PFs in the 500 simulations for the unchanged variability
scenario (the top right panel) and the eight scenarios with
different variability for individual responses (the top left
and bottom right panels). The layout of all scenarios is
illustrated in the bottom left panel of Fig. 2, which shows
the geometry for a two-level, three-factor full factorial
design. The three responses correspond to the three factors,
and the low and high factor levels correspond to 0.5
and 1.5 times the original variability, respectively. The
centroid of the cube corresponds to the original variability
scenario, which is labeled with index number 0. The corners
of the cube represent the eight combinations of different
variability levels, which are labeled with index numbers
1–8. The four circle plots in the top left panel correspond
to the corner points on the front face of the cube, which are
simulated with 50% of the original variability for molecular
weight, while the four circle plots in the bottom right panel
correspond to the corner points on the back face of the
cube, all of which have 150% of the original variability for
molecular weight. Within each group of four subplots, the
rows correspond to changes in the variability of viscosity
response and the columns match changes in the variability
of yield response.

In each circle plot, the size of the points is proportional to
the frequency with which each location appears on the PFs
in the 500 simulations. Hence, larger points appeared more
often on the PFs. In the top right panel corresponding to the
unchanged variability scenario, the points appearing more
often on the PFs (at least 20% out of 500 simulations) form
a bow tie–shaped region with larger points in the center and
smaller points on the edge. The upper and lower regions of
the bow tie shape correspond to the lightest gray (ideal)
contour for the viscosity response in Fig. 1(a). Compared
with Fig. 1, the points that appear on the PFs most often
(more than 90% of the 500 simulations) mainly correspond
to the four regions identified in the overlaid contour plots.
This indicates that the locations with generally ‘good’
performance based on a wide variety of different priorities
tend to appear on the PF with higher frequency.

The figures in the top left (with smaller variability for
molecular weight) and bottom right (with larger variability
for molecular weight) show patterns in the PF appearance
frequency for locations similar to those from the original
variability scenario. In addition to indicating the PF appear-
ance frequency using the size of the points, the locations
in the circular operating region are displayed in different
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Fig. 2 (Bottom Left) A geometric representation of the two-level, three-factor full factorial simulation study design. (Remaining plots)
Circle plots showing the possible input combinations, with the size of the points being proportional to the frequency with which the
location appears on PFs in the 500 simulations for the original variability scenario (top right) and the variability scenarios (top left and
bottom right). In each of these plots, the legend connects the plot to the geometric representation subplot from the bottom left panel, with
both the cube index number and the 3-tuple indicating the MSE multiplier for each response variable. The color scale for the top left and
bottom right panels illustrates how the frequency for that case differs from that for the original variability case, with locations shaded in
blue appearing more frequently in that case than in the original case and locations shaded in red/orange appearing less frequently. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

colors to illustrate changes in their frequency relative to the
original variability scenario. The warm colors (red/orange)
represent decreases in how frequently the locations appear
compared to the original variability scenario, with darker
red colors corresponding to larger changes. The cool col-
ors (blue) represent increased frequencies compared to the
original variability scenario, with darker blue corresponding
to higher frequencies than those in the original case.

We can observe several patterns in Fig. 2. First, the larger
changes (corresponding to darker colors) tend to occur
more often around the edges of the bow tie–shaped PF
region. Second, reducing the variability of molecular weight
tends to increase the PF appearance frequency for points
located around the bottom left region of the operating region
(corresponding to the green and pink regions in Fig. 1),
which is evidenced by the large amount of blue coloring
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in these regions in the figures in the top left panel. On the
other hand, increasing the variability of molecular weight
tends to reduce the PF appearance frequency for points in
these regions, based on the red and orange colors in all
figures in the bottom right panel. The points in the green
region in Fig. 1 have the best performance for molecular
weight on average, but relatively poor performance for
the other two responses. Hence, reducing the variability of
molecular weight tends to favor these locations more often.
While the locations in the pink region of Fig. 1 tend to
balance the performance of the three responses, molecular
weight has the smallest signal-to-noise ratio, and reducing
its associated variability seems to have the most impact on
the PF appearance frequency of the locations in this region.

Third, reducing the variability of viscosity tends to result
in increased PF appearance frequency for points in the
orange region of Fig. 1 because these locations correspond
to having the best performance on viscosity. Fourth,
reducing the variability of yield tends to be associated with
a slightly increased PF appearance frequency for points in
the blue region in Fig. 1, which corresponds to locations
with the best performance on yield and poor performance
on molecular weight. However, the degree of change is
generally smaller than changing the variability of either
molecular weight or viscosity by the same amount, since
yield has the largest signal-to-noise ratio and hence benefits
the least from reducing its variability. Lastly, reducing the
variability for at least two of the three responses is generally
associated with larger increases in the PF appearance
frequency for locations in the pink region of Fig. 1 with
more balanced performance across all the responses.

These observations at the objective stage show that the
impact of the degree of response variability depends on both
the signal-to-noise ratios of the responses and the inherent
trade-offs between the responses. Hence, it is helpful to
understand this impact for a particular application before
making any decisions that may impact a process’ associated
uncertainty.

4. IMPACT ON PROMISING SOLUTIONS
IDENTIFIED IN THE SUBJECTIVE STAGE

The locations identified to have higher PF appearance
frequencies provide us an objective set of promising
choices. In Stage 2 of the decision-making process [6],
these locations are investigated further after a series of
subjective choices are made by the user. These choices
include how to scale the responses, how to combine the
scaled criteria into a single metric, and how the user’s
priorities can be expressed as relative weights on the
different criteria. Here, we focus on the early part of Stage
2, rather than making an actual decision, to investigate the

overall impact of response variability for a specific set of
user choices. In practice, if the user is uncertain about any
of these choices, a sensitivity analysis should be performed.

For each of the 23 variability scenarios, we scale
each criterion using bounds obtained from 95% prediction
intervals for each response. This allows a unified scaling
scheme across the large number of simulations. For each
of the linear models estimated in Section 1 (Eqs. (1)–(3)),
a 95% two-sided prediction interval for any of the
responses at a specific input location x0, with x

′
0 =

(x01, x02, . . . , x0p) in the model form, is given by x
′
0β̂ ±

t0.975,n−p

√
d ∗ MSE(1 + x

′
0(X

′X)−1x0) ([7], p. 35), where
d ∈ {0.5, 1, 1.5} is the variance multiplier for a particular
response variable. Then, the best (mapped to 1) and the
worst (mapped to 0) possible values used for scaling are
identified by summarizing these prediction bounds over
all grid points in Fig. 1(b). For yield (to be maximized),
the best possible value is defined to be the largest upper
bound resulting from the prediction intervals across the
entire input space and the worst possible value is defined to
be the smallest lower bound. For molecular weight (to be
minimized), we use the smallest lower bound and the largest
upper bound across the entire input space as the best and
the worst possible values, respectively. For viscosity (to
hit a target at 65), we use 0 as the best possible value
for that criterion as many prediction intervals include the
target, and the worst value is chosen by considering all
the upper and lower prediction bounds across the entire
input space and using the one furthest from 65 to compute
the largest distance from the target. It is theoretically
possible that a simulated response is outside the range
specified by the best and the worst possible values from
the prediction intervals. If a simulated response exceeds the
best possible value, the scaled criterion is set to 1. Similarly,
a simulated response below the worst possible value
is set to 0.

To be consistent with previous results ([2,6,7]), we
combine the three scaled responses using a multiplicative
DF of the form

DFmult(l, w) = C1(l)
w1 ·C2(l)

w2 ·C3(l)
w3, (4)

where Cj(l) is the scaled value for response j (j = 1, 2, 3)

at location l on the grid in Fig. 1(b), and w = (w1, w2, w3)

is the relative weighting of the three responses under
consideration, with

∑3
j=1 wj = 1.

After choosing the scaling and DF form, we allow
some flexibility in specifying the weighting preference,
since making a single specific choice is difficult, especially
when multiple decision makers are involved. To do
this, we consider all possible weightings of the three
scaled responses by examining a space of 20,301 weight
combinations, with each entry of the weight vector w
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Fig. 3 Mixture plot for designs with best desirability for different
weighting choices based on the mean model response surface
when multiplicative desirability is used and the criteria values
are scaled based on 95% prediction intervals for the responses
across the locations in the design space.

being a multiple of 1/200. For each weight combination,
we can find the location that optimizes the desirability
among all candidate locations and then summarize the
best solution for the different weight choices in a mixture
plot ([3,9]).

Fig. 3 shows the mixture plot for optimizing the mean
model for the original variability scenario. Every point
in the triangle corresponds to a weight combination. The
vertices and the edges correspond to optimizing based on a
single criterion and two of the three criteria, respectively.
Adjacent weight combinations corresponding to the same
optimal location are displayed in the same gray scale.
The area of a region shows the proportion of weight
combinations for which the corresponding location has the
best desirability. Hence, a larger area corresponds to a more
robust location that is best for more weight combinations.
For example, Locations 75 and 76 (both in the pink region
of Fig. 1) are each best for about 17% of the weights and
account for the largest areas in Fig. 3. Location 531 (in
the orange region of Fig. 1) is optimal for about 12% of
the weights and corresponds to the third largest area. These
represent some of the more robust locations with optimal
performance for different weighting priorities.

We note that the visualization of the optimal choices gets
more complicated for more than three responses. Lu and
Anderson-Cook [10] adapt the mixture plot for applications
considering four criteria simultaneously. To handle cases
with more than four responses, other devices such as
tabular lists or dynamic graphics would be necessary to
highlight top choices in a more effective manner. In

general, we caution against trying to optimize over too
large a number of responses simultaneously, as this often
leads to mediocre values for many of the responses. It is
recommended to spend additional time in the early stages of
the optimization process to make strategic decisions about
the most important priorities.

Since the PF changes across simulations for each sce-
nario, the locations with the best desirability at each weight
combination, and thus a location’s optimal area, change
across the simulations as well. Hence, we quantify the aver-
age robustness of locations by calculating their average area
across the 500 simulations, which is summarized in Fig. 4.
While Fig. 2 illustrates the objective result of how often
each location in the input space appears on the PF, Fig. 4
focuses on a subjective aspect of the fraction of prioritiza-
tion weightings for which that location can be considered
best. In each of the circle plots, the size of the points is
proportional to the PF appearance frequency and the shades
of yellow-green-blue represent small-to-large average areas
for each location. The maximum average area across all
eight scenarios is only about 3.5%, which is quite small.
This is a result of several factors. One factor is that there
may be quite a few locations that are optimal for only small
proportions of weights and hence have small optimal areas.
Another factor is each location’s PF appearance frequency;
if, for a single simulation, a location is either not on the
PF or does not have the best desirability for any weight
combinations, then the area contributed to the average for
that simulation is zero.

In the original variability scenario (top right panel of
Fig. 4), the locations with the largest average area (≥ 2.1%)

are in the interior of the orange and pink regions of
Fig. 1 (corresponding to the lightest gray contour for ideal
viscosity). The more robust locations, with average area no
less than 0.7%, are all in the four highlighted regions from
Fig. 1. As we reduce the variability of molecular weight
(top left panel of Fig. 4), there are more locations with
higher average areas in the green region of Fig. 1, which
favors the molecular weight more than other two responses.
When the variability of viscosity is reduced (d2 = 0.5,

in the top left and bottom right panels of Fig. 4), more
locations in both the orange and pink regions (best for
viscosity) have larger average areas. Changing the yield’s
variability results in the least obvious change in the average
areas due to its large signal-to-noise ratio. Among the eight
variability scenarios, the largest average areas (≥2.1%)
occur when the variability associated with viscosity is
decreased, as evidenced by more locations being colored
with shades of dark green and blue.

By introducing the subjective choices and evaluating the
robustness of locations to varied weighting choices while
taking into account the uncertainty of the responses, a
summary like Fig. 4 is helpful for reducing the contending
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Fig. 4 Circle plots, with the size of the points being proportional to the frequency with which the location appears on PFs in the 500
simulations, that examine the average (across the 500 simulations) mixture area, with shades of green and blue representing larger average
areas. In each of these plots, the legend connects the plot to the geometric representation from Fig. 2 (bottom left panel), with both the
cube index number and the 3-tuple indicating the MSE multiplier for each response variable. (Top Right) Circle plot for the original
variability scenario. (Top Left and Bottom Right) Circle plots for the 23 variability scenarios. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

solutions to an even smaller subset of the most promising
choices with the greatest robustness across a large number
of simulations. The choice of a location is ultimately
dependent on how much we value the different responses
as captured by their different weightings. As noted in

Section 3, the impact of variability of the responses on the
robustness of locations is affected by the intrinsic trade-offs
between the responses as well as the degree of variability
relative to the range of response values across the desired
operating region.
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Fig. 5 Circle plots showing the possible input combinations, with the size of the points being proportional to the frequency with which
the location appears on PFs in the 500 simulations. In each of these plots, the legend displays the 3-tuple indicating the MSE multiplier
for each response variable. (Top Left) Circle plot for the original variability scenario. (Remaining Panels) Circle plots for the variance
reduction cases (Top Right): decreasing yield’s variability by 50%; (Bottom Left): decreasing viscosity’s variability by 50%; (Bottom
Right): decreasing molecular weight’s variability by 50%. The color scale illustrates how the frequency for each case differs from that
for the original variability case, with blues indicating an increase in frequency and reds a reduction in frequency relative to the original
case. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Given the identified PF with the objective set of
promising solutions, there are different ways to incorporate
user priorities for approaching a final solution. One
possibility is to use a full Bayesian approach to quantify
the user priorities through a probability distribution and
guide the subjective decision-making process in a more
rigorous manner. This would allow optimization, not just
on a single combination of weights for prioritization of
the response values but would also allow a region to
be identified, and performance across this region to be
considered. This examination of multiple combinations of

weights, each with a potentially different relative emphasis,
could provide a posterior distribution of candidate locations
for evaluation. This method may be suitable for scenarios
when there is a general agreement on the primary region of
weighting preference, which can be efficiently captured in
a single probability distribution. However, it would not be
suitable for scenarios when there may be disagreements
in the weighting preferences among different subject
matter experts. In this case, there could be multiple
regions to explore before a consensus could be achieved.
Another alternative to the full Bayesian approach for
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handling more focused users’ priorities by using probability
distributions was explored in Lu, Anderson-Cook, and
Lin [11].

5. PROCESS IMPROVEMENT THROUGH
VARIANCE REDUCTION

Process improvement can often be achieved through
variance reduction [12]. For our example, we assume that
the cost of reducing the variability of each response is the
same, and given an assumed budget, we look at the impact
of a 50% reduction in the variance of one of the responses.
We note that it would be straightforward to consider any
total cost and relative cost structure, by defining alternatives
that are within budget and comparable based on the cost
of implementation. An advantage of our simulation-based
approach is that different alternatives can be compared
without having to actually manipulate the system, and
thus it is possible to first gain an understanding about
how the changes will impact results before those changes
are made.

Fig. 5 shows the circle plot for the original variability
scenario (top left panel) as well as the three alternatives
under consideration. As with Fig. 2, the size of the points is
proportional to the frequency with which different locations
in the operating space occur on PFs in the 500 simulations.
The color scale indicates changes in the PF appearance
frequency with blues denoting an increase in frequency
and reds denoting a reduction in frequency relative to
the original variability scenario. When the variability of
yield is reduced by 50% (top right in Fig. 5), many
of the frequencies for locations in the operating space
stay relatively consistent with the original variability case,
generally changing by less than 8%. The larger increases in
frequencies occur close to the blue and pink regions from
Fig. 1, where yield has better performance. Reducing the
variability of either viscosity or molecular weight results
in larger changes in the PF appearance frequencies. When
the variability of viscosity is reduced, locations close to the
desired target viscosity (the lightest contour in Fig. 1(a)) are
on the PF much more frequently. This ‘tightening up’ of the
PF with locations that appear a moderate number of times
on the front being reduced, and more commonly appearing
locations increasing their frequency, shows the edges of
the PF locations more clearly. Although not as dramatic,
we see a similar pattern for the reduction of molecular
weight’s variability. Commonly selected regions are on the
PF even more frequently, and rarely chosen locations are
selected less frequently. For molecular weight, the change
in variability tends to lead to more locations in the green
and pink regions of Fig. 1 appearing on PFs with increased
frequency.

In terms of choosing between the gains from any of
the variance reduction process improvements, investing
in yield seems to have the least clearly defined benefits.
This response already has the best signal-to-noise ratio,
and further improving that ratio does not substantially
change the frequency with which locations are selected for
the PF. Instead, selecting variability reduction for either
viscosity or molecular weight gives more substantive gains
in clearly identifying the preferred locations on the PF.
The choice of the more desirable one among these two
for the practitioner should be based on the regions of
greater emphasis in terms of preferred weighting of the
responses.

In addition to appearing frequently on the PFs across
the simulations, the preferred location (input factor lev-
els) for operating this process should 1) perform well for
a range of weights believed to be the right prioritization
for the three responses and 2) perform well across a larger
range of weights close to the ideal combination. This sec-
ond requirement is helpful because it is often difficult to
precisely specify the preferred weight combination, particu-
larly if several decision makers are involved. By identifying
the solutions that are robust across the simulations, deci-
sion makers can identify locations that are most frequently
the best for their weighting preferences. Fig. 6 examines
the robustness of the locations over a range of desirability
weights, using the same DF and scaling as in Section 4.
The color scale in Fig. 6 shows the average area across all
500 simulations. Similar to the distinction between Figs. 2
and 4 earlier, Fig. 6 focuses on the subjective aspect of
how robust a given input location is across different user
weightings of the responses, while Fig. 5 was focused on
the objective phase and quantified the frequency with which
a location was selected on the PF. When we examine the
benefits of process improvement by investing in variation
reduction, we again see relatively little benefit when yield
is improved (the top left and right panels of Fig. 6 look
similar). There are some minor changes in the average size
of areas for a few locations in the orange and pink regions
of Fig. 1, but in the blue region, where yield performs best,
there is relatively little change.

In contrast, reducing the variability of viscosity (bottom
left panel of Fig. 6) increases the robustness over differ-
ent weight combinations for locations in the pink region in
Fig. 1, where the responses have the most balanced perfor-
mance, and in the orange region, where yield and viscosity
perform better than molecular weight. When the variabil-
ity of molecular weight is reduced (bottom right panel of
Fig. 6), there are also some gains in robustness for locations
in both the pink and orange regions, although perhaps less
dramatic than when the improvement is made in viscosity.
Again, it appears that there is the least gained by improving
yield, and consideration of either of the other two responses
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Fig. 6 Circle plots, with the size of the points being proportional to the frequency with which the location appears on PFs in the 500
simulations, that examine the average (across the 500 simulations) mixture area, with shades of green and blue representing larger average
areas. In each of these plots, the legend displays the 3-tuple indicating the MSE multiplier for each response variable. (Top Left) Circle
plot for the original variability scenario. (Remaining Panels) Circle plots for the variance reduction cases (Top Right): decreasing yield’s
variability by 50%; (Bottom Left): decreasing viscosity’s variability by 50%; (Bottom Right): decreasing molecular weight’s variability
by 50%. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

should be chosen based on the user’s preference of
weighting.

Finally, Fig. 7 shows a trade-off plot with uncertainty
bounds [6] for the unchanged variability scenario, and
Fig. 8 displays similar trade-off plots for the three variabil-
ity reduction scenarios. These plots show the range of val-
ues for each criterion, with the associated desirability scal-
ing used. The scaling for the reduced variability scenarios
changes slightly across the various plots. The locations
highlighted in these figures were chosen from across the
four highlighted regions of Fig. 1. The first four locations

(113, 49, 90, and 93) are located in the green region where
yield performs most poorly. The next four locations (77,
79, 100, and 125) are found in the pink region where there
is balanced performance among the three responses. The
next four locations (531, 535, 511, and 486) are from the
orange region where yield and viscosity perform well, and
the last four locations (460, 432, 377, and 405) are from
the blue region where yield has its best values. Exami-
nation of the trade-off plots (Fig. 8 vs. Fig. 7) shows that
the 50% reduction in variance does result in some reduc-
tion in the range of values anticipated (changes in the y
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Fig. 7 Trade-off plots with uncertainty bands for select locations for the simulation for the original variability scenario. The locations
are ranked from worst to best performance on the yield criterion. Uncertainty bands are based on the 5% and 95% percentiles of the
simulated responses for each location. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

axes), with slightly narrower uncertainty bounds for the
response with the altered variance. The trade-off plot can
be easily adapted for applications with additional responses
(incorporating additional curves for each new response),
although we again caution against increasing the total num-
ber of objectives of the optimization as it may dilute each
response’s contribution and lead to a very mediocre overall
solution.

Overall, it can be helpful to use the simulation study to
examine how potential improvements to the process through
variability reduction impact the user’s ability to confidently
select a preferred location to optimize a combination of
the responses. In this example, we have illustrated how
reducing the variability of the response with the largest
signal-to-noise ratio is expected to result in the least change
in the PF compared to improving either of the other two
responses.

6. CONCLUSIONS AND DISCUSSION

PF optimization allows the user to identify promising
locations in the operating space that perform well based on
the estimated models for the responses of interest. Exam-
ining just the mean model for each of the responses (e.g.
Eqs. (1)–(3)) for constructing the PF and for making deci-
sions about the preferred location ignores the uncertainty
associated with model estimation. Taking into account this
uncertainty through simulations helps give a deeper under-
standing of the performance that can be expected when a
selected optimal location is implemented.

In this paper, we examine the relationship between the
variability of the responses and how the PF changes.

There are multiple interdependent aspects that influence
the changes. The signal-to-noise ratio, which considers the
range of response across the operating space relative to the
natural variability, plays an important role. The results asso-
ciated with the responses with a small signal-to-noise ratio
are more likely to change than those for the responses where
the signal dominates natural variability. However, the rela-
tive priorities of the user are also important for determining
if a change in the variability of different responses is likely
to be influential. Both the objective first step of the PF
optimization process, which selects the front, and the ini-
tial subjective stages of incorporating a DF summary of the
combined responses show changes depending on how the
size of the natural variability changes.

By using simulations to examine variability in the
estimated response surfaces, we can have a more realistic
quantification of its impact on the identified PF as well
as the final decision. The outlined approach paired with
graphical tools is helpful for guiding a structured process for
implementing the method. When process improvement is
considered, comparing alternatives with similar associated
costs to evaluate how the PF changes can provide a cost-
effective way of determining which response should be
the focus of variation reduction. Considering both which
responses are valued most highly and which have the
smallest signal-to-noise ratio can suggest where to invest
in process improvement.

While the richness of the summaries is helpful for
facilitating informed decision-making, the computational
demand increases quickly as the number of input factors
and/or the number of responses increase. The identification
of the PF can be adapted for higher dimensional cases in a
straightforward way. However, visualization of the different
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Fig. 8 Trade-off plots with uncertainty bands for select locations for the (top) case where yield’s variability is reduced by 50%, (middle)
case where viscosity’s variability is reduced by 50%, and (bottom) case where molecular weight’s variability is reduced by 50%. The
locations are ranked from worst to best performance on the yield criterion. Uncertainty bands are based on the 5% and 95% percentiles
of the simulated responses for each location in each of the three variability reduction scenarios. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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solutions can get complicated with more inputs and
responses. In general, we suggest that the decision maker
think carefully about expanding the number of responses
over which to optimize as this typically leads to increasingly
severe trade-offs between choices and can also lead to the
overall mediocre performance on many of the responses.

If the dimension of the input space increases, then some
of the visualization tools described in the paper become
more problematic. As the number of factors increases,
the size of the grid over which to search can increase
dramatically. To speed up the optimization process, it may
be helpful to define an initial sparse grid that allows full
exploration of the space, but without overburdening the
required computational time. Once promising regions of the
design space have been identified, then a finer grid of input
combinations can be explored in those focused regions of
the design space. Displays of the results from the study of
variation can be adapted to tables, which show promising
input factor combinations along with the response values
and the frequency with which they appear on the PF.
In addition, there may be some factors over which the
responses are somewhat robust, allowing some reduction
in the dimension of the space to be displayed. Finally, an
additional dimension of display can be added by taking
slices of the response space (fixing one or more factor at a
series of values and showing a set of plots across the slices).

A key message of the PF optimization approach for
responses is that incorporating the associated uncertainty
of the parameter estimates can lead to better understanding
of the results that are possible across the different locations
in the design space, and hence lead to a more realistic
decision in practical applications.
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