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Abstract
We were motivated by three novel technologies, which exemplify a new design
paradigm in high throughput genomics: nanostringTM, DNA-mediated Anneal-
ing, Selection, extension, and Ligation (DASL)TM and multiplex real-time quan-
titative polymerase chain reaction (QPCR). All three are solution hybridization
based, and all three employ on 10-1000 DNA sequence probes in a small vol-
ume, each probe specific for a particular sequence in a different human gene.
NanostringTM uses 50-mer, DASL and multiplex QPCR use ∼20-mer probes.
Assuming a 1 nM probe concentration in a 1 µl volume, there are 10−9 x 10−9 x
6.23 x 1023 or 6.23 x 105 molecules of each probe present in the reaction com-
pared to 10-1,000 target molecules. Excess probe drives the sensitivity of the
reaction. We are interested in the limits of multiplexing, i.e. the probability that
in such a design a particular probe would bind to any other, sequence-related
probe rather than the intended, specific target. If this were to happen with ap-
preciable frequency, this would result in much reduced sensitivity and potential
failure of this design. We established upper and lower bounds for the probability
that in a multiplex assay at least one probe would bind to another sequence-
related probe rather than its cognate target. These bounds are reassuring,
because for reasonable degrees of multiplexing (103 probes) the probability for
such an event is practically negligible. As the degree of multiplexing increases
to ∼106 probes, our theoretical boundaries gain practical importance and es-
tablish a principal upper limit for the use of highly multiplexed solution-based
assays vis-à-vis solid-support anchored designs.

Recently solution-based multiplex hybridization based methods have been de-
veloped and used for messenger ribonucleic acid (mRNA) profiling experiments
that were previously the purview of solid-state, anchored methods the so-called
microarrays or chips. By most practical accounts their performance seems
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equal, but practical experiments represent examples with a bias towards re-
porting positive data. They are not exhaustive and do not represent a general
solution. Because massive multiplexing involves 1000 - 106 probes, individual
experimental validation is no longer feasible.

At the time the reaction volume of polymerase chain reaction (PCR) and hy-
bridization assays has been reduced due to nanotechnology. Conventional
PCR instruments now can use the 1536-well format e.g. the Roche system
with 1 µl. Newer microfluidics-based machines perform up to 20,000 individ-
ual reactions on the same chip e.g. Fluidigm system with 0.85 - 10 nanoliter.
Recently, a picoliter device has been described by White et al. (2011). As the
engineering pushes the technical boundaries of miniaturization, it becomes im-
portant to define the statistical boundaries of experimental designs.

Problem

We were concerned that the multiplex design introduces the potential for cross-hybridization
among probe molecules, resulting in a loss of sensitivity or detection failure. This
possibility is not present in solid-state, anchored designs, since in this case there are
no free probes available in solution only the target molecules. Traditionally cross-
hybridization refers to a scenario where the probe binds to a second, related but not
the intended target. In solution-based multiplex designs there exists in addition the
possibility that the probe cross-hybridizes to another probe rather than any target at all.
Since every probe has to be in excess over any potential target in order to ”drive” the
hybridization reaction to completion, cross-hybridization to an unrelated probe would
be favored and would prevent detection of the cognate target. Here we determined
theoretical bounds for this cross-hybridization problem.

Figure 1 lays out the problem. A microarray can be seen as a set S of probes in a
special orientation. Each probe of length d (solid arrow) is physically attached to the
support surface. Two probes never touch each other. These are then hybridized to
a mixture of target mRNAs. The probes are in molar excess compared to the target.
Each probe is an oligonucleotide of length d, i.e. a d-mer. The d-mer is made up of
the four bases A, T , C, G. We assume that A and T have the same frequency, as do
C and G. Furthermore. we parameterize the CG-ratio (i.e. the relative frequency of
A or T ) as p, where 0 ≤ p ≤ 1. Each d-mer binds to the target mRNA with perfect
complementarity and we assume 100 percent efficiency. We also assume that a given
d-mer does not bind non-specifically to non-target mRNAs. These assumptions are
supposed to hold in maximum efficient instruments or assays. In a solid-state anchored
microarray, this is the only interaction that can take place (Figure 1 panel A). There is
no binding of d-mer probes to each other.

The situation is different in a solution-hybridization based multiplex design, e.g. a bead
array (Figure 1 panel B). In a bead array probes are coupled to individual beads and in
principle any two beads with complementary probes (blue and red arrows in Figure 1)
can hybridize to each other. Other design rely on free oligonuclotides/ probes with no
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Figure 1: Conceptual illustrations of binding possibility for (A) solid-state anchored
micro array, (B) multiplex solution array. Solid arrows indicate probes, the dotted
arrow the correct target. The blue arrow refers to a probe or oligonucleotide of length
d, which is desired, perfectly complementary to the target mRNA (dashed arrow). The
red arrow refers to an oligonucleotide of length d, which is similar to the target mRNA
and thus can bind the blue probe except for m mismatches. The blue-red interactions
are possible due to sequence complementarity.

beads attached. In addition to each d-mer binding is cognate target mRNA, each d-mer
can also bind to any other d-mer in the probe set. If the d-mer binds to another d-mer
rather than the target mRNA, the assay fails.

It is important to keep in mind that for solution hybridization based designs the con-
centration of probe is orders of magnitude large than the target mRNA that is being
detected. Otherwise, the assay would not be quantitative. Since hybridization effi-
ciency is a function of probe concentration, unwanted probe d-mer to probe d-mer
hybridizations poses a novel problem for solution-based multiplex approaches.

In a complete set that contains all possible d-mers, there exists for each d-mer one
and only one perfectly complementary d-mer. For example, for a d-mer of sequence
ACTG the perfect complement would be TGAC. In a complete set S, all d-mer
probes would hybridize to their complementary d-mer probe and none would bind to
the target mRNA. This is avoided in traditional microarray designs, since all d-mers are
spatially separated by anchoring them to a solid support matrix, i.e. a slide microarray
or ”chip”.

• The size of the complete set, i.e. the number of all possible d-mers is 4d.

• In praxi, one would never multiplex the complete set, but only a subset of all
possible d-mers. This subset S1 is much smaller than the complete set S.

• In praxi, not only perfectly completely complementary d-mers would hybridize,
but also those withmmismatches. The number of mismatches being determined
by the stringency of the hybridization reaction. The more mismatches are toler-
ated by the reaction conditions the more the size of S1 approaches the size of the
complete set S. Suppose d = 4, then the size of S = 64. Assume we only have
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Panel A (d= 40, s=100, p=0.5)
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Panel B (d= 40, s=100, p=0.5)
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Panel C (d= 40, s=100, p=0.28)
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Panel D (d= 40,s=100,p=0.28)
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Panel E (d= 40, s=100, p=0.2)
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Panel F (d= 40, s=100, p=0.2)
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Figure 2: Upper (solid) and lower (dashed) bounds on the probability that there exist
no m mismatched d-mers in a subset under the different CG-ratio: Show a absolute
probability scale in the left panels. To depict closeness to 1 at higher resolution, the
right panels are plotted on the log10(1-probability) scale. Rows compare affect of the
CG-ratio p. Show upper and lower bounds are equally very closed. Dashed red and
pink lines give specific interesting comparison.

one probe of length d = 4, then size of S1 = 1, e.g. ACTG. S1/S = 1/64.
Now we allow one mismatch at the end to yield : ACTg,ACTt,ACTc,ACTa.
The size of S1 = 4 and S1/S = 4/64. If we allow 4 mismatches S1 = S.

This paper gives useful theoretical bounds on how many d-mers can be multiplexed
and how these depend on the length, the number of mismatches and the CG-ratio p.

There exists a vibrant literature on the probability of an individual d-mers and the
complete set S of all possible sequence permutation, D’yachkov et al. (2005); Bishop
et al. (2007); Dyachkov and Voronina (2009). Fewer studies have investigated this
problem in the context of subsets S1 of S and how subset size influences the probability
of annealing.

Results

We defined no m mismatched d-mers in a subset S1 if the number of mismatches
between any two d-mers in a subset S1 doesn’t equal to m. The probability of no m
mismatched d-mers in a subset S1 of all possible d-mers is a function of s (the size of
the subset S1), of d (the length of the d-mer), of m (the number of mismatches) and
of p (the CG-ratio). Panel A of the Figure 2 show our lower and upper bounds on the
probability of no m mismatched d-mers in the subset S1 for s = 100, d = 40 and
p = 0.5. Lower and upper bounds on this probability are close to 1 when m is small,
then decrease to 0 for m between 16 and 24 and increase again for m near d = 40.
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Panels C and E show the lower and upper bounds plot with the same s = 100 and
d = 40 but a different CG-ratio p = 0.28 and p = 0.2 respectively. The bound curves
in Panels C and E have a similar trend as in Panel A. For smaller values of the CG-
ratio, the sharp decrease from 1 to 0 happens for smaller m. Also the increase happens
for larger m, and does not occur for p = 0.2 in Panel C.

Panels of Figure 2 also show that the lower and upper bounds on the probability of nom
mismatched d-mers in the subset S1 is almost equal to 1 whenm is small. For example,
the vertical scale in the panel A does not effectively distinguish the bounds from 1, for
m < 15. A better visualization of this practically important range is achieved by
applying the log function to 1 minus the bounds as shown in the second column panels
of Figure 2.

These transformed plots clearly show the order of magnitude of the difference between
the probability and 1. For example, the dashed red and pink lines in the plot show that
to have a probability within 0.001 = 10−3 of 1, we need m ≤ 13, 8, or 6, for the
CG-ratios p = 0.5, 0.28, or 0.2 respectively, and to be within 10−6, m ≤ 10, 5, or 3
respectively.

As mentioned above, the combinatorial problem (Graham, 1995; Riordan, 2012) of
finding a general closed form for the probability of no m mismatched d-mers in the
subset S1 is very challenging. This motivated us to instead find closed forms for the
lower and upper bounds on the probability of no m mismatched d-mers in the subset
S1.

Without loss of generality, we assume that the CG-ratio p ≤ 0.5. First, we need to
introduce some notation. Given d, m and s, we define N l

i and Nu
i , i = 1, · · · , s − 1,

as

• If i ≤ 2d, N l
i = ipd and Nu

i = i(1 − p)d.

• If 2d
∑l−1

k=0

(
d
k

)
< i ≤ 2d

∑l
k=0

(
d
k

)
, where 1 ≤ l ≤ d, thenN l

i = 2d
∑l−1

k=0

(
d
k

)
pd−k(1−

p)k + pd−l(1 − p)l(i− 2d
∑l−1

k=0

(
d
k

)
) and Nu

i = 2d
∑l−1

k=0

(
d
k

)
(1 − p)d−kpk +

(1 − p)d−lpl(i− 2d
∑l−1

k=0

(
d
k

)
).

In addition, we need to define M l
i and Mu

i , i = 1, · · · , s− 1, as

• If i
(
d
m

)
< 2d, then M l

i = i
(
d
m

)
(1 + p)mpd−m and Mu

i = i
(
d
m

)
(2 − p)m(1 −

p)d−m.

• If 2d
∑l−1

k=0

(
d
k

)
< i

(
d
m

)
≤ 2d

∑l
k=0

(
d
k

)
, where 1 ≤ l ≤ d − m, then M l

i =

2d
∑l−1

k=0

(
d
k

)
(1 + p)m(1 − p)kpd−m−k + [i

(
d
m

)
− 2d

∑l−1
k=0

(
d
k

)
](1 + p)m(1 −

p)lpd−m−l and Mu
i = 2d

∑l−1
k=0

(
d
k

)
(2 − p)m(1 − p)d−m−kpk + [i

(
d
m

)
−

2d
∑l−1

k=0

(
d
k

)
](2 − p)m(1 − p)d−m−lpl.

• If 2d
∑l−1

k=0

(
d
k

)
< i

(
d
m

)
≤ 2d

∑l
k=0

(
d
k

)
, where d − m < l ≤ d, then M l

i =

2d
∑d−m−1

k=0

(
d
k

)
(1+p)m(1−p)kpd−m−k +2d

∑l−1
k=d−m

(
d
k

)
(2−p)k−d+m(1+
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p)d−k(1− p)d−m + [i
(
d
m

)
− 2d

∑l−1
k=0

(
d
k

)
](2− p)l−d+m(1 + p)d−l(1− p)d−m

and M l
i = 2d

∑d−m−1
k=0

(
d
k

)
(2 − p)mpk(1 − p)d−m−k + 2d

∑l−1
k=d−m

(
d
k

)
(1 +

p)k−d+m(2−p)d−kpd−m+[i
(
d
m

)
−2d

∑l−1
k=0

(
d
k

)
](1+p)l−d+m(2−p)d−lpd−m.

Note that N l
i ≤ Nu

i and M l
i ≤ Mu

i , i = 1, · · · , s − 1 and equality holds when the
CG-ratio p = 0.5.

A convenient notation is:

• The number of possible results for the first d-mer is Md = (2p+ 2− 2p)d = 2d.

• Given i d-mers with no m mismatches, the number of possible d-mers that are
m-mismatched with the given d-mers is greater than or equal toM l

i and less than
or equal to Mu

i .

• Given two different d-mers that are not m mismatched, the number of possible
d-mers H that are m-mismatched with one of them is

H ≥
{
M l

1 +
(
d−1
m

)
2mpd, m < d

M l
1 + (1 + p)d−1p, m = d

.

Let the lower bound be H l = M l
1 +

(
d−1
m

)
2mpd for m < d and H l = M l

1 +
(1 + p)d−1p for m = d.

Lower and upper bounds on the probability of no m mismatched d-mers in the subset
S1 are:

• If Md −Mu
s−1 −Nu

s−1 < 0, then

P [no m mismatches] = 0. (1)

• If Md −Mu
s−1 −Nu

s−1 ≥ 0, then

s−1∏
i=1

(Md −Mu
i −Nu

i )

(Md −N l
i )

≤ P [no m mismatches]

≤
(
Md −M l

1

)∏s−1
i=2

(
Md − max

{
H l, Nu

i

})∏s−1
i=1 (Md −Nu

i )
. (2)

The derivation of equations (1) and (2) is shown in the supplementary material.
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Figure 3: Bounds on the probability of no m mismatched d = 40-mers in subsets with
different sizes: Extension of Figure 2 to a range of different values of s (the size of
the subset). This continues to show large probability for small m (more so for small
s), for both lower (Panel A, C and E) and upper (Panel B, D and F) bounds. The
bound remain close, indicating good approximation quality, over a range of different
CG-ratios, p = 0.5 (A and B), 0.28 (C and D) and 0.2 (E and F).

Discussion

Given the CG-ratio p, equations (1) and (2) give bounds on the probability of no m
mismatched d-mers in the subset S1 as functions of s and m. As an example we
modeled the bounds for s = 100, the size of the subset S1, in Figure 2. This showed
that for probes (d-mers) with 50% (p = 0.5) CG- content even if we allow as many as
10 mismatches in a probe of length d = 40 the probability that any two probes in this
set anneal to each other is 1 in 1,000,000, i.e. very unlikely.

The situation becomes less favorable as the CG- content ratio becomes more skewed.
At 20% (p = 0.2) CG-content, such as experienced in certain microorganisms (my-
coplasma has 24% CG-content) allowing for 8 mismatches yields a chance of in 1 in
1,000 that any two probes would anneal to each other. Because our model is symmetric
around 50% CG-content the same reasoning applies to positively skewed ration such
as found in streptomyces species, which average 72% CG-content. Hence, multiplex
assays with > 1000 probes are limited to organisms with balanced CG- content.

Next, we explored how the bounds change when both subset size s and mismatch num-
ber m change. We use Figure 3 to illustrate the lower and upper bounds as functions
of both the size of the subset s and the number of allowed mismatches m, for the CG-
ratios p = 0.5, 0.28, 0.2. For practical applications, we want to maximize the size of
the subset s, which increases the degree of multiplexing, and we want to minimize
the number of allowed mismatches m, which increases specificity. As seen from Fig-
ure 3, a practical limit of the degree of multiplexing again depends on the CG-content
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of the target organism. Up to a set size of s = 1000 probes, though it is extremely
unlikely that any two probes in a multiplex assay would bind to each other. This as-
sumes large probes of length d = 40 or longer as used in the NanostringTM assay. The
chance of unwanted cross-hybridization increases as the probe length d decreases. At
a probe length of d = 20, such as used in multiplex PCR and applied to the worst case
scenario of a microorganism with heavily skewed CG-content, allowing as little as 2
mismatches per probe may result in cross-hybridization between probes in the probe
set. Luckily homo sapiens has a balanced CG-content, which allows the use of highly
multiplexed assays for clinical applications.

Current solid-state microarrays can achieve a size of s = 1.8 × 106 different probes
per chip and m = 1, since they can detect single nucleotide polymorphisms (SNPs).
Based on our calculation, we can answer the question: Can a solution-based, multiplex
design reach or exceed this performance? For d = 40, s = 1.8 × 106 and m = 1,
we have the probability (of no m mismatches) within 10−9, 10−3 and 2 ∗ 10−2 of
1 for the CG-ratios p = 0.5, 0.28, or 0.2 respectively. Hence, solution-based SNP
arrays based on probe sizes of 40 or longer have comparable performance to solid-state
microarrays only for balanced (CG-ratio p = 0.5) probes. If the CG-ratio drops, as is
known for many microbial genomes, solution-based SNP arrays underperform due to
cross-hybridization among probes.

Mismatch and mismatch probability have a concrete biophysical meaning, see Cantor
and Schimmel (1980). Every match lowers the free energy ∆G of the probe-target
duplex and every mismatch m increases ∆G. Every probe-target duplex has a charac-
teristic melting temperature T , which is a function of ∆G.

We show here that it is extremely unlikely that in a set S of size s < 1000 we would
encounter any pair of probes of length d = 40 with m < 13, 8, or 6 (corresponding to
the CG-ratio p = 0.5, 0.28 or 0.2) mismatches between them.

In sum, the current multiplex assays ( e.g. nanostringTM, DASLTM) are expected to
work and have a large margin of error built in before they encounter the theoretical
boundaries, which we derived here.

As we move into higher and higher modes of multiplexing, it is important to know the
principal boundaries of each design. As it is no longer possible to experimentally test
all possible failure scenarios or experimentally validate the performance for each and
every probe our theoretical understanding needs to improve to near certainty. Other-
wise the true potential of highly multiplexed methods cannot be realized.

Acknowledgements. This work was partially supported by the Startup Fund of Uni-
versity of South Florida, and public health service grants CA019014 and AI107810 to
DPD.

References

Bishop, M. A., D’yachkov, A. G., Macula, A. J., Renz, T. E. and Rykov, V. V.
(2007) Free energy gap and statistical thermodynamic fidelity of dna codes.
Journal of Computational Biology 14(8), 1088–1104.

8



Cantor, C. R. and Schimmel, P. R. (1980) Biophysical chemistry: Part III: the
behavior of biological macromolecules. Macmillan.

D’yachkov, A. G., Vilenkin, P. A., Ismagilov, I. K., Sarbaev, R. S., Macula, A.,
Torney, D. and White, S. (2005) On dna codes. Problems of Information Trans-
mission 41(4), 349–367.

Dyachkov, A. G. and Voronina, A. N. (2009) Dna codes for additive stem simi-
larity. Problems of Information Transmission 45(2), 124–144.

Graham, R. L. (1995) Handbook of combinatorics, Volume 1. Elsevier.

Riordan, J. (2012) Introduction to combinatorial analysis. Courier Corporation.

White, A. K., VanInsberghe, M., Petriv, I., Hamidi, M., Sikorski, D., Marra, M. A.,
Piret, J., Aparicio, S. and Hansen, C. L. (2011) High-throughput microfluidic
single-cell rt-qpcr. Proceedings of the National Academy of Sciences 108(34),
13999–14004.

9


