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Pareto front optimization has been commonly used for balancing trade-offs between different estimated
responses. Using maximum likelihood or least squares point estimates or the worst case confidence
bound values of the response surface, it is straightforward to find preferred locations in the input factor
space that simultaneously perform well for the various responses. A new approach is proposed that
directly incorporates model parameter estimation uncertainty into the Pareto front optimization. This
step-by-step approach provides more realistic information about variability in the estimated Pareto front
and how it affects our decisions about the potential best input factor locations. The method is illustrated
with a manufacturing example involving three responses and two input factors.
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1. Introduction

When optimizing several estimated responses, the two-stage
Pareto front approach (Lu, Anderson-Cook, & Robinson, 2011) to
identify promising candidate solutions and then select a best
match to user priorities can add structure and rigor to decision-
making. Traditionally, Pareto front (PF) optimization approaches
involving multiple estimated responses have focused on the max-
imum likelihood or least squares point estimates of the response at
a given set of inputs (referred to as the ‘‘mean model’’ throughout
this paper). However, uncertainty in the model parameter esti-
mates can have an impact on which input factor combinations
are identified as best. Since the responses are likely to have differ-
ent natural variability in the operational space, the precision with
which the parameters are estimated differs, making it difficult to
anticipate effects on the Pareto front solutions. Naively treating
the estimated response surfaces as fixed can lead to overconfi-
dence in the conclusions and potentially sub-optimal input factor
level choices which do not perform well when implemented in
practice.

Costa, Espirito Santo, and Oliveira (2011) and Mattson and
Messac (2005) propose visualization approaches to understand
how uncertainty impacts the construction of the PF. Martins and
Lambe (2013) provide a survey of design optimization
architectures, while Yao, Chen, Luo, van Tooren, and Guo (2011)
review strategies for uncertainty-based optimization. Hu and
Youn (2011a, 2011b), Wei, Cui, and Chen (2008) and Chowdhury,
Rao, and Prasad (2009) consider strategies for summarizing the
impacts of uncertainty on complex systems and their reliability.

Chapman, Lu, and Anderson-Cook (2014) propose using the
worst case bounds of prediction intervals as a simple way of incor-
porating uncertainty into the decision-making process. In this
paper, we propose an alternative approach for quantifying and
characterizing the impact of estimation uncertainty on solution
selection. The uncertainty impacts both which solutions are
located on the PF, as well as which solutions are best for the partic-
ular priorities of the study as measured by a desirability function
with user-specified weightings of the different criteria.

To illustrate the proposed methodology, we consider the opti-
mization of a chemical process described in Myers, Montgomery,
and Anderson-Cook (2009), [p. 253] where three responses
(y1 = yield, y2 = viscosity, y3 = number-average molecular weight)
are of interest. Two input variables (time, n1 2 [77 min, 93 min]
and temperature, n2 2 [167 F,183 F]) can be adjusted to influence
the responses. To estimate the relationships between inputs and
responses, a 13-run central composite design (Myers et al., 2009,
p. 297) for a circular coded region with maximum radius of
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was run and data were collected for each response. After fitting
quadratic response surface models and removing non-significant
terms, the estimated mean models for each response are as
follows:
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cy1 ¼ 79:94þ 0:995x1 þ 0:52x2 þ 0:25x1x2 � 1:38x2
1 � 1:00x2

2

cy2 ¼ 70:0� 0:16x1 � 0:95x2 � 1:25x1x2 � 0:69x2
1 � 6:69x2

2

cy3 ¼ 3386:2þ 205:1x1 þ 177:4x2

The goal of the optimization is to simultaneously maximize yield,
y1, and minimize both the molecular weight, y3, and the distance
from the viscosity to a target value of 65, jy2 � 65j. The ideal solu-
tion is a combination of time and temperature that performs well
for all three objectives. Since the three criteria cannot all achieve
their optimum simultaneously, which location is selected depends
on the relative importance that is placed on the different responses’
performance.

Because there are objective and subjective aspects to selecting a
best solution to an optimization problem, the PF approach in Lu
et al. (2011) considers decision-making in distinct stages. Stage 1
is objective, since it removes all poor candidates that are strictly
inferior to others. A solution is inferior if at least one solution exists
that has all criterion values at least as good as the inferior solution
and at least one that is strictly better. Eliminating these inferior
choices is rational and simplifies subsequent steps by removing
non-contenders from further consideration. The PF is comprised
of all non-inferior solutions. Stage 2 is subjective as it considers
how important good performance on the different criteria is to
the decision-maker. It examines solutions on the PF and deter-
mines how well they match the priorities of the study. Clearly
there are different ways to consider the subjective aspect of the
decision-making. Our approach is to quantify the desirability of
different options subject to different priorities, and then provide
methods to explore the robustness of the solutions to changes in
priorities. Graphical summaries of the different alternatives and
how they compare can help guide the selection of which individual
solution best suits the needs of the decision-maker and facilitate dis-
cussion with quantitative measures if several stakeholders have dif-
ferent priorities for the solution. Methods are adapted from Lu and
Anderson-Cook (2012) and Lu, Anderson-Cook, and Robinson (2012).

The process for selecting a best overall solution is further com-
plicated when the estimated responses have associated uncer-
tainty, which suggests a range of plausible values for the model
parameters that are consistent with the data observed. To capture
this uncertainty, we use the estimated models to simulate a large
number of response surfaces all consistent with the observed data.
This collection of alternative solutions becomes the basis for exam-
ining the impact of estimation uncertainty on our conclusions. The
overall goal of the selection process is to highlight a small number
of combinations of input factor levels that give optimal perfor-
mance for the responses of interest, subject to how we have chosen
to prioritize them. To help with the discussion of the subjective
Stage 2 when uncertainty is present, we have broken this stage into
several sub-steps (2a–2c), each with distinct goals and customized
graphical summaries. We now provide an overview of the different
steps in the decision-making process, before illustrating the meth-
ods in detail with the example.

Step 0: Generate Alternate Response Surfaces Consistent with Data:
The goal of this step is to generate a large number of sets of model
parameter values that are consistent with the observed data. These
values can then be used to obtain response surfaces representative
of the plausible relationship between the inputs and the responses.
These response surfaces serve as the basis for our understanding of
the impact of estimation uncertainty. The new response surfaces
each lead to different Pareto fronts, with the points on the front
having different criteria values. Understanding which points are
on the Pareto fronts more frequently and the likely range of criteria
values can inform the decision process.
Step 1: Characterize the Pareto Front (objective): The goal of this
step is to summarize the uncertainty associated with the PFs that
is propagated from the estimation uncertainty in the individual
responses. Using the PFs for each simulated surface, we summarize
the frequency with which input factor combinations appear on the
front. Those combinations which do not appear on the front fre-
quently can be eliminated from further consideration. At the con-
clusion of this step, the decision-maker should see how the PF
changes across the spectrum of anticipated response values as well
as which locations are commonly chosen on the PF.

Step 2a: Identify Promising General Solutions (subjective): The
goal of this step is to gain understanding about which locations
are frequently selected as best for different weight combinations
for the user-specified desirability function and scaling. To
summarize this information, we combine the criteria into a single
measure, identify how frequently different locations are best
across all simulated response PFs and the entire set of weight com-
binations as well as how robust they are to different weightings of
the criteria. Examining trade-offs between the criteria allows the
decision-maker to understand how much compromise is needed
on some of the responses to improve others. At the end of this step,
the decision-makers should have improved understanding of
which regions of the input factor space perform well for different
weighting combinations as well as how frequently locations are
best for some weighting.

Step 2b: Find Promising Solutions for More Focused Priorities (sub-
jective): As the decision-makers narrow their search for a best solu-
tion to match their priorities, this step focuses on how frequently
different solutions are identified as the best choice for a particular
set of weights. Initially, weights for the desirability function can be
partitioned into larger regions, and then subsequently a particular
set of weightings of interest can be explored. For the selected range
of weightings, we examine how frequently different solutions are
selected as best. As different prioritizations of the criteria are con-
sidered, different locations in the input factor space are highlighted
as common choices of best solutions. At the end of this step, the
decision-maker has information about which locations are com-
mon choices for best for the specific priorities of the study.

Step 2c: Make Final Performance-Based Selection (subjective):
Since the optimization of the product or process often necessitates
selecting a single input factor combination from which to operate,
this step guides the users to a final decision. Numerical and graph-
ical summaries allow comparisons between individual solutions
which inform the decision-makers of the relative merits of the
available choices. Once commonly identified best solutions in the
range of interest have been highlighted, evaluating and comparing
their performance to the best available alternative for each weight-
ing combination provides understanding about the merits of a
solution. At the end of this step, the decision-makers should under-
stand what choices are available and how they perform at optimiz-
ing the responses for the weightings of interest.

In the remainder of the paper, we describe the details of Steps 0
through 2c for the chemical process example. We illustrate how
the numerical and graphical summaries in each of the steps can
be used to identify promising candidates and eliminate non-con-
tenders until a final solution is selected. The descriptive summaries
also provide a quantitative means of justifying the choice. In Sec-
tion 2, the simulation step is described. Section 3 discusses the
objective Step 1 for characterizing the PF. Sections 4–6 describe
the decision-making process of Steps 2a–2c that incorporates the
user-specified desirability function for combining the measures
and the priorities of the study as summarized by the weighing
combinations of interest. Section 7 provides some discussion of
extensions to the methods, while conclusions are given in
Section 8.



J.L. Chapman et al. / Computers & Industrial Engineering 76 (2014) 253–267 255
2. Simulate multiple response surfaces

Due to sampling variability in the observed data, there is uncer-
tainty associated with the estimated response surfaces based on
the particular sampled data. If another set of data were collected,
then we might obtain different estimates of the response surfaces,
which might lead to a different set of choices on the PF and hence
lead to a decision of a potentially different choice of operating con-
ditions. To understand the impact of estimation uncertainty on the
solution, we begin by generating new parameter values that are
consistent with the current data. These new parameter values are
used to approximate response surfaces that summarize the rela-
tionship between the responses and the input factors. The simu-
lated response surfaces are central to the modified analysis
process, which we break into two big steps for exploring (1) the
impact of the variability in the PFs identified from the new esti-
mated responses surfaces in the objective stage and (2) how this
variability in PFs affects the subjective final solution based on
understanding the trade-offs and the priorities of the study. In this
section, we describe how to simulate new response surfaces.

First consider a linear model of the form

y ¼ Xbþ �;

where y is an n � 1 vector of responses, X is the n � p model matrix,
b is a p � 1 vector of model parameters, and � is an n � 1 vector of
random errors. Under the assumption that the random errors are
independent and identically distributed as �i � N(0, r2),

b̂ � MVNðb;r2ðX 0XÞ�1Þ; ð1Þ

i.e., b̂ is an unbiased estimator of b with a multivariate normal
distribution with mean b and variance r2(X0X)�1. Further,
r̂2 ¼ MSE ¼ SSE=ðn� pÞ is an unbiased estimator of r2.

To generate new response surfaces, we repeatedly simulate new
b̂�’s that are consistent with the model parameter estimates. The
steps for this process are as follows:

1. Identify and fit the appropriate model of the form yr = Xrbr + �r

for each of the m response variables, r = 1, . . . ,m.
2. For each of the m response variables, randomly generate bbr

�

from MVN bbr ; r̂2
r X 0rXr
� ��1

� �
; r ¼ 1; . . . ;m.

3. For each of the m response variables, use the simulated coeffi-
cients to approximate the response surface over a grid of points
in the design region of interest. We use a grid of 630 locations
inside the desired prediction region (a circle with maximum
radius of
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) that correspond to multiples of 0.1 on the coded
input scale determined by the Central Composite Design.
Fig. 1 displays the grid locations that appear on PFs in the
simulations.

To perform the modified analysis for the example process in the
remaining sections, we repeat the above steps 500 times, as 500
simulations provided a good balance between stability of the
results (when replicating the entire simulation–based analysis)
and manageable computation time. This approach to understand-
ing response variability captures the inherent uncertainty in the
estimation of model parameters and allows direct translation into
its impact on the estimated response surfaces. In the remaining
sections we describe how this information is used to understand
the impact of estimation uncertainty on the Pareto front and the
final selected solution.

3. Characterize the Pareto front

This section describes the objective first step in the modified PF
approach, which is to understand the general pattern of the PFs
and how much variability is associated with the range of possible
responses, as well as identifying promising locations and eliminat-
ing non-contenders from further consideration. Particularly, given
the 500 response surfaces approximated over the grid of operating
locations in the input factor region generated in Section 2, we iden-
tify the PF for each of the simulated response surfaces and then
summarize across the 500 PFs to eliminate locations that do not
appear on PFs often. These locations are not suitable to be consid-
ered for further selection regardless of the prioritization of the
multiple responses, since it is more likely to find superior locations
with strictly better response values.

The circle plot in Fig. 1 illustrates the relative frequency with
which the locations on the grid appear on the PFs across the 500
simulations. The axes on the left and bottom show locations in
their scaled units, while the top and right scales reflect the original
units. The size of the point (location) in Fig. 1 is proportional to the
number of times the location appears on PFs among the 500 simu-
lations, with larger points corresponding to those appearing more
often. The largest of the points correspond to the 43 locations
which appeared on the Pareto fronts in at least 95% of the simula-
tions. The 55 locations that did not appear on any of the PFs in the
500 simulations are not displayed in the circular region. The larger
points located in the bow tie shaped region, approximately cen-
tered around (0,0) on the coded scale, are the contenders when
estimation uncertainty is considered. The remaining locations
which are closer to the edge of the circular region, with the excep-
tion of the region of x1 2 [ � 1.2, � 0.7] & x2 2 [ � 1.2, � 0.7], are
not included on the PFs often, and hence should likely be elimi-
nated from further consideration. The identified promising loca-
tions nicely overlap with the locations on the PF based on the
mean model response surfaces (Chapman et al., 2014).

Fig. 2 shows the general shape and position of the PFs from the
simulated response surfaces. The left panels display all the points
(in gray) that have appeared on the PF in at least one of the 500
simulations with black points highlighting the 181 points on the
PF based on the mean model response surfaces. We can see the
range of response values that might be expected for points on
the PFs. The estimated values range roughly from 75 to 81 for yield,
52 to 74 for viscosity, and 2750 to 3900 for molecular weight. In
addition, we observe the variability in the PFs due to the estima-
tion uncertainty of the response surfaces as well as their position
relative to the mean model PF. The right panels display an approx-
imate ‘‘frequency’’ with which points appear on the PFs, with dark
regions appearing more frequently and corresponding to the
region with larger points in Fig. 1.

This objective step allows us to examine the possible range of
the response values and the amount of variability in the simu-
lated PFs which is propagated from the uncertainty of the esti-
mated response surfaces. In addition, we can identify solutions
that are sensible to be considered further. This evaluation is inde-
pendent of any subjective choices related to the users’ priorities
of the responses, and what form and scaling to select for integrat-
ing multiple responses into a single numeric summary for ranking
solutions. This step is objective since solutions are valued only
based on their approximated responses with estimation uncer-
tainty incorporated. This forms a logical set of choices to select
from and examined in subsequent steps for evaluating their
trade-offs and relative performance when the subjective factors,
such as decision-maker preferences, are brought into consider-
ation. The choice of these graphical summaries allows for visual-
ization of the locations in the design space, the range of responses
possible from these locations, and how much fluctuation there is
in the identified Pareto fronts between different simulated sur-
faces. This calibration translates into a fuller and more realistic
understanding of what to expect from future data from this
process.



Fig. 1. Circle plot displays most of the grid of points at which the three responses are predicted. The size of the points is related to the proportion of times the design appeared
on Pareto fronts in the 500 simulations (larger points appeared more often). The largest points appeared on the Pareto fronts in at least 95% of the simulations, while the
smallest appeared on the Pareto fronts in less than 60% of the simulations. Points within the circle which did not appeared on any of the 500 Pareto fronts are not shown.
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4. Identifying promising general solutions

The first objective step has successfully eliminated over two-
thirds of the inferior locations and allows the experimenters to
make a selection from a more manageable smaller set of candidates.
In the second step of the decision-making, we consider the subjec-
tive aspects of the decision and bring in user priorities for evaluating
and ranking the candidate locations. Often statisticians may feel like
subjectivity is to be avoided, but subjectivity is essential for tailoring
the solution to match study goals. However, an awareness of the
impact of subjectivity is helpful. For instance, the desirability func-
tion approach with a single set of specified weights typically does
not consider the impact of the chosen weights and identifies only
a single solution with little or no understanding of the robustness
of the final solution. In contrast, the Pareto front approach allows
for the formal introduction of user priorities and a careful evaluation
of their impact on the decision-making process.

The Utopia point approach (Lu et al., 2011) is used to select more
promising locations from the set of most frequently appearing loca-
tions on the PFs. This method selects a smaller set of locations that
are ‘‘closest’’ in distance to the ‘‘ideal’’ Utopia point solution on the
desirability scale across the entire range of weighting choices. This
measure of distance is dependent on a selected distance metric form
as well as the scaling scheme chosen to convert the original
response value onto the 0–1 desirability scale. Lu et al. (2011) prove
that using the Utopia point approach with an L1-norm distance met-
ric selects the same optimal solutions as using an additive desirabil-
ity function with the same scaling, expressed as
DFaddðj;wÞ ¼ w1C1ðjÞ þw2C2ðjÞ þw3C3ðjÞ;

where Ci(j) represents the scaled value of response i for location j,
for i = 1,2,3, and w is the weight vector, representing the user-
specified weight given to response i, with

P3
i¼1wi ¼ 1 and wi P 0.

The commonly used multiplicative DF, expressed as

DFmultðj;wÞ ¼ C1ðjÞw1 � C2ðjÞw2 � C3ðjÞw3 ; ð2Þ

is equivalent to using the Utopia point approach with an L1-norm
on the log scale (Lu et al., 2011). For compatibility with the previous
results by Myers et al. (2009) and Chapman et al. (2014), we choose
to use the multiplicative DF in Eq. (2), which severely penalizes
poor performance for any of the responses.

For many multiple objective optimization problems, the objec-
tive functions or criteria are assumed to be deterministic with no
variability in the criterion values for every specific solution. The
scaling is usually determined by the range of criterion values on
the PF. However, for our case with estimation uncertainty in the
response surfaces, it requires a wider scaling for incorporating this
extra variability in the estimated response values. We choose to
use 95% prediction bounds for determining the best and worst
responses in our scaling. More specifically, for a general model
form as Y = Xb + �, where Y is an n � 1 vector of the responses, X
is the n � p model matrix, b is the p � 1 parameter vector, and �
is an n � 1 vector of independent and identically distributed ran-
dom errors. A 95% two-sided prediction interval for the response
using the distribution in Eq. (1) at a particular input location x0,
with x00 ¼ ðx01; x02; . . . ; x0pÞ in the model form, is given by



Fig. 2. (Left) Plots display the general shape of the PFs observed among the 500 simulations. The points on the mean-estimate PF are displayed with black symbols. (Right)
Plots display the ‘‘frequency’’ with which points appear on the PFs, with dark regions appearing more frequently.
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x00b̂� t0:975;n�p
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MSE 1þ x00ðX

0XÞ�1x0

� �r
: ð3Þ

In Eq. (3), b̂ and MSE are the least squares or maximum likelihood
estimates of the model coefficients b and the estimated variance
of the random errors, respectively. For example, for x00 ¼ 1; x1; x2;ð
x1x2; x2

1; x
2
2Þ ¼ ð1;0:5;�1;�0:5;0:25;1Þ, a future observation on the

yield is predicted to be in the range of (77.73, 79.18) at the 95% con-
fidence level.

To choose the best and worst values for scaling the yield crite-
rion, we use the original fitted response surfaces to compute 95%
prediction bounds for the yield associated with each point on the
grid of input combinations. Since the goal is to maximize yield,
the largest upper bound obtained from all of the simulated predic-
tion intervals is used as the best value for scaling purposes. Simi-
larly, the smallest lower bound is used as the worst value for
scaling. Since the molecular weight criterion is being minimized,
we choose as the best value the smallest lower bound from all of
the 95% prediction intervals. The worst value is selected as the
largest upper bound from the prediction intervals for molecular
weight. For the viscosity criterion, which is trying to achieve a tar-
get of 65, we use 0 as the best value because 65 is included in the
range of plausible values. The prediction bound (either lower or
upper) that has the largest absolute deviation from the target is
used as the worst value for scaling the viscosity criterion. Because
the available data were used to construct the prediction intervals
for the responses at each grid point and were used to simulate
new response surfaces, theoretically it is possible that a simulated
response is outside the range of the values used for scaling. Thus, if
a predicted response from one of the simulated response surfaces
exceeds (is below) the best (worst) value, the scaled criterion value
is set to 1 (0).

Based on the selected scaling and DF form, we first explore
which locations on the mean model PF are selected as best for dif-
ferent possible weight combinations to provide some sense about
the typical performance without incorporating the estimation
uncertainty. Fig. 3 shows the mixture plot of the best locations
for all possible weightings of the three responses based on the
mean model. The vertices and the edges correspond to optimiza-
tion based on a single criterion and two of the three criteria,
respectively. A more detailed description of mixture plots is
Fig. 3. Mixture plot for designs on the Pareto front for the mean model response
surfaces when multiplicative desirability is used and the criteria values are scaled
based on 95% prediction intervals for the responses at each location.
available in Cornell (2002), [p. 24]. Of the nearly 200 solutions on
the front for the mean model, 22 are identified as being optimal
for at least 1% of the total simplex area of weights. Additionally,
a few solutions in the bottom left corner, which are optimal when
yield is weighted dominantly (weighted above 60%), are also
identified.

Table 1 provides more details about the performance of differ-
ent locations. Locations 75 and 76 are the best solutions for the
two largest weighting areas (both around 10%) with generally less
than 30% weight for yield and a large variety of weights for the
other two responses. Location 531 corresponds to the third largest
area (7.7%) with at least 30% weight for viscosity and slightly more
weight for yield than molecular weight. Locations 77–79 are adja-
cent solutions in the circle plot, which are optimal around the cen-
troid region of the weighting simplex (equal weighting for all three
criteria). Locations 509–512 are best solutions when molecular
weight is weighted less than 30% and yield is weighted between
40% and 80%. Locations 431–433 are optimal when yield is
weighted at least 50% and the other two criteria are weighted
equally. Locations 406, 514, and 49 are the optimal solutions for
univariate optimization of yield, viscosity, and molecular weight,
respectively.

We next summarize the mixture area information for the simu-
lated PFs in Fig. 4 and Table 1. Locations selected as best for at least
some weight combination(s) in at least one of the 500 simulations
are plotted in square shaped points. The size of the points is pro-
portional (larger is better) to the number of times the location is
best for at least one weight combination in the 500 simulations.
The different gray-scale of points is used to reflect the average mix-
ture area when the location is best for at least one weight combi-
nation. The darker points were selected as best for larger regions of
weight combinations on average. The largest and darkest points
are most desirable and labeled with their location number directly
above the point.

There are two main areas where locations are observed to per-
form well across the simulations: the first area corresponds to
x1 2 [�1, 0] (n1 2 [80 min,85 min]) and x2 2 [�1, �0.5] (n2 2 [170
F,175 F]), which includes the most balanced solutions as well as
those having more emphasis on molecular weight; and the second
area corresponds to x1 2 [0,0.5] (n1 2 [85 min,87.5 min]) and
x2 2 [0,0.75] (n2 2 [175 F,178.75 F]), where a majority of the loca-
tions have better performance for yield and a couple have near-
optimal viscosity. These labeled locations overlap well with the
locations identified in the mixture plot for the PF based on the
mean model (Fig. 3).

In addition, a trade-off plot with uncertainty bands for the
response values for some selected locations from Fig. 4 is displayed
in Fig. 5. The innermost vertical axes display the desirability scale
while the outer vertical axes represent the criterion scales. Loca-
tions are ordered from worst to best performance on the yield
response. Uncertainty bands are based on the 5% and 95% percen-
tiles of the simulated responses for each location. For example, the
estimated responses for yield, viscosity, and molecular weight for
Location 49 are 0.224, 0.849, and 0.735 on the desirability scale,
which correspond to 76.3, 62.5, and 3003.7 in the original response
values, respectively. The uncertainty bands indicate that we could
expect a yield between 76.0 and 76.7, a viscosity between 0.3 and
5.5 away from the target of 65, and a molecular weight between
2846.2 and 3144.3. We can see the uncertainty bands for the yield
criterion are the narrowest, indicating that we may expect less var-
iability in the estimated responses for yield. The molecular weight
has generally the widest uncertainty band. The locations in the
middle left region (77–80 and 100) have the most balance between
responses, while the locations at both ends represent options with
near-optimal performance for one or two of the responses, while
sacrificing with poor performance for another response.



Table 1
Summary of mixture areas (expressed in 100% format) for selected locations. The area in the original multiplicative mixture based on the mean model as well as the percent of
times the location was identified as best in the 500 simulations and summaries of the mixture areas from the simulations (when the location is best for at least one weight) are
provided.

Loc x1 x2 Mixture area in Fig. 3 (%) Simulated fronts

% Best Mean area 2.5% 25% 50% 75% 97.5%

49 �1.0 �1.0 0.99 88.4 1.71 0.03 0.58 0.99 1.69 8.42
77 �0.2 �0.9 3.67 67.4 2.76 0.03 0.36 0.99 3.00 15.45
79 0 �0.9 1.09 46.0 3.03 0.03 0.38 0.90 3.22 19.00
100 �0.1 �0.8 0.40 81.2 1.45 0.04 0.29 0.48 1.03 7.99
113 �1.2 �0.7 0.06 62.8 1.79 0.03 0.49 1.02 1.99 8.03
405 0.3 0.3 1.42 97.0 1.17 0.17 0.72 1.10 1.48 2.52
432 0.3 0.4 0.72 96.8 0.79 0.12 0.49 0.69 0.95 1.78
460 0.4 0.5 0.83 94.6 0.87 0.12 0.47 0.66 0.92 3.18
485 0.3 0.6 0.39 92.6 1.38 0.06 0.31 0.42 0.66 11.18
486 0.3 0.6 0.75 92.4 1.66 0.07 0.43 0.59 0.94 11.75
510 0.3 0.7 2.32 77.4 2.65 0.09 0.31 0.58 3.08 17.09
511 0.4 0.7 4.19 74.6 2.96 0.11 0.41 0.80 3.56 17.88
512 0.5 0.7 4.23 51.0 2.97 0.03 0.42 1.08 3.29 16.46
533 0.2 0.8 NA 41.0 3.18 0.06 0.30 1.64 4.53 14.00
535 0.4 0.8 NA 39.4 4.79 0.13 0.65 2.34 5.24 25.19

Fig. 4. Circle plot summarizing the mixture information for the locations. The size of the points is proportional to the number of times the design location is flagged as best for
at least one weight combination in the 500 simulations (larger points were identified as best more often). The grayscale conveys the average multiplicative mixture area when
the location is identified as best for at least one weight combination (darker points are best for larger regions of weight combinations). The largest and darkest points are
labeled with their location number directly above the point.
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In this step, we work to gain a better understanding of the
general areas of promising solutions. The mixture plot provides
a compact way of summarizing where individual solutions
excel. The circle plot highlights both the frequency of selection
into the set of superior choices and the robustness to perturba-
tions of weightings. The trade-off plot provides a concise
summary of the estimated response values with their uncertain-
ties for particular input combinations of interest. Taken
together this collection of summaries provides a diverse and
complementary set of information to help select the most
promising solutions when estimation uncertainty is desired to
be addressed.



Fig. 5. Trade-off plot with uncertainty bands for selected locations. Locations are ranked from worst to best performance on the yield criterion. Uncertainty bands are based
on the 5% and 95% percentiles of the simulated responses for each location.

Fig. 6. Weight space partitioned into four regions. Region 1 consists of weight
combinations that emphasize yield over the other two criteria. Region 2 emphasizes
viscosity. Region 3 emphasizes molecular weight. Region 4 consists of the weight
combinations that provide the most balance among the three criteria.
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5. Promising solutions for more focused priorities

Step 2a described in Section 4 allows us to gain an understand-
ing of how much trade-off exists between the responses, how
much uncertainty is associated with each response, and which
regions of the input factor space perform well for different weight-
ing choices across all possibilities. These insights are helpful for
improving the decision-makers’ understanding of the process/
product and the interrelationship between the responses, as well
as refining how to quantify priorities and study goals by under-
standing how elements interact.

Building on the previous steps, Step 2b in this section provides
tools for helping decision-makers to narrow their choices down to
a more focused region matching their priorities. The step starts by
partitioning the entire weighing space into larger regions and iden-
tifying locations that appear more often as optimal solutions for
the whole as well as individual weighting regions. This step is help-
ful for evaluating the global as well as local optimization perfor-
mance of individual solutions and further selecting the most
promising choices that achieve a good balance of the two aspects.
Subsequently, decision-makers can transition to considering a nar-
rower region of interest.

Fig. 6 illustrates a simple partition of the weighting space into
four large regions. These regions represent different prioritization
of the three responses, which are displayed in different shades of
gray. Region 1 consists of weight combinations that emphasize
yield over the other two criteria. Similarly, Regions 2 and 3 have
primary emphasis on viscosity and molecular weight, respectively.
Region 4, in the center of the simplex, consists of weight combina-
tions that present more balance among the three responses.

The entire space consists of 496 weight combinations, with
each entry of the weight vector being a multiple of 1/30. For each
of the 500 simulations, the location for which each of the
496 weights is best is determined. Fig. 7 shows a stacked Pareto
(bar) plot for the 20 locations that are identified as best most often
for the whole weighting space across all 500 simulations and the
496 weightings considered. Each bar shows the average frequency
per simulation that the location is best. Within each location,
weights for which the location is best are classified as one of the
four regions defined in Fig. 6. Hence smaller bars are stacked
vertically to represent the average frequency per simulation for
individual weight regions. For instance, Location 511 was identi-
fied as best for the most weights (approximately 14 per simula-
tion). Of these weights, Location 511 is best for about six weights
in Region 1, three in Region 2, and five in Region 4 per simulation.

Several patterns can be observed in Fig. 7. First, no location
among the top 20 is best for weightings from all four regions. Typ-
ically, they are optimal for relatively large proportions of weight
combinations from a couple of regions and then a smaller amount
of weightings from a third region. This is a result of the substantial
trade-offs between the three responses. There is no location that
performs uniformly well for all of the weight regions. Secondly,
most locations among the top 20 are best for a substantial portion
of weightings from the center Region 4. This indicates that loca-
tions with relatively more balanced performance tend to have
higher ranks in the global summary. Also, no locations among
the top 20 are best for weightings from both Regions 1 and 3. This
matches what we observe from Fig. 5 where yield and molecular
weight exhibit the strongest trade-off among the three responses.
Finally, all of the top 20 allocations are best for a small to moderate



Fig. 7. The 20 locations identified as best most often across all simulations and the 496 weights considered. Within each location, weights for which the location is best are
classified as one of the four regions defined in Fig. 6.
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portion of weights from Region 2, which indicates it is very likely
to find a best solution with good performance for viscosity since
it has the least trade-offs with the other two criteria and does
not require too much compromise when balancing between the
choices.

In addition, there is substantial overlap between the locations
identified in Fig. 7 and those from Fig. 3 based on the mean model,
particularly for locations around the middle area of Fig. 3 with a
reasonable size of the area (Locations 75–79 and 509–512). For
locations that are in Fig. 7 but not labeled in Fig. 3, most represent
adjacent locations to the labeled ones, which are expected to have
not too different performance on average. Additionally, all of these
locations are gathered around two bigger regions (the bottom left
and the top right) in the bow-tie shaped region identified in Fig. 4.

Now that the decision-makers have an understanding of which
regions of the input factor space perform well for different weight-
ing choices, they are in a better position to consider a more focused
region based on their own specific priorities. Suppose one decision-
maker thinks all three responses should be weighted similarly,
with the weight for each criterion ranging between 20% and 40%.
This region of interest is displayed in Fig. 8(a) with 28 weight com-
binations included. This region is further divided into four smaller
regions. Each of the Regions A–C has slightly less emphasis on
molecular weight (blue), viscosity (green), or yield (red) while
Region D (orange) has roughly equal weights for all three
responses. This further partition offers potential to see more
focused patterns. Fig. 8(b) shows the Pareto (bar) plot of the aver-
age frequency per simulation for the top 20 choices in this region.
Again, the ranking for the most centered smaller region generally is
similar to the summary over the entire region. We can still see
trade-offs between molecular weight and yield with almost no
top location doing well on both the red and blue regions. However,
this pattern is not as strong as for over all possible weightings in
Fig. 7. All of the top 12 choices are located around the bottom left
portion of the bow-tie shaped region in the input factor space.

Table 2 summarizes the top location (appearing most fre-
quently as the best) for each of the 28 weight combinations consid-
ered in this region. Locations 76–80, 100–101 and 508–509 appear
frequently on the list. Due to the variability in the estimated
response surfaces, the best location for a particular weight
combination can vary across the simulations. Fig. 9 shows the
truncated ‘‘distribution’’ of the optimal solutions for the 28 weight
combinations in the region. Each row corresponds to a specific
weight combination and the possible optimal locations are shown
in descending order of the frequency of appearing as best in the
500 simulations. Locations with smaller than 2% frequency (i.e.
best for less than 10 simulations) were truncated on the right hand
side. Adjacent locations 77–79 and 100–101 appear most often as
the top three designs for all weight combinations except in the
blue region A, where locations 508–509 appear to be the top
choices.

Now, suppose a different decision-maker believes that the yield
criterion is the most important and should be weighted between
60% and 80%, with the remaining weight split between the other
two criteria. Figs. 10 and 11 summarize the top choices for this sce-
nario. This region is further divided into three regions depending
on the weight that yield receives. Fig. 10(b) shows the top 20 most
frequent best solutions averaged across the simulations and the
weighting area. Locations 432 and 405 are the most promising
solutions for the whole region as well as Regions E and F with big-
ger weights for yield. Locations 485 and 459 are the top choices for
Region G with slightly less weight for yield. These locations are
also the common top locations for the majority of the individual
weight combinations in the region as seen in Table 3, as well as
the common choices for the top three most frequent best locations
for the 16 weight combinations shown in Fig. 11.

By the end of this step, the decision-makers have gained infor-
mation about which locations are the most frequent choices as best
in the focused region matching the priorities of the study. The
approach outlined provides detailed information about individual
input combinations, while still providing a higher level summary
that connects smaller regions of the input space. In addition, the
performance of individual solutions is summarized at different lev-
els corresponding to varied degrees of focus on the weighting pri-
orities, which offers the decision-maker a comprehensive
understanding of how their level of weighting uncertainty may
affect their decision. Being able to extract information at several
levels provides information about robustness while still allowing
an individual solution to be identified. Note that as a result of
the continuity of the response surfaces under consideration, sev-
eral adjacent locations are identified as common top choices. This
is reassuring that we have found a common region of the optimal
condition of the process/product for the particular priorities of the
decision-makers.



Fig. 8. (a) Region of weight space where each criterion receives a weight between 0.2 and 0.4. The weights in the blue region emphasize yield and viscosity over molecular
weight, those in the red region emphasize molecular weight and viscosity over yield, and those in the green region emphasize yield and molecular weight over viscosity. The
weights in the orange region represent the most balance between the three criteria. (b) The 20 locations that are flagged as best most often across all simulations and the 28
weights considered in this region. Within each location, weights for which the location is best are classified as one of the four regions defined in (a).

Table 2
The most frequent best locations in the region with all weights between 20% and 40%.

Weight index Weight vector Top location Weight index Weight vector Top location

A1 (0.33, 0.4, 0.27) 79 C3 (0.23, 0.4, 0.37) 76
A2 (0.37, 0.37, 0.27) 80 C4 (0.27, 0.33, 0.4) 77
A3 (0.37, 0.4, 0.23) 508 C5 (0.27, 0.37, 0.37) 77
A4 (0.4, 0.33, 0.27) 508 C6 (0.27, 0.4, 0.33) 77
A5 (0.4, 0.37, 0.23) 509 D1 (0.3, 0.3, 0.4) 77
A6 (0.4, 0.4, 0.2) 509 D2 (0.3, 0.33, 0.37) 77
B1 (0.33, 0.27, 0.4) 78 D3 (0.3, 0.37, 0.33) 78
B2 (0.37, 0.23, 0.4) 100 D4 (0.3, 0.4, 0.3) 78, 79
B3 (0.37, 0.27, 0.37) 78 D5 (0.33, 0.3, 0.37) 78
B4 (0.4, 0.2, 0.4) 100 D6 (0.33, 0.33, 0.33) 78
B5 (0.4, 0.23, 0.37) 101 D7 (0.33, 0.37, 0.3) 79
B6 (0.4, 0.27, 0.33) 101 D8 (0.37, 0.3, 0.33) 79
C1 (0.2, 0.4, 0.4) 76 D9 (0.37, 0.33, 0.3) 78
C2 (0.23, 0.37, 0.4) 76 D10 (0.4, 0.3, 0.3) 101
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6. Final performance-based selection

Given the few top choices identified at the end of Section 5, Step
2c guides the decision-makers to the final decision based on eval-
uating and comparing the actual performance of individual choices
summarized over the chosen focused region as well as the entire
weighting space (if global performance is of interest). The Fraction
of Weight Space (FWS) plot with uncertainty bands offers a com-
pact and convenient summary for this purpose.

The FWS plot for multiple criteria optimization without uncer-
tainty was originally proposed in Lu, Chapman, and Anderson-
Cook, 2013 and then adapted for summarizing over a focused
region in Lu, Anderson-Cook, and Lin (2013) to provide a dimen-
sion-free summary (that flexibly allows for any number of criteria).
The FWS plot quantifies the relative performance of individual
solutions relative to the best available for each particular weight
combination over the entire region of interest. The relative perfor-
mance for a solution, j, at a weight combination, w, is measured by
its synthesized efficiency (Lu & Anderson-Cook, 2012) defined as
SEðj;wÞ ¼ DFðj;wÞ

maxjðDFðj;wÞÞ.

The FWS plot is built from the synthesized efficiency values for
a fine set of weight combinations, such in as in Fig. 6. The lines for
each solution show for what fraction of the weights (horizontal
axis) the solution has synthesized efficiency at least as large as a
certain percentage of the best possible performance (vertical axis).
Fig. 12 displays the FWS plots with uncertainty bands for several
selected locations. In these plots, the solid line represents the med-
ian (across the 500 simulations) of the empirical fraction of the
weighting region for which the solution’s synthesized efficiency
as a certain percentage of the best possible, while the dashed lines
represent the 5th and 95th percentiles from the simulations. The
FWS plot provides an overall, quantitative summary of the perfor-
mance of an individual solution across the weighting region of
interest and can be used to easily compare several competing
solutions.

Fig. 12(a) shows the FWS plot summarized over the focused
region for the first scenario discussed in Section 5 where a deci-
sion-maker believes the weights for all three responses should be
between 20% and 40%. The six most promising locations in Sec-
tion 5 are examined here. We can see that Locations 77–79 and
101 all represent similar performance with above 90% synthesized
efficiency for the median over the focused region and above 85%
efficiency for the worst case percentile summary. Location 100
has almost identical performance to 101 and is not shown here.
Locations 508–509 are similar to Locations 77–79 and 101, with
slightly worse performance at the tail end of the FWS curve.

To compare the global performance of these locations, Fig. 12(b)
shows the FWS plot summarized over the entire weight space.
Again, Locations 77–79 perform almost identically while Location
101 (above Location 79 in Fig. 4) performs similarly with slightly



Fig. 9. Locations flagged as best in 2% or more of 500 simulations for weights considered when all criteria receive weights between 20% and 40%.

Fig. 10. (a) Region of weight space where the yield criterion receives between 60% and 80% of the weight while the remaining two criteria receive weights between 10% and
20%. The blue, orange, and green regions correspond to weighting combinations where yield receives more than 70%, exactly 70%, and less than 70% of the weight,
respectively. (b) The 20 locations that are flagged as best most often across all simulations and the 16 weights considered in this region. Within each location, weights for
which the location is best are classified as one of the three regions defined in (a).
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better synthesized efficiency at the tail end of the FWS curve. All
four locations have at least 75% synthesized efficiency over the
entire weighting space. In contrast, Locations 508 and 509 do not
have consistent good performance over all possible weightings.
Their FWS curves drop quickly with the median and worst case
efficiency near 60% and 40%, respectively.

Now, consider the second scenario where another decision-
maker believes that yield should receive substantially more weight
than the other two criteria. The FWS plot for the top performing
locations identified by the second decision-maker is displayed in
Fig. 13. First consider Fig. 13(a), where the fractions of the weight-
ing space are computed using only weights in the desired region.
Location 486 (with similar performance to Location 485) has the
highest synthesized efficiency with narrowest uncertainty band
across the focused region. Location 460 has pretty comparable per-
formance for the median and best case summary. However, the
worst case summary has slightly lower synthesized efficiency
around the tail end of the curve. The other locations have shown
consistently lower synthesized efficiency and more uncertainty
than Locations 485 and 486.

To compare the global performance of these six locations,
Fig. 13(b) considers the FWS plot summarized over the entire
weight space. Locations 485, 486, and 406 perform similarly, with
curves that drop quickly to around 60% and 40% for the median and



Fig. 11. Locations flagged as best in 2% or more of simulations for weights considered when the yield criterion receives between 60% and 80% of the weight while the
remaining two criteria receive weights between 10% and 20%.

Table 3
Weights considered in focused investigation when yield is weighted 60 – 80% and
both viscosity and molecular weight receive weights between 10% and 20%.

Index Weight vector Top location

E1 (0.73, 0.1, 0.17) 405
E2 (0.73, 0.13, 0.13) 432
E3 (0.73, 0.17, 0.1) 460, 486
E4 (0.77, 0.1, 0.13) 405
E5 (0.77, 0.13, 0.1) 432
E6 (0.8, 0.1, 0.1) 405
F1 (0.7, 0.1, 0.2) 376
F2 (0.7, 0.13, 0.17) 432
F3 (0.7, 0.17, 0.13) 432
F4 (0.7, 0.17, 0.13) 432
G1 (0.6, 0.2, 0.2) 485
G2 (0.63, 0.17, 0.2) 432
G3 (0.63, 0.2, 0.17) 485
G4 (0.67, 0.13, 0.2) 376
G5 (0.67, 0.17, 0.17) 432
G6 (0.67, 0.2, 0.13) 486
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lower bound cases. While the curves for the three remaining solu-
tions are lower in all cases, early on. They do not drop as low as
Locations 485, 486, and 460 at the tail end of the curve.

By the end of this step, the decision-makers are prepared to
make a final decision as to the optimal solution. The performance
of the most promising solutions from Step 2b are compared over
the focused region of interest using the FWS plots. Modifications
of these plots allow examination of the robustness of the solutions
relative to a broader range of weights. The FWS approach provides
an adaptable summary which allows straightforward comparisons
between competing solutions that is suitable for varied degrees of
focus on the weighting preference and diverse dimensions of prob-
lem. In the case of the two decision-makers, the summaries can
facilitate a discussion about the priorities of the study and which
solution to choose as optimal settings. If the priorities of the study
remain, as the first decision-maker suggests with all criteria
receive 20–40% weight, then Location 77 (or 78–79), with mean
estimated responses (and 95% prediction intervals) of ŷ1 ¼
78:5ð77:8;79:2Þ; ŷ2 ¼ 65:2ð59:2;71:2Þ; ŷ3 ¼ 3185:5ð2784:1;3586:9Þ,
might be selected. If, on the other hand, it is decided that yield is
most important, Location 486 (or 485), with estimated responses
(and 95% P.I.) of ŷ1 ¼ 80:1ð79:4;80:8Þ; ŷ2 ¼ 66:6ð60:7;72:4Þ; ŷ3 ¼
3574:6ð3180:3;3969:0Þ using Eq. (3) could be chosen. Alterna-
tively, if there is uncertainty or disagreement about the weightings
of the three criteria, a more robust choice, such as Location 100 (or
101) with estimated responses (and 95% P.I.) of ŷ1¼78:8ð78:1;
79:5Þ; ŷ2¼66:5ð60:5;72:3Þ;ŷ3¼3244:3ð2826:6;3620:9Þ, might be
preferable.
7. Discussion

While the richness of the summaries is helpful for highlighting
response uncertainty and making more informed decisions, the
method is computationally more demanding than just focusing
on the mean model. R code for producing all of the plots in the
paper is available by request from the authors. There are two major
components related to the computational time necessary for this
simulation-based approach. The first component, simulating 500
new response surfaces and finding the Pareto front associated with
each, requires less than an hour of computation time on a standard
desktop computer. The second component, finding the mixture
information for each simulated front, is more time-consuming,
requiring nearly 12 h for the 500 response surfaces. However,
considering the high consequence of selecting the right operating
conditions, investing time in obtaining a more thorough under-
standing of the impact of variability and estimation uncertainty
on decision-making and optimization is worthwhile.

In addition, this chemical industry problem focuses on two
inputs and three responses. We now describe how the various



Fig. 12. (a) FWS plot for the focused weighting space for locations selected based on the weight region where all criteria receive between 20% and 40% weight. (b) FWS
summarized over the entire weighting space for the same locations.
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summaries scale as we change these problem attributes. In general,
we suggest that the decision-maker think carefully about expand-
ing the number of criteria/responses over which to optimize as this
typically leads to increasingly severe trade-offs between choices
and can lead to an overall mediocre performance on many of the
responses. Increasing the number of inputs is generally not a prob-
lem, except that it complicates the visualization of the different
solutions. Step 0 remains largely unchanged if the number of
inputs and responses are changed. Each of the responses needs
to be estimated for the grid of candidate locations for each set of
generated model parameters. Similarly, if the design region has
constraints then the only change required is to create a list of eli-
gible input combinations which can be considered as possible solu-
tions for the optimization.

In Step 1 if the number of responses increases, then the Pareto
front is likely to become exponentially richer as increasing the
number of criteria considered can quickly increase the total num-
ber of solutions on the front. If the number of inputs increases, then



Fig. 13. (a) FWS plot for the focused weighting space for locations selected based on the weight region where yield receives 60–80% of the weight and the remaining two
criteria receive 10–20% of the weight. (b) FWS summarized over the entire weighting space for the same locations.
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the circle plot of Fig. 1 for visualizing the most promising solutions
and their relative locations becomes more difficult. Several alterna-
tives for summarizing this information include (a) a table with the
input combinations sorted by the fraction of times that each is
located on the Pareto front, or (b) creating multiple ‘‘slices’’ of
the circle plot where some of the input levels are held fixed, and
two of the inputs are shown with circle plots. This would allow
summarization of the overall patterns and promising locations,
but would require more interactive exploration. The pairwise plots
of Fig. 2 would continue to be an option as the number of responses
increases, and might be summarized with the more traditional
upper triangular grid of plots.
In Step 2a, the mixture plot of Fig. 3 can be expanded to show
the weight combinations for up to 4 responses with the sliced
approach illustrated in Lu and Anderson-Cook (2013). Similar
adaptations of the circle plot discussed for Fig. 1 would be required
for Fig. 4 if the number of inputs was increased. The trade-off plot
in Fig. 5 could be expanded to include one or two additional
responses, however, beyond 4 responses this might become too
cluttered.

The Pareto (bar) plots for the overall (Fig. 7) and specific regions
(eg. Fig. 8) of Step 2b to focus on more promising locations scale
well, with the major complication coming from connecting the
location number to a particular input combination in a higher
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dimensional design space. Similarly, the ordered frequency plot of
the optimal locations for specific weights (eg. Fig. 9) is also easily
adapted to either increasing numbers of inputs or responses. The
FWS plots (eg. Fig. 12) in Step 2c are flexible enough to accommo-
date any numbers of responses and inputs.

8. Conclusions

The methods described in this paper illustrate some key fea-
tures of optimizing responses when there is uncertainty about
the estimated response surfaces characterizing them. In particular,
it is important to remember that the mean model characterization
of each response surface using the point estimates is based on our
best guesses of the model parameters, but there are numerous
other values which are also plausible and consistent with the
observed data. Since different amounts of estimation uncertainty
could be associated with different responses and the amount of
uncertainty can vary across different design locations (the pre-
dicted responses are associated with more uncertainty when the
location is further from the center of the design region), it is
unclear how estimation uncertainty affects the decisions made
when compared with the mean model solutions. Hence, when we
seek to optimize several responses simultaneously, this uncer-
tainty should be examined and its impact should be included in
the decision-making process.

Using a Pareto front approach allows for inferior solutions to be
removed from further consideration and then graphical summaries
of the trade-offs between the remaining promising solutions can
be studied and compared. Chapman et al. (2014) complements
the mean model optimization by examining the worst-case predic-
tion interval values for each of the responses at each design loca-
tion. This provides a simple approach to including the variability,
while keeping the amount of additional information to a minimum.

In this paper, we use simulations based on likely model param-
eter values to generate multiple sets of responses. By exploring
how the Pareto front changes across these values, a realistic char-
acterization of the inherent variability can be obtained, and a set of
promising candidate design locations can be identified and exam-
ined for their expected performance. When we compare the results
from the different approaches, we find that both the mean model
approach and the worst-case prediction interval values identify
similar solutions for many of the different weight combinations
for prioritizing the three responses in our case study. The new sim-
ulation-based approach also highlights similar regions, but shows
how model parameter uncertainty can change the range of antici-
pated response values at a given location and also shift the Pareto
fronts. The results highlight how several adjacent locations are
likely to produce desired values for a given combination of
weights. Note that due to the existence of estimation uncertainty,
the range of actual possible response values is wider than for the
mean model. If there is uncertainty with this choice, a sensitivity
analysis investigating its impact on optimization could be
performed.

The outlined approach breaks the decision-making process into
manageable steps that sequentially explore different aspects of the
choice, moving from objectively removing less promising
candidate locations to subjectively highlighting locations that
are consistent with the study goals. In addition, the process transi-
tions from general results across the entire range of weighting
combinations to user-specified ranges which closely match study
priorities. We think that obtaining an overall sense of the trade-offs
between the responses is good calibration for the subsequent spe-
cific choices, since it highlights the synergistic or antagonistic rela-
tionship between responses as well as how robust locations are to
different priorities. While the choice of which summaries to con-
sider in the subjective steps can be tailored to individual prefer-
ences, the set of graphical and numerical summaries described in
this paper provides a coherent and logical progression through
the decision-making process.

Including the estimation uncertainty of the response surfaces
associated with different criteria can help decision-makers better
understand what input combinations are most promising for
simultaneously balancing different objectives and what values
are possible for each of the responses at a chosen input combina-
tion in the real world full of variability and parameter estimation
uncertainty. This added realism improves understanding of what
is really known about the responses and what can be expected
under future production conditions.
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